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ABSTRACT
Human beings have developed a diverse food culture. Many fac-
tors like ingredients, visual appearance, courses (e.g., breakfast and
lunch), �avor and geographical regions a�ect our food perception
and choice. In this work, we focus on multi-dimensional food anal-
ysis based on these food factors to bene�t various applications like
summary and recommendation. For that solution, we propose a
delicious recipe analysis framework to incorporate various types
of continuous and discrete attribute features and multi-modal in-
formation from recipes. First, we develop a Multi-Attribute Theme
Modeling (MATM) method, which can incorporate arbitrary types
of attribute features to jointly model them and the textual con-
tent. We then utilize a multi-modal embedding method to build
the correlation between the learned textual theme features from
MATM and visual features from the deep learning network. By
learning attribute-theme relations and multi-modal correlation, we
are able to ful�ll di�erent applications, including (1) �avor analysis
and comparison for better understanding the �avor patterns from
di�erent dimensions, such as the region and course, (2) region-
oriented multi-dimensional food summary with both multi-modal
and multi-attribute information and (3) multi-attribute oriented
recipe recommendation. Furthermore, our proposed framework
is �exible and enables easy incorporation of arbitrary types of at-
tributes and modalities. Qualitative and quantitative evaluation
results have validated the e�ectiveness of the proposed method and
framework on the collected Yummly dataset.

KEYWORDS
Multi-dimensional food analysis, multi-attribute theme modeling,
�avor analysis, food summary, recipe recommendation

1 INTRODUCTION
Food is an integral part of our life. Many aspects like ingredients, vi-
sual appearance, �avor, meals and geographical regions play impor-
tant roles in food perception, choice and consumption. For example,
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the obese subjects demonstrated changes in brain activity elicited
by food-related visual cues [34]. Asians use soy sauce widely in
their recipes while the ingredients from the Hungarian cuisine usu-
ally contain the paprika and lard [2]. Therefore, multi-dimensional
food modeling based on these aspects can bene�t applications like
culinary habit exploration [9, 35], food perception and health [3, 31].
In this work, we focus on modeling these food factors into a uni�ed
framework, and then exploit it for various multimedia applications.

The proliferation of food-shared websites (e.g., Instagram, Yumm-
ly and Yelp) has provided rich data for food-oriented research, such
as food recognition [22, 33], recipe retrieval [8] and culinary prac-
tice understanding [2, 35]. For example, Rich et al. [33] conducted
the large scale content analysis of food images from Instagram.
Sajadmanesh et al. [35] presented a study of recipes with the ingre-
dients and �avor information from Yummly to explore the culinary
habits. However, little work has investigated the problem of taking
various types of attributes and multi-modal information into a uni-
�ed framework, which are critical to enable food-related analysis
and understanding.

The food attributes are diverse. For example, each recipe from
Yummly is associated with di�erent attributes, such as the cuisine,
course and �avor information. Furthermore, the distributions of
many attribute features are di�erent. For instance, the cuisine and
course attributes are discrete or categorical while the value of each
�avor attribute is continuous. Therefore, a multi-dimensional food
analysis framework should support arbitrary types of attributes.
In addition, besides the text-based food research (e.g., the ingre-
dients) [2, 35], some work like [4, 43] have found the importance
of visual information in food related analysis. In many cases, the
visual information is able to reduce the high cognitive load for
easy understanding [43]. For example, Camacho et al. [4] proposed
a framework to enhance each review by recommending relevant
food images in Yelp. Therefore, di�erent modalities should also be
supported for a multi-dimensional food analysis framework.

In this paper, we propose a delicious recipe analysis framework,
which is capable of incorporating various types of continuous and
discrete attribute features and multi-modal information to meet
these requirements. Particularly, we take the recipes from Yummly
in our study. As shown in Fig.1, given the multi-modal recipe input
with three types of attribute features, including continuous �avor
attribute features, discrete cuisine and course attribute features,
we �rst develop a Multiple Attribute Theme Modeling (MATM)
method to model the correlation between the ingredients and these
food attributes. We then utilize the Multi-Modal Embedding (MME)
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Figure 1: The proposed delicious recipe analysis framework

method to create joint representation based on learned ingredien-
t theme features from MATM and visual features from the deep
learning network. After mining attribute-theme patterns and cor-
relating di�erent modalities, we can conduct di�erent tasks: (1)
�avor analysis and comparison for better understanding the �avor
patterns from di�erent dimensions, such as the region and course,
(2) region-oriented multi-dimensional food summary with both
multi-modal and multi-attribute information and (3) multi-attribute
oriented recipe recommendation for di�erent attribute queries.

