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ABSTRACT
Photo composition is an important factor a�ecting the aesthetics in
photography. However, it is a highly challenging task to model the
aesthetic properties of good compositions due to the lack of globally
applicable rules to the wide variety of photographic styles. Inspired
by the thinking process of photo taking, we formulate the photo
composition problem as a view �nding process which successively
examines pairs of views and determines their aesthetic preferences.
We further exploit the rich professional photographs on the web to
mine unlimited high-quality ranking samples and demonstrate that
an aesthetics-aware deep ranking network can be trained without
explicitly modeling any photographic rules. The resulting model is
simple and e�ective in terms of its architectural design and data
sampling method. It is also generic since it naturally learns any
photographic rules implicitly encoded in professional photographs.
The experiments show that the proposed view �nding network
achieves state-of-the-art performance with sliding window search
strategy on two image cropping datasets.
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1 INTRODUCTION
“Aesthetics is a beauty that is found by a relationship between things,
people and environment.”

Naoto Fukasawa
In the past decade, a considerable amount of research e�orts have
been devoted to computationally model aesthetics in photogra-
phy. Most of these methods aim to either assess photo quality by
resorting to well-established photographic rules [7, 8, 16, 23] or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’17, October 23–27, 2017, Mountain View, CA, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4906-2/17/10. . . $15.00
DOI: https://doi.org/10.1145/3123266.3123274

(a) (b) (c)

Figure 1: Professional photographs on the web are typically
compliant with certain photographic rules. On the other
hand, a crop of the image is highly likely to ruin the orig-
inal composition, e.g., (a) symmetry, (b) rule of thirds, (c) ob-
ject emphasis. By pairing a professional picture with a corre-
sponding crop, it enables us to leverage human knowledge
of photo composition under a learning-to-rank framework.

even to manipulate the image content to improve visual quality
[1, 11, 20, 37]. However, to model photographic aesthetics remains
a very challenging task due to the lack of a complete set of pro-
grammable rules to assess photo quality. In recent years, large-scale
datasets with peer-rated aesthetic scores [17, 26] enable aesthet-
ics modeling with learning based approaches [17, 21, 22, 24, 26].
However, the peer-rated aesthetic scores are subject to the bias
between subjects, since comparing the aesthetic of arbitrary pairs
of image is inevitably ambiguous sometimes. To mitigate the bias,
one way is to get more signal than noise by enlarging the dataset.
However, it is a daunting task to collect signi�cantly more images
with peer-rated aesthetic scores.

Rethink about the most basic behavior of photo taking: a pho-
tographer repeatedly moves the camera1 and judges if the current
view is more visually pleasing than the previous one until the
desired view is obtained. The above observation reveals the essen-
tial property of photo composition – to successively rank a pair of
views with gradually altered contents. Unlike most existing meth-
ods, which typically try to di�erentiate the aesthetics of distinct
images, comparing the aesthetics relationship of visually similar
views is relatively easy and less ambiguous. However, to collect
a large amount of ranking samples by human raters for training

1More speci�cally, the camera movement may include shift and zoom in/out to properly
frame the desired view.
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e�ective models will inevitably face the aforementioned challenges
– subjectiveness and scalability.

One key observation is that professional photographs are typi-
cally compliant with certain photographic rules (see some examples
in Figure 1), which are inherently positive examples of good com-
position. On the other hand, a crop of professional photographs
is highly likely to ruin the original composition. In other words,
a pair of a professional photograph and its corresponding crop
is highly likely to possess de�nite visual preference in terms of
aesthetics. Thanks to the abundant professional photographs on
the web, it is thus possible to harvest many unambiguous pairwise
aesthetic ranking examples for free. Additionally, the model can nat-
urally learn more photographic rules encoded in more training data
without the necessity of explicitly modeling any new hand-crafted
features.

Based on the above observations, we formulate the learning-to-
compose problem as a pairwise view ranking process. We show that
it can be e�ectively solved by a simple and powerful view �nding
network (VFN), which is trained to honor images of good compo-
sition and avoid those of bad composition. VFN is composed of a
widely used object classi�cation network [18] optionally augmented
with a spatial pyramid pooling (SPP) layer [12, 19]. A costless data
augmentation method is proposed to collect large-scale ranking
samples from the unlimited high-quality images on the web. With-
out using any complex hand-crafted features, VFN learns the best
photographic practices from examples by relating di�erent views
in terms of aesthetic ordering. To evaluate the capability of VFN for
view �nding, we evaluate its performance on two image cropping
databases [5, 36]. We demonstrate that with simple sliding win-
dow search, VFN achieves state-of-the-art performance in cropping
accuracy.