The contributions of this paper can be summarized as follows:
• We propose a delicious recipe analysis framework, which uti-

lizes various types of attributes and multi-modal information
to enable multi-dimensional food analysis and applications.
• We propose a multiple attribute theme modeling method, which

can incorporate arbitrary attributes to model the correlation
between the content and attributes.
• We present a wide variety of applications, including 1) �avor

analysis and comparison, 2) region-oriented multi-dimensional
food summary, and 3) multi-attribute oriented recipe recom-
mendation.

2 RELATEDWORK
Related work includes food recognition [7, 23, 26, 33, 41, 42], recipe
retrieval and recommendation [8, 30], and culinary culture un-
derstanding [2, 20, 35, 38]. (1) Food recognition. Bossard et al.
[7] used the random forest method to mine discriminative parts
of food images for recognition. Some work [23, 41] utilized the
convolutional neural network to extract deep visual features for
recognition. Xu et al.[42] further introduced the geo-location infor-
mation to improve the performance of dish recognition. In contrast,
Rich et al.[33] performed the large scale content analysis of food
images from Instagram taken in-the-wild. (2) Recipe retrieval

and recommendation. Some work [12, 24] employed the tradi-
tional matrix factorization methods for recipe recommendation.
Recently, Chen et al. [8] exploited visual features, ingredients and
categories for recipe retrieval. Min et al. [30] further utilized both
categorical cuisine and course attributes for retrieval. Di�erent
from them, we incorporate various types of discrete and continu-
ous attribute features into a uni�ed framework. Furthermore, we
apply the proposed framework into di�erent applications, such
as multi-dimensional summary and multi-attribute based recom-
mendation. (3) Culinary culture understanding. Sajadmanesh
et al. [35] exploited the ingredients and �avor information from
Yummly to understand worldwide culinary culture. Ahn et al. [2]
constructed a �avor network to understand the culinary practice.
Simas et al. [38] utilized this �avor network to analyse the food-
bridging hypothesis behind the traditional cuisine. Howell et al.
[20] relied on the food’s name and nutritional content to predict
the food’s taste. Di�erent from [20], we analyzed and compared
di�erent �avor patterns based on the ingredients and various food
attributes. Furthermore, we proposed a uni�ed framework to en-
able other food analysis and applications including summary and
recommendation.

In addition, our work is also related to the probabilistic topic
model [5, 17], such as Latent Dirichlet Allocation (LDA) [6] and Re-
stricted Boltzmann Machine (RBM)[11], which have been applied to
many tasks such as classi�cation and recommendation [17, 29, 40].
In addition, some work incorporated additional feature informa-
tion like the location and time into LDA for user interest modeling
[36], landmark analysis [28] and social event analysis [32]. Srivas-
tava et al. [39] proposed RBM based deep network for multi-modal
data modeling.In this work, we extend the topic model to incor-
porate di�erent types of continuous and discrete recipe attribute
features,ingredients and recipe images for multi-dimensional food
analysis and applications.
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Figure 2: The multi-attribute theme model

3 DELICIOUS RECIPE ANALYSIS
3.1 Multi-Attribute Theme Modeling
We develop a theme modeling method to build the correlation
between the ingredients and di�erent types of attributes. Given
the recipe set D, each recipe d ∈ D is a tuple [wd , ld , cd , td ]. wd
is the ingredient vector. ld is a L-dimensional vector containing
features that encode cuisine values. ld includes 1 in the positions
for each cuisine from the recipe d , and 0 otherwise. Similarly for C-
dimensional vector cd and T -dimensional vector td . L,C,T are the
set of cuisines, courses and �avors, respectively. The goal of Multi-
Attribute Theme Modeling (MATM) is to utilize the ingredients wd
and three types of attributes ld , cd , td to learn the theme space of
the ingredients {φφφk }k ∈K . K is the set of themes. In addition, we
introduce the background distributionϕϕϕ. As presented in Fig. 2, the
generative process of MATM is:

(1) Draw a background distribution over ingredients ϕϕϕ ∼
Dir (βββ)

(2) For each theme k ∈ {1, ...,K},
(a) draw λλλk ∼ N(0,σ 2I).
(b) draw φφφk ∼ Dir (βββ).