To summarize, our main contributions are as follows: We revisit
the extensively studied problem of modeling photo aesthetics and
composition and provide new key insights. The resulting technical
solution is surprisingly simple yet e�ective. We show that a large
number of automatically generated pairwise ranking constraints
can be utilized to e�ectively train an aesthetics-aware deep ranking
network. The proposed method signi�cantly outperforms state-of-
the-art methods as demonstrated by a quantitative evaluation on
two public image cropping datasets.

2 PREVIOUS WORK
Photo composition is an essential factor in�uencing the aesthet-
ics in photography. A considerable amount of methods have been
developed to assess photo quality [7, 8, 16, 23, 27]. Early works typi-
cally exploit “hand-crafted” features that mimic certain well-known
photographic practices (e.g., rule of thirds, visual balance etc.) and
combine them with low-level statistics (e.g., color histogram and
wavelet analysis) to accomplish content-based aesthetic analysis.
More recently, generic image descriptors [25] and deep activation
features [9] originally targeted at recognition are shown to be
generic and outperform rule-based features in aesthetics predic-
tion and style recognition [15]. With the advance of deep learning,
recent works [14, 17, 21, 22, 24] train end-to-end models without

(a) (b)

Figure 2: Examples of crop generation: (a) border crops, (b)
square crops. Best viewed in color. Note that the rectangles
indicate the crops corresponding to a single scale of crops.

explicitly modeling composition and achieve state-of-the-art per-
formance in the recently released large scale Aesthetics Visual
Analysis dataset (AVA) [26].

Compared to traditional photo quality assessment methods, which
typically exploit photo composition as a high-level cue, some photo
recomposition techniques attempt to actively enhance image com-
position by rearranging the visual elements [1], applying crop-and-
retarget operations [20] or providing on-site aesthetic feedback
[37] to improve the aesthetics score of the manipulated image.

Photo composition has also been extensively studied in photo
cropping [4, 10, 38] and view recommendation [2, 6, 33] methods.
Generally speaking, these methods aim at the same problem of
�nding the best view among a number of candidate views within a
larger scene and mainly di�er in how they di�erentiate a good view
from the bad ones. Traditionally, attention-based approaches exploit
visual saliency detection to identify a crop window covering the
most visually signi�cant objects [32, 34]. Some hybrid approaches
employ a face detector [39] to locate the region-of-interest or �tting
saliency maps to professional photographs [29]. On the other hand,
aesthetics-based approaches aim to determine the most visually
pleasing candidate window by resorting to photo quality classi�ers
[28], optimizing composition quality [10], or learning contextual
composition rules [6]. In [36], a change-based method is proposed
to model the variations before and after cropping so as to discard
distracting content and improve the overall composition. In [5],
the authors �rst investigate the use of learning-to-rank methods
for image cropping. Unlike our method, they intentionally avoid
professional pictures and relied on human raters to rank crops
without obvious visual preference, resulting in a moderate-sized
database.

To summarize, the main challenges faced by previous methods
include 1) the limited applicability of rule-based features, and 2) the
di�culty of obtaining composition information for training. The
existing methods or databases build their training data by relying
on a few experts [10, 36] or crowd-sourcing [5, 17, 26] to annotate
and validate the training data, which makes it di�cult to scale. In
this work, we tackle these problems with a generic model powered
by large-scale training data that is easy to obtain.

3 APPROACH
We model the photo composition or view �nding process with
View Finding Network (VFN). VFN, which is composed of a CNN
augmented with a ranking layer, takes two views as input and
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Figure 3: Architecture of View Finding Network.

predicts the more visually pleasing one in terms of composition.
VFN learns its visual representations (i.e., optimizes the weights of
the CNN) by minimizing the misorder of image pairs with known
aesthetic preference. Ideally, by examining extensive examples, VFN
learns to compose as human professionals learned their skills.

3.1 Mining Pairwise Ranking Units
Every beginner to photography learns by seeing good examples,
i.e., professional photographs with perfect composition. One key
observation is that the visual appearance of such golden examples
typically achieves a state of dangerous visual balance. It implies
that any deviations away from the current view will highly likely
degrade the aesthetics – an inverse process of how the photographer
obtained the optimal (current) view. It is thus possible to costlessly
mine numerous image pairs with known relative aesthetic ranking.
Figure 1 demonstrates several exemplary crops that possess less
aesthetics due to violating the photographic heuristics encoded in
the original image.

Based on the above observation, we empirically devise the fol-
lowing crop sampling strategies when given a source image I : 1)
We always form pairs of the original image and a crop because the
aesthetic relationship between two random crops is hard to de�ne
and thus requires human validation [5]. 2) To enrich the example
set required when choosing the best view among di�erent views,
we include crops of varying scales and aspect ratios. 3) To best
utilize the information in I , we aim to maximize the coverage of
crops over I while minimizing the overlap between crops.

The resulting crop sampling procedure can be illustrated by
Figure 2. Denote a crop of I as C and (x ,y,w,h) indicates its origin,
width, and height, respectively. For each image I , we generate a set
of border crops and square crops. A border crop is created by �rst
placing a uniformly resized window of I at the four corners. On
the other hand, several square crops (we set the number to 3 in
our experiments) are created along the long axis of I and evenly
spaced. The parameters of C are then added with a small amount
of random perturbation. Note that the above procedure is by no
means the optimal way to generate crops since it is impossible to
test all possible con�gurations. Nevertheless, di�erent sampling
con�gurations consistently achieve better results than existing
methods in our experiments. Please also refer to the supplementary
material for more details of a series of experiments conducted to
obtain the crop sampling con�gurations.

3.2 View Finding Network
Given an image Ij and its corresponding crops Cnj , the objective
of VFN is to learn a mapping function Φ(·) that relates Ij and Cnj
according to their aesthetic relationship,

Φ(Ij ) > Φ(Cnj ). (1)

Notice that here we assume that Ij is always higher ranked than
Cnj in terms of aesthetics. We can thus de�ne the following hinge
loss for an image pair (Ij ,Cnj ):

l(Ij ,C
n
j ) = max

{
0,д + Φ(Cnj ) − Φ(Ij )

}
, (2)

where д is a gap parameter that regularizes the minimal margin
between the ranking scores of Ij and Cnj . We set д = 1 throughout
all experiments. To learn Φ(·), we minimize the total loss which
sums up l over all training pairs.

Compared to many existing CNN models for aesthetics assess-
ment [17, 21, 22, 24], the architecture of VFN is extremely simple, as
illustrated in Figure 3. The convolutional layers of VFN are adopted
from the popular AlexNet [18]. The output of the convolutional
layers is then fed into two fully-connected layers followed by a
ranking layer. The ranking layer is parameter-free and merely used
to evaluate the hinge loss of an image pair. During training, the
model updates its parameters such that Φ(·) minimizes the total
ranking loss in Equation (2). Once the network is trained, we dis-
card the ranking layer and simply use Φ(·) to map a given image I
to an aesthetic score that di�erentiates I with other visually similar
views.

On top of the last convolutional layer, we optionally append a
spatial-pyramid pooling (SPP) layer [12]. SPP (also known as spatial
pyramid matching or SPM) [19] is a widely used method to learn
discriminative features by dividing the image with a coarse-to-
�ne pyramid and aggregating the local features. It enhances the
discrimination power of features by considering the global spatial
relations. Notably, unlike [12, 24], we still use �x-sized input image
in VFN (i.e., the input image/patch are �rst resized to 227 × 227).
We simply apply the SPP technique to accomplish data aggregation
on the convolutional activation features.

Since photo composition is a property a�ected by both small
(e.g., a small object like a �agpole that may destroy the composition)
and large structures (e.g., visually signi�cant objects in the scene)
in the images, we thus choose the pooling regions of sizes 3 × 3,
5 × 5 and 7 × 7 with the stride set to one pixel smaller than the
pooling size (e.g., 2 for 3 × 3 pooling regions). The multi-resolution
pooling �lters retain composition information at di�erent scales. In
addition, we empirically found that without SPP, the larger feature
space causes the model more prone to over�tting. We apply both
max-pooling and average-pooling in our experiments.