(3) For each recipe d ∈ {1, ...,D}
(a) Draw πππd ∼ Beta(γγγ )
(b) for each theme k , let αdk = exp(fTd λλλk )
(c) Draw θθθd ∼ Dir (αααd )
(d) for each ingredient wd,n ∈ wd

(i) Draw a switch variable sd,n ∼ Binomial(πππd )

(ii) if sd,n = 0, draw an ingredientwd,n ∼ Multi(ϕϕϕbд)
(iii) if sd,n = 1, draw a theme zd,n ∼ Multi(θθθd ),

draw an ingredient wd,n ∼ Multi(φφφzd,n )

where Beta(·), Binomial(·), Multi(·), Dir (·), N(·) denote the Beta
distribution,binomial distribution, multinomial distribution, Dirich-
let distribution and normal distribution, respectively. I is the identity
matrix. σ 2I is a diagonal matrix with the diagonal element σ 2.

Similar to LDA, we assume the symmetric Dirichlet priors with
βββ , that is βw = β , w ∈ {1, ...,W }, where W is the size of the
vocabulary. However, the theme distributionθθθd of each recipe is no
longer drawn from a Dirichlet prior with �xed hyper-parameters α .
Instead, the elements ofαααd ,αdk = exp(fTd λλλk ), whereλλλ is the feature
matrix with K × (L +C +T + 1). fd is the concatenation of di�erent
attribute vectors. fd = [ld ; cd ; td ; 1]. Note that the representation of
ld and cd are discrete while td is continuous.The score sdt for each
�avor t is in [0, 1]. Introducing exp(fTd λλλz ) is able to incorporate
arbitrary types of observed continuous and discrete features [27].
The last 1 is a default feature to account for the mean value of
each theme. Therefore, for di�erent combination of attributes, the

resulting ααα values are distinct. The theme distributions extracted
from the recipe set are induced by both the ingredient patterns and
various attribute features.

3.1.1 Model Inference and Parameter Estimation. We train this
model using a Stochastic Expectation Maximization (SEM) method
[10] and use an iterative procedure, which alternates between (i)
Stochastic E step and (ii) M step.

(i) Stochastic E step: at them iteration, sample zm and sm given
current estimate λλλm−1. We use the collapsed Gibbs sampling [15]
for model inference.
p(zmi = k, s

m
i = 1|zm¬i , s

m
¬i ,w¬i,wi = w,ααα

m−1
d , β ,γ ) ∝

nd,1,¬i + γ∑
snd,s,¬i + 2γ

nd,k,¬i + exp(fTd λλλ
m−1
k )∑

k (nd,k,¬i + exp(fTd λλλ
m−1
k ))

(nk,w,¬i + β)∑
w ′nk,w ′,¬i +W β

p(si = 0|zm¬i , s
m
¬i ,w¬i,wi = w,ααα

m−1
d , β,γ ) ∝

n
bд
wi ,¬i

+ β∑
w ′n

bд
w ′,¬i

+W β

nd,0,¬i + γ∑
snd,s,¬i + 2γ

(1)
where i = (d,n) is the current index. The superscript ¬i denotes
a counting variable that excludes the i-th ingredient index in the
corpus. nd,k,¬i is the number of times that theme k is assigned to
the recipe d . nk,w,¬i is the number of times that the ingredient w
is assigned to the theme k . nbдwi ,¬i

is the number of times that the
ingredient wi is assigned to the background distribution. nd,si ,¬i
is the number of times of the ingredient in the recipe d assigned to
the background distribution si = 0 and themes si = 1, respectively.