The pooled features are 12,544-dimensional and then fed into
the �rst fully-connected layer. fc1 is followed by a ReLU and has
an output dimension of 1,000. We choose a relatively small feature
dimension since the ranking problem is not as complex as object
classi�cation. Besides, as shown in [3], convolutional activation
features can be compressed without considerable information loss
while wide fully connected layers tend to over�t. fc2 has only a
single neuron and simply outputs the �nal ranking scores.
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3.3 Training
To train our network, stochastic gradient descent algorithm with
momentum is employed. We start from AlexNet [18] pre-trained
on the ImageNet ILSVRC2012 dataset [31] and the fully connected
layers are initialized randomly according to [13]. Momentum is set
to 0.9 and the learning rate starts at 0.01 and is reduced to 0.002
after 10,000 iterations, with each mini-batch comprised of 100 im-
age pairs. A total of 15,000 iterations is run for training and the
validation set is evaluated every 1,000 iterations. The model with
the smallest validation error is selected for testing. To combat over-
�tting, the training data is augmented by random horizontal �ips as
well as slight random perturbations on brightness and contrast. We
implement and train our model with the TensorFlow2 framework.
The source codes and pre-trained models have been made publicly
available3.

4 EXPERIMENTAL RESULTS
4.1 Training Data
To build the training data, we opt to download pictures shared by
professional photographers on the Flickr website4. We exploited
the Flickr API that returns the “interesting photos of the day”
and crawled 31,860 images5 during a period of 2,230 consecutive
days. The initial data set is then manually curated to remove non-
photographic images (e.g., cartoons, paintings etc.) or images with
post-processing a�ecting the composition (e.g., collage, wide outer
frame). The resulting image pool consists of 21,045 high-quality
images and covers the most common categories in photography. We
randomly selected 17,000 images for training and the rest images
are used for validation. As described in Section 3.1, we generate 8
border crops and 6 square crops for each image corresponding to
two scales s ={0.5, 0.6}. Each crop is paired with the corresponding
original image and thus there are 294,630 image pairs in total. The
image pair collection is then used to train the VFN. Note that the
above procedure is inexpensive and it is very easy to expand the
dataset.

4.2 Performance Evaluations
To validate the e�ectiveness of our model for view �nding, we eval-
uate its cropping accuracy on two public image cropping databases,
including Flickr Cropping Database (FCDB) [5] and Image Cropping
Database (ICDB) [36], and compare against several baselines.

4.2.1 Evaluation Metrics. We adopt the same evaluation met-
rics as [5, 36], i.e., average intersection-over-union (IoU) and average
boundary displacement to measure the cropping accuracy of image
croppers. IoU is computed by area(Ĉi ∩Ci )/area(Ĉi ∪Ci ), where
Ĉi and Ci denote the ground-truth crop window and the crop win-
dow determined by the baseline algorithms for the i-th test image,
respectively. Boundary displacement is given by

∑4
j=1 | |B̂

j
i − B

j
i | |/4,

where B̂ ji and B
j
i denote the four corresponding edges between Ĉi

and Ci . Additionally, we report α-recall, which is the fraction of

2https://www.tensor�ow.org/
3https://github.com/yiling-chen/view-�nding-network
4https://www.�ickr.com/
5We only kept those images with Creative Common license and more than 100 “favorite”
counts.

Method IoU Disp. α-recall
eDN [35] 0.4929 0.1356 12.68

AlexNet_�netune 0.5543 0.1209 16.092
MNA-CNN [24] 0.5042 0.1361 0.0747

RankSVM+AVA [5] 0.5270 0.1277 12.6437
RankSVM+FCDB [5] 0.602 0.1057 18.1034

AesRankNet [17] 0.4843 0.1401 0.0804
VFN 0.6842 0.0843 35.0575

VFN+AVA (SPP-Max) 0.544 0.124 12.93
VFN (SPP-Avg) 0.6783 0.0859 35.0575
VFN (SPP-Max) 0.6744 0.0872 33.9080

Table 1: Performance comparison on FCDB [5]. The best re-
sults are highlighted in bold.

best crops that have an overlapping ratio greater than α with the
ground truth. In all of our experiments, we set α to 0.75.