(ii)Mstep: After stochastic E step, we obtainnmd = {n
m
d,1, ...,n

m
d,k ,

...,nmd,K }. In this step, we estimateλλλm by maximizing the likelihood

function L = ln(
D∏
d=1

p(wd , fd ,λλλ,αααd , z, s)). We compute ∂L
∂λmkj

= 0,

∂L

∂λmkj
=

D∑
d=1

exp(fTd λλλ
m
k )fd j (Ψ(

K∑
k ′=1

exp(fTd λλλ
m
k ′
)) − Ψ(

K∑
k ′=1

exp(fTd λλλ
m
k ′
)

+ nmd ) + Ψ(exp(f
T
d λλλ

m
k ) + n

m
d,k ) − Ψ(exp(f

T
d λλλ

m
k ))) −

λmkj

σ 2
(2)

where Ψ(·) is the Digamma function and is de�ned as the derive of
the log gamma function.

Similar to [27], we use the L-BFGS optimizer to compute λλλm .
After the model inference, we can obtain the theme-attribute

feature matrix {λ̂λλk }Kk=1 and the following parameters:

π̂d,s =
nd,s + γ∑1

s ′=0 nd,s
′ + 2γ

φ̂k,w =
nk,w + β∑W

w ′=1 nk,w
′ +W β

ϕ̂
bд
w =

n
bд
w + β∑W

w ′=1 n
bд
w ′
+W β

θ̂d,k =
nd,k + exp(fTd λ̂λλk )∑K

k=1(nd,k + exp(f
T
d λ̂λλk ))

(3)

3.2 Multi-Modal Embedding
We obtain the theme distribution θ̂θθd = (θ̂d,1, ..., θ̂d,k , ..., θ̂d,K ) for
each recipe d via MATM. In order to correlate multi-modal con-
tent through the learned theme space, we resort to RBM based
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Figure 3: The multi-modal embedding

model for joint learning because of the powerful inference of RBM.
Particularly, we utilize multi-modal DBM [39] to learn common
space.

As shown in Fig. 3, there are two pathways: text pathway and
image pathway, and each pathway contains M layers. For the text
pathway, since θ̂θθd is multinomial distribution, the connections
between θ̂θθd and h(1v) are modeled as Multinomial RBM [37]. The
conditional probability of the input unit is

P(θ̂dk = 1|h(1s)) =
exp(bk +

∑
j
W
(1s)
k j h

(1s)
j )∑

k ′ exp(bk ′ +
∑
j
W
(1s)
k ′ j

h
(1s)
j )

(4)

where the weight matrix W(1s) = {W (1s)k, j } is associated with the
connection between the visible units θ̂̂θ̂θd and the hidden units h(1s) =
{h
(1s)
j }, as well as bias weights b = {bk } for the visible units and

c(1s) = {c(1s)j } for the hidden units.
For the image pathway, the input units vd are visual features,

and therefore the connections between vd and h(1v) are modeled
as Gaussian RBM [18]. The conditional probability of the input unit
is

vdi = 1|h(1v) ∼ N(bi + σi
∑

j
W
(1v)
i j h

(1v)
j ,σ 2i ) (5)

where vd is the visual feature vector of reciped .σ 2i is the variance of
the Gaussian distribution. The remaining layers from two pathways
are the standard binary RBM [11]. The conditional distributions are
written similarly and omitted here for the space limit.

Similar to [39], we train the network with stochastic gradient
descent using the greedy layer-wise pre-training strategy. After
training, for given recipe-theme vector θ̂θθd as the input, we can
use the mean-�eld method to sample the hidden modalities from
p(v|θ̂θθd ) by updating each hidden layer given the states of the adja-
cent layers. Finally, we obtain the visual representation based on
the learned ingredient representation.

4 APPLICATIONS
4.1 Flavor Analysis and Comparison
In this task, we analyze the �avor patterns from di�erent attributes,
such as the region and course.

For �avor distributions across regions, we compute p(t |l):

p(t |l) =
∑

k
p(t |k)p(k |l) (6)

We obtain the cuisine representation p(k |l) as

p(k |l) = ψl,k =
exp(fTl λ̂λλk )∑
k ′ exp(f

T
l λ̂λλk

′ )
(7)

where for fl , the position corresponding to this cuisine feature l is
1 and 0, otherwise. The proportion of theme k over the cuisine l is
exp(fTl λ̂λλk ).

Similarly, we obtain the �avor representation p(k |t) as

p(k |t) = υt,k =
exp(fTt λ̂λλk )∑
k ′ exp(f

T
t λ̂λλk ′ )

(8)

We then compute p(t |k)

p(t |k) =
p(t ,k)∑

t ′∈T p(k |t ′)p(t ′)
=

υt,kp(t)∑
t ′∈T υt ′,kp(t

′)
(9)

where p(t) =
∑
d sdt∑

t ′
∑
d sdt ′

.
Therefore, the �avor distribution on certain cuisine p(t |l) is

p(t |l) =
∑
k

υt,kp(t)∑
t ′∈T υt ′,kp(t

′)
ψl,k (10)

Similarly, the �avor distributions from di�erent courses p(t |c) is
computed as

p(t |c) =
∑
k

υt,kp(t)∑
t ′∈T υt ′,kp(t

′)
ξc,k (11)

where ξc,k =
exp(fTc λ̂λλk )∑
k′ exp(f

T
c λ̂λλk′ )

.

4.2 Region-Oriented Multi-dimensional Food
Summary

In this task, we summarize regional foods based on representa-
tive ingredients, representative recipe images, �avor and course
patterns.

The representativeness score of ingredient w for region lq is
measured according to the expected number of times ingredient w ,
which is projected onto the theme space.

Replq (w) = n(lq ,w)

∑
k φ̂kwψlq,k∑

k φ̂kwψlq,k + ϕ̂
bд
w

,p(w |lq ) =
Replq (w)∑
w ′Replq (w

′
)

(12)
where n(lq ,w) is the frequency of w in recipes with the cuisine lq ,
ψlq,k is calculated by Eqn.7.

We can obtain a list of region-representative ingredients by rank-
ing the ingredients according to p(w |lq ).

In order to select representative recipe images from one region,
we consider both textual and visual information. We obtain the
representationψψψ lq for ingredients using Eqn. 7, and then use MME
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to infer the visual representation vlq based onψψψ lq . The image is
sorted by the weighted sum of cosine similarity between lq and the
image Id :

sim(lq , Id ) = τ
ψψψTlq

θ̂θθd

‖ψψψ lq ‖‖θ̂θθd ‖
+ (1 − τ )

vTlqvd

‖vlq ‖‖vd ‖
(13)

where ld represents the region information of the recipe d . The �rst
term is the semantic similarity and the second term is the visual
similarity. τ is the weight parameter.

We compute p(t |lq ) and p(c |lq ) to obtain the �avor distribution
and course distribution using Eqn.10-11, respectively.

4.3 Multi-Attribute Oriented Recipe
Recommendation

Given the multiple query attributes including the cuisine l , course
c and �avor t , this task is to recommend relevant recipes to match
these query attributes.

The attribute representation ϑϑϑ fq = {p(k |fq )}k ∈K with speci�ed
cuisine, course and �avor information is calculated as

p(k |fq ) =
exp(fTq λ̂λλk )∑
k exp(fTq λ̂λλk )

(14)

For each recipe d with the ingredient information, we compute
the representation of the recipe p(k |d) through the Gibbs sampler
by maximizing

L(wd ) =

Nd∏
i=1
[πd,0ϕ̂wi + πd,1

∑
k ∈K

p(k |d)φ̂k,wi ] (15)

where Nd is the count of ingredients in the recipe d .
We rank the results according to the similarity of the query

attributes and the recipes from the dataset, which is computed as:

JsSim(ϑϑϑ f ,θθθd ) = exp{−D js (ϑϑϑ f | |θθθd )} (16)

where D js (·| |·) denotes the Jensen-Shannon divergence and θθθd =
{p(k |d)}k ∈K .

5 EXPERIMENT
5.1 Experimental Settings

5.1.1 Dataset. The experimental dataset is crawled from Yumm-
ly. Each recipe includes the ingredients, the image and three at-
tributes: cuisine, course and �avor. There are 44,204 recipe items, 10
cuisines, 14 courses1 and 6 �avors. Table 1 lists the values of di�er-
ent attributes. Note that we use course names and their abbreviated
ones interchangeably. The name in the brackets is the abbreviated
one of the course. Each cuisine represents one region. The value
of each �avor is continuous and they are in [0, 1]. The other two
attributes are categorical. We preprocess each ingredient line using
the method [30]. For the ingredients with more than two words, we
represent them by concatenating them using “-”. For example, we
use chili-powder to represent the ingredient “chili powder”. After
preprocessing, the vocabulary of ingredients is 2,407.