For the simplicity and fairness of comparison, we follow the
sliding window strategy of [5] to evaluate the baselines and VFN.
Similarly, we set the size of search window to each scale among
[0.5, 0.6, . . . , 0.9] of the test images and slide the search window
over a 5×5 uniform grid. The ground truth is also included as a
candidate. The optimal crops determined by individual methods
are compared to the ground truth to evaluate their performance.

4.2.2 Baseline Algorithms. Following [36], we compare with
two main categories of traditional image cropping methods, i.e.,
attention-based and aesthetics-based approaches. Additionally, we
compare with several ranking-based image croppers [5].

• Attention-based: For attention-based methods, we choose
the best performing method (eDN) reported in [5], which
adopts the saliency detection method described in [35]
and searches for the best crop window that maximizes the
di�erence of saliency score between the crop and the outer
region of the image.

• Aesthetics-based: We choose to �ne-tune AlexNet [18] for
binary aesthetics classi�cation with the AVA dataset [26]
as the baseline of this category and follows the con�gura-
tion suggested by [17, 22]. We simply utilize the softmax
con�dence score to choose the best view. The methods of
[24, 36] also fall into this category. We compare with these
methods by the accuracy reported in the original paper [36]
or use the pre-trained model to evaluate its performance
in both datasets [24].

• Ranking-based: We adopt two variants of RankSVM-based
image croppers using deep activation features [9] and
trained on the AVA and FCDB datasets [5], which di�er in
their data characteristics. AVA characterizes the aesthetics
preference between distinct images while FCDB provides
the ranking order between crop pairs in the same images.
Additionally, we compare with the recent work of aesthet-
ics ranking network [17]. We use the pre-trained model
released by the authors and utilize the ranking scores of
the sliding windows to determine the best crop.
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Method Annotation Set #1 Annotation Set #2 Annotation Set #3
IoU Disp. α-recall IoU Disp. α-recall IoU Disp. α-recall

eDN [35] 0.5535 0.1273 27.3684 0.5128 0.1419 20.1053 0.5257 0.1358 22.4211
AlexNet_�netune 0.5687 0.1246 23.0526 0.5536 0.1296 22.7368 0.5544 0.1288 20.6316
MNA-CNN [24] 0.4693 0.1555 0.0716 0.4553 0.1615 0.0642 0.4610 0.1590 0.0684

RankSVM+AVA [5] 0.5801 0.1174 18.7368 0.5678 0.1225 18.6316 0.5665 0.1226 18.9474
RankSVM+FCDB [5] 0.6683 0.0907 33.4737 0.6618 0.0932 32.1053 0.6483 0.0973 31.2632

AesRankNet [17] 0.4484 0.1631 0.0863 0.4372 0.168 0.0747 0.4408 0.1655 0.0863
LearnChange [36] 0.7487 0.0667 – 0.7288 0.072 – 0.7322 0.0719 –

VFN 0.7720 0.0623 58.8421 0.7638 0.0654 56.4211 0.7487 0.0692 53.7895
VFN+AVA (SPP-Max) 0.5273 0.1387 18.21 0.5268 0.14 19.0526 0.5261 0.1389 18

VFN (SPP-Avg) 0.7837 0.0588 61.5789 0.7729 0.0627 58.1053 0.7514 0.0681 54.1053
VFN (SPP-Max) 0.7847 0.0581 59.7895 0.7763 0.0614 58.1053 0.7602 0.0653 54.8421

Table 2: Performance evaluation on ICDB [36]. The best results are highlighted in bold.

4.2.3 Performance Evaluation. We evaluate cropping accuracy
of VFN and several baselines on FCDB and ICDB, which di�er in
data characteristics and annotation procedure. The test set of FCDB
contains 348 images. Each image was labeled by a photography
hobbyist and then validated by 7 workers on Amazon Mechanical
Turk. On the other hand, ICDB includes 950 images, each annotated
by 3 experts. The images of ICDB are typically of iconic views and
thus more object-centric. Compared to ICDB, FCDB is considered
to be more challenging for image cropping methods because the
annotations re�ect the tastes of various photographers and the
images contain more contextual information.