1Di�erent from prede�ned 13 courses in Yummly, we consider Lunch and Snacks as
two kinds of courses.

Table 1: Values of di�erent attributes

] Type ]Value

Cuisine American, Italian, Mexican, Indian, French,
Thai, Chinese, Spanish, Greek, Japanese

Course

Main Dishes (MD), Desserts (DE), Side Dishes (SD),
Salads (SA),Lunch (LU), Snacks (SN), Soups (SO),
Afternoon Tea (AT),Condiments and Sauces (CS),
Breads (BR), Breakfast and Brunch (BB),
Beverages (BE), Cocktails (CO), Appetizers (AP)

Flavor Piquant, Sour, Salty, Sweet, Bitter, Meaty

5.1.2 Implementation Details. For each image, we use the VGG-
16 deep network to extract the 4,096-D features according to [16].
For MATM, β = 0.01. γ = 1.0. Similar to [27], the variance σ 2 is
set to 0.5 for all attribute features and 10.0 for the default features.
For the initialization of SEM, the parameter α = 1.0/K . We run
2,000 iterations for training MATM. After an initial burn-in period
of 200 iterations, we optimize λλλ every 50 iterations. For MME, the
learning rate of multinomial layer and Gaussian layer is 0.10 and
0.001. The learning rate of other layers is 0.01. For Gaussian-RBM,
each Gaussian visible unit is empirically set to have unit variance to
guarantee the stability of training [39]. In the inference, the times
for mean-�eld inference is 100. In Eqn. 13, τ is empirically set as
0.6.

5.2 Evaluation of MATM
5.2.1 Theme Number K Selection. In theme modeling, the selec-

tion of theme number K is important. We resort to the perplexity
[6] as the metric, which is a standard measure for estimating how
well one generative model �ts the data. The lower the perplexity is,
the better the performance. In MATM, the perplexity of the test set
is de�ned as:

perplexity(Dtest ) = exp(−
∑
d ∈Dtest logp(wd , fd |Dtrain )∑

d ∈DtestNd
)

(17)
p(wd , fd |Dtrain ) =

Nd∏
i=1
[πd,0ϕ̂wi + πd,1

∑
k ∈K

nd,k + exp(xTd λ̂λλk )∑K
k ′=1(nd,k

′ + exp(xTd λ̂λλk ′ ))
φ̂k,wi ] (18)

where Dtrain is the training set and Dtest is the test set.
A Gibbs sampler is run on the test data Dtest to calculate the

counts nd,k and πd given φ̂k,wi and λ̂λλ, learned from Dtrain .
For the dataset, we randomly select 90% of the recipe items as

the training data and the remaining 10% as the test data. We set
K ∈ {40, 60, 80, 100, 120, 140}. The perplexity scores over di�erent
theme number for di�erent iterations are shown in Fig. 4. We can
see that (1) The perplexity decreases slowly and converges to a
stable level after 1,000 iterations. (2) The perplexity decreases much
slower when K >= 100. Therefore, we choose K = 100 in the
following experiments.

5.2.2 Illustration of Discovered Themes. In addition, we provide
some discovered themes in Table 2, where “#j” denotes the j-th
theme index. Each theme is represented by 10 top-ranked ingredi-
ents, sorted by φ̂. We observe that some themes denote the classic
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Figure 4: The perplexity score over di�erent theme number
for di�erent iterations.

combination of ingredients, such as Theme #11. Theme #12 de-
notes the ingredients of fruit drinks while Theme #44 denotes the
Italy-style ingredients. From these examples, we can see that these
themes have a reasonable interpretation as the ingredient base.

Table 2: Some examples of discovered themes.