Table 1 and 2 summarize the benchmark results. Generally, the
performance of each category is consistent with [5]. The attention-
based method (eDN) performs poorly due to the lack of aesthetic
consideration and aesthetics-based methods based on a photo qual-
ity classi�er (AlexNet_�netune) achieves only moderate perfor-
mance. Surprisingly, the aesthetics ranking network [17] and MNA-
CNN [24] methods also do not perform well in the benchmark. This
is most possibly because these networks are trained to predict the
aesthetic rating of distinct images, which does not re�ect the rela-
tions between di�erent views with large overlaps. We validate this
by training VFN with the traditional dataset [26] and will discuss
the results soon. Additionally, some image attributes (e.g., color)
assessed by the model may not be very discriminating for similar
views.

All variants of VFN trained by our data sampling technique
signi�cantly outperform the other baselines. The best performing
baseline method is the change-based algorithm [36], which achieves
very good results in their dataset (ICDB). Notably, the model of
[36] is trained on the �rst annotation set and evaluated on the same
images of all annotation sets. On the other hand, the images of
ICDB are totally unseen to our models. In addition, a crop selection
procedure which selects an initial set of good candidate windows
is incorporated in [36], while VFN is evaluated by a �xed set of
sliding windows.

We conduct a more �ne-grained performance analysis of VFN by
the scene category annotations provided by ICDB, which further di-
vide the dataset into seven categories: animal, architecture, human,
landscape, night, plant and static. Figure 4 illustrates the average

Figure 4: Performance of VFN (SPP-Max) on ICDB by cate-
gory.

IoU scores of VFN (SPP-Max) over various annotation sets and
scene categories. We consider VFN as a generic aesthetics model
since it shows no bias to speci�c annotation sets or categories. It
performs generally well across subjects despite image cropping’s
subjective nature. Since no category-speci�c features are exploited,
VFN generalizes across categories as well. Nevertheless, we still
can see some insu�ciency of VFN, e.g., consistently lower accuracy
in animal and higher performance variance in architecture. Consid-
ering the data-driven nature of VFN, this phenomenon can be most
possibly accounted for insu�cient or unbalanced distribution of
training images among various categories.

Some more interesting observations can be made from the bench-
marking results, as discussed below.

View �nding is intrinsically a problem of ranking pairwise views
in the same context. Intuitively, image rankers trained on aesthetics
relations derived from distinct images, such as RankSVM+AVA and
[17], do not necessarily perform well in ranking visually similar
views. To further validate such an assumption, we additionally
trained a VFN with ranking units purely sampled from AVA. To
mitigate the ambiguity of ranking relationship between images, we
choose the 30,000 highest and lowest ranked images from AVA and
randomly select a pair of images from each pool to train VFN. The
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resulting model (VFN+AVA) can be regarded as the counterpart of
RankSVM+AVA. As shown in Table 1 and 2, the performance of
VFN+AVA drastically degrades compared to other variants of VFN.
It also con�rms that our data sampling technique contributes to
the most signi�cant leap in performance.

Performance gain due to top level pooling is dependent on the char-
acteristics of test data. VFN achieves the best results in ICDB and
FCDB with and without SPP, respectively. Recall that the images
in ICDB are largely object-centric with iconic views. Since pooled
features are typically equipped with certain invariance (e.g., trans-
lation), it is thus bene�cial to discriminate scenes with signi�cant
objects. On the other hand, since the images in FCDB possess richer
contextual information, the greater feature space without pooling
is thus more capable of capturing more subtle variations in photo
composition, resulting in higher performance.

4.3 Applications
Automatic image cropping. The ability of VFN makes it very suit-

able to facilitate the process of identifying unattractive regions in an
image to be cut away so as to improve its visual quality. As demon-
strated by the quantitative evaluation in Section 4.2.3, VFN achieves
state-of-the-art performance in two image cropping datasets. Fig-
ure 7 illustrates several examples of applying VFN to crop images
from FCDB and compares the results with several baselines. One
can see that VFN successfully selects more visually pleasing crop
windows compared to other baseline algorithms. Some of the re-
sults by VFN are arguably no worse than the ground truth (e.g.,
the 2nd and 3rd row in Figure 7). Currently, only sliding windows
with the same aspect ratio as the original image are used for eval-
uation, which limits VFN’s ability to identify other possible good
compositions, as the ground truth shown in the 1st row of Figure 7.
Nevertheless, VFN selects a preferable view with rule-of-thirds
composition in this example when compared with other baselines.
However, a crop selection procedure that adaptively determines the
parameters of crop windows is still desirable for VFN to maximize
its performance.