Theme ]11 Theme ]12 Theme ]44
egg 0.366
milk 0.178
salt 0.111
butter 0.060
�our 0.044
salted-butter 0.032
melted-butter 0.016
egg-white 0.015
bread 0.014
honey 0.012

honey 0.094
mango 0.073
fresh-lime-juice 0.064
chopped-fresh-mint 0.041
fresh-mint 0.041
juice 0.039
navel-orange 0.036
pineapple 0.035
orange 0.029
strawberry 0.027

mozzarella-cheese 0.124
parmesan-cheese 0.110
ricotta-cheese 0.098
egg 0.079
lasagna-noodle 0.058
marinara-sauce 0.053
pasta-sauce 0.044
italian-seasoning 0.043
italian-sausage 0.037
tomato-sauce 0.030

5.3 Evaluation of MME
We investigate how many hidden layers M should we put be-
tween the recipe textual ingredients and visual modalities. As
shown in Fig. 3, we could have one intervening layer, creating
an RBM (theme input|joint hidden layer|image input) as 1-layer.
A two-layered MME would have 3 intervening layers (theme in-
put|theme hidden 1|joint hidden|image hidden 1|image input) as
2-layer, and so on. The set of units of di�erent layers for the image-
pathway is {4096, 1024, 1024, 1024, 1024} and the text pathway is
{100, 100, 100, 100, 100}. The units of the joint layer under the di�er-
ent selection of layers from the image-pathway and text-pathway
are all 1024 + 100 = 1124 for fair comparison.

MME is used to generate the visual modality given speci�ed
theme features, we therefore select the cross-modal retrieval task
for evaluation. Since there is only one groundtruth match between
the recipe ingredients and the recipe image, we use Top R % for
evaluation [21], which is the relative number of images correctly
retrieved in the �rst R% of the ranked list. Speci�cally, we set R ∈
{20, 40, 60, 80}. Based on the split in the evaluation of MATM, we
further select 10% from the training data as the validation set. Based
on the learned representation, the cosine similarity is calculated to

Table 3: The performance for di�erent layers with Top R%.

Method R=20 R=40 R=60 R=80
1-layer 0.199 0.399 0.598 0.798
2-layer 0.202 0.399 0.600 0.800
3-layer 0.207 0.411 0.615 0.810
4-layer 0.201 0.401 0.600 0.800
5-layer 0.203 0.404 0.603 0.799

obtain the ranked results. Table. 3 shows the results of these models.
Comparing the performance of MME with di�erent layers, we can
see that the 3-layer MME leads to the best performance. Therefore,
we select M = 3 for the following experiment.

5.4 Evaluation of Applications
5.4.1 Flavor Analysis and Comparison. The results of �avor dis-

tributions in di�erent regions are demonstrated in Fig. 5. For the
space limit, we show the �avor distributions of four countries in-
cluding American, French, Chinese and Mexican. We can analyze
and compare di�erent �avor patterns in one country or among
di�erent countries from these results. For example, American is
the country with the high consumption of meat foods, with the
probability of meaty �avor 0.217, when compared to foods of oth-
er �avors from this country. As we all known, American is one
country, where meat is one of most-eat food. Besides the meaty
food, French also likes sweet foods, with the probability of 0.130,
which is the most proportion compared with other countries. The
signi�cant di�erence in the �avor distributions between these four
countries is the high consumption of salty �avor labeled foods a-
mong Chinese, with the probability of 0.31. This is because Chinese
is one of countries with the highest consumption of salty foods in
the world [19].

In addition, we show the �avor di�erences among di�erent cours-
es in Fig. 6. We can see that some courses such as Beverages (BE),
Side Dishes (SD) and Snacks (SN) are observed to have compara-
tively higher proportions of sweet foods compared to other courses,
perhaps re�ecting the prevalence of sugary items, like fruit juices.
Meanwhile, salty and meaty foods dominate some courses, such
as Main Dishes (MD) and lunch (LU), when more meat might be
consumed.

The results can be insightful for future exploration to enable dif-
ferent applications like exploring culinary habits [2] and providing
better recommendation service.

5.4.2 Region-Oriented Multi-dimensional Food Summary. As it
is subjective to evaluate the summarized results, we resort to the
user study and consider the following baselines for comparison.
• MATM based Textual Summary (MATM-TS). MATM-TS uses

Eqn.12 derived from MATM to select representative ingredients
for summary.
• MATM based Multi-modal Summary (MATM-MS). MATM-MS

uses both representative ingredients and images for summa-
ry. This baseline selected the recipe images based on the the
similarity of ingredients.
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• MATM and MME based Multi-modal Summary (MATM-MME-
MS). This baseline also uses both the representative ingredients
and images for summary. However, it considers both textual
and visual information using Eqn.13 to select representative
images.

Compared with MATM-MME-MS, our framework additionaly in-
troduced the �avor and course distribution. We asked 15 graduate
students to assess the summarized results using 1 to 5 ratings from
three aspects including (1) Relevance (i.e., to what extent the sum-
mary is depicting the regional food), (2) Diversity (i.e., depicting
the regional food from multiple aspects), and (3) Satisfaction. How
satis�ed are you with the summarized results? They can consult

the internet (e.g., Wikipedia) and other cooking books to help make
judgement.

We show 50 top-ranked ingredients in a tag-cloud way, generat-
ed by wordcloud2 and 10 top-ranked food images. We averaged all
the scores as the �nal rating. The results are shown in Fig.7. We can
see (1) After incorporating the visual information into the selection
of images, MATM-MME-MS has higher scores in all aspects than
MATM-MS. We further observed that there are some recipe images,
which are not the dishes corresponding to the ingredients, but cook-
ing books or other irrelevant information. MATM-MME-MS can
exclude these images and improve the ranked results; and (2) Note
that for the relevance, the di�erence of MATM-MME-MS and our
method is small. Because introducing the �avor and course distribu-
tion does not a�ect the relevance score, while in other two aspects,
our method exhibits advantages due to the introduced �avor and
course distributions from our method. In addition, two example
summaries are illustrated in Fig. 8 for Chinese and Mexican, respec-
tively. The recipe name is showed below each image. From such
multi-dimensional regional food summary, users could understand
the local culinary characteristics of a region e�ciently and com-
prehensively with the textual information, visual information and
di�erent attribute patterns. For example, we can see that Mexican
likes the food with sour-and-hot �avor, since their ingredients in-
clude chili-powder, sour-cream and so on. Correspondingly, the
total probability of piquant and sour is the highest compared with
other �avor propositions. From the representative recipe images,
we can further easily understand their culinary habits.

5.4.3 Multi-A�ribute Oriented Recipe Recommendation. We di-
vided the test set into two parts: one part contains the course, cuisine
and �avor information, and the other one contains the recipe id
with the ingredients. Our goal is to use the �avor, course and cuisine
attributes as the query to retrieve recipes. We choose S@H [44] as
the metric, which is the success rate of �nding the target within
the top-H recommendation results and H ∈ {1, 3, 5}. As a compari-
son, we consider LDA [6] as the baseline. This baseline is trained
without incorporating the attribute information. For the attribute
representation, it is the average of the theme representation of
trained recipes annotated by the query attributes. As shown in Fig.
9, we can see that our method outperforms the baseline due to the
introduction of the attributes. Because some recipes have the same
attributes, we further choose MAP@5 for evaluation. The MAP@5

2https://github.com/amueller/word_cloud
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Figure 10: Some recommendation examples from MATM.

of LDA and MATM are 0.571 and 0.578, respectively. Our method
again outperforms the baseline. Fig. 10 shows some examples of
recommendation results from MATM, where the recipe image and
name associated with each recipe id are present.

6 CONCLUSIONS
This work has presented a recipe analysis framework to incorpo-
rate multi-modal information, various types of continuous and
discrete attribute features for multi-dimensional food analysis. A
multi-attribute theme modeling method is proposed to jointly mod-
el the ingredients and arbitrary types of recipe attributes, such as
continuous �avor attribute, discrete cuisine and course attributes.
The derived attribute-theme representation and multi-modal cor-
relation has demonstrated its e�ectiveness via our proposed three
applications in �avor analysis, food summary and recipe recom-
mendation. We hope that this framework could further the agenda
of food-relative study and meanwhile form a contribution to other
�elds, such as computational gastronomy and food science [1].

There are four directions needing further investigation. The �rst
one is to enlarge our data set for more comprehensive and deeper
multi-dimensional food analysis. The second one is how to select
the recipe images with higher quality for commerical applications.
For example, Alex M. [25] has attempted to understand the photo
qualities from Yelp for cover photo sorting application. As the third
direction, we have demonstrated the potential of our framework
via three applications. Based on the proposed framework, more real
applications could be designed, such as food tourism [14] and so
on. The fourth one is on a product dimension for building better
personalized food recommendation system. For example, Ge et al.
[13] has designed a recipe recommender system, that can suit both
the user’s preference and their health. Such system should o�er
healthier options but still satisfy the individual preferences.
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