View recommendation. VFN is aesthetics-aware and very sensi-
tive to the variation of image composition. Figure 5 demonstrates an
example of applying VFN to an image and its arti�cially “corrupted”
version. We generate a heatmap by evaluating sliding windows and
smoothing the ranking scores corresponding to the raw pixels. As
one can see, the altered image composition causes VFN to shift its
attention to the untouched region. Due to its aesthetics-awareness,
VFN is very suitable to be applied for view suggestion in panoramic
scenes or even 360 video, as demonstrated in Figure 6. In this exam-
ple, VFN identi�es a visually attractive view while ignoring large
unimportant areas in the scene. Unlike [2], which requires a query
or template image to locate similar views in the panoramic image,
our model is able to suggest a good view based on a much larger
database (i.e., the training images).

4.4 Discussion
Unlike traditional approaches, VFN learns to compose without ex-
plicitly modeling photo composition. In a sense, it is accomplished
by avoiding the views violating photographic rules encoded in

(a) (b)

(c) (d)

Figure 5: VFN is aesthetics-aware and capable of di�erenti-
ating good/bad views in terms of photo composition. Given
an source image (a) and a corrupted image (b), VFN produces
higher response to the visually pleasing regions, as demon-
strated in the corresponding heatmaps (c)(d).

professional photographs. Take the �fth row of Figure 7 as an ex-
ample, the baseline methods inappropriately cut through visually
signi�cant subjects. Previous methods explicitly deal with such
situation by modeling cut-through feature [36] or border simplicity
[21]. However, VFN naturally ignores these views because the pro-
posed crop sampling method covers such cases and they are always
penalized in our ranking model. Due to the principle of pairing a
good source image and a bad crop, there is thus the concern that
the learned model is biased to favor larger views with more image
content. However, according to the benchmark, such tendency is
not observed and the ranking model works well regardless of the
scales.

Currently, VFN does not take full advantage of the SPP technique.
Its performance can potentially be further improved if the constraint
of �xed-size input can be removed and the input images do not need
to undergo undesired transformations (e.g., cropping or scaling)
that typically cause damages to image composition [24].

We have shown that VFN is generic across categories in Sec-
tion 4.2.3. It is considered that the generalization capability of VFN
partially bene�ts from the object classi�cation capability of the
pre-trained AlexNet [18], which provides rich information to learn
category-speci�c features that discriminate aesthetic relationships.

Limitations and Future Works. The main limitation of VFN comes
from its data sampling methodology, which only samples a sparse
set of possible pairs of views. The success of VFN can be accounted
for that the aesthetic relations between the sampled pairs (i.e., a
source image and a random crop) are de�nite. However, it remains
a challenging task for VFN to rank similar views whose aesthetic re-
lation is ambiguous (e.g., two random crops or two nearly identical
views). Empirically, we found that evaluating a �ner set of sliding
windows with VFN causes the performance to degrade instead,
which is possibly caused by the confusion between very similar
views. To maximize the performance of VFN, it is considered to
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(a)

(b)

(c)

(d)

Figure 6: An example of applying VFN to a panorama image. The yellow rectangles in the left column images indicate the crop
with the maximum score among 2112 uniformly sampled candidate crops of di�erent sizes and aspect ratios. The resulting
crop is shown in right column. Best viewed in color. Image courtesy by Wikimedia Commons.

incorporate a view selection procedure, which can e�ectively elimi-
nate most unnecessary candidates and produces a sparse set of good
candidates. VFN currently needs to evaluate a number of proposal
windows to accomplish view �nding. For future work, we plan to
incorporate techniques like Faster R-CNN [30] to improve its time
e�ciency.

5 CONCLUSION
In this work, we considered one of the most important problems in
computational photography – automatically �nding a good photo
composition. Inspired by the thinking process of photo taking, a
deep ranking network is proposed to learn the best photographic

practices by leveraging human knowledge from the abundant pro-
fessional photographs on the web. We develop a costless and e�ec-
tive method to sample high-quality ranking samples in an unsu-
pervised manner. Without any hand-crafted features, the proposed
method is simple and generic. The resulting aesthetics-aware model
is evaluated on two image cropping datasets and achieves state-of-
the-art performance in terms of cropping accuracy.
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