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ABSTRACT
Image color editing techniques such as color transfer, HDR tone
mapping, dehazing, and white balance have been widely used and
investigated in recent decades. However, naively employing them
to videos frame-by-frame o�en leads to �ickering or color incon-
sistency. To solve it generally, earlier methods rely on temporal
�ltering or warping from the previous frame, but they still fail in the
cases of occlusion and produce blurry results. We introduce a new
framework for these challenges: (1) We develop an online keyframe
strategy to keep track of the dynamic objects, where more temporal
information can be acquired than a single previous frame. (2) To
preserve image details, local color a�ne model is employed. �e
main concept of this post-processing step is to capture the color
transformation from editing algorithms and maintain the detail
structures of the raw image simultaneously. Practically, our ap-
proach takes a raw video and its per-frame processed version, and
generates a temporally consistent output. In addition, we propose
a video quality metric to evaluate temporal coherence. Extensive
experiments and subjective test are done to show the superiority
of the proposed framework with respect to color �delity, detail
preservation, and temporal consistency.
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1 INTRODUCTION
As photo editing applications are gaining popularity, numerous
image processing techniques have been proposed. On the contrary,
there are few algorithms customized for videos. Intuitively, one can
employ arbitrary image processing methods on each video frame.
Nevertheless, since the luminance and chrominance distribution
of video frames may vary signi�cantly, per-frame process is likely
to result in artifacts such as �ickering and color discrepancy, as
shown in Fig. 1.

To address the problem, several existing methods explicitly en-
code temporal consistency into individual processing algorithm.
For instance, Bonneel et al. [6] propose video color grading by tem-
porally interpolating the color transfer functions. Aydin et al. [3]
integrate a spatiotemporal �lter into an HDR video tone mapping
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Figure 1: An example set of (a) raw video, (b) per-frame pro-
cessed version by color transfer [35], and the temporally
consistent results of (c) Bonneel et al. [7] and (d) our frame-
work. As the �sh in yellow square being temporally oc-
cluded in the frames between 30 and 100, per-frame process
causes color discrepancy, and the method of Bonneel et al.
blurs the details. Our framework is more robust to occlu-
sion and preserves the details with higher color �delity.

operator. Ye et al. [36] build a causal-anticausal iterative scheme
for intrinsic decomposition. �ese methods are e�ective but cannot
be generalized to other tasks. Some others propose more generic
approaches for various applications. Lang et al. [20] apply edge-
aware �lters temporally, which reduces �ickering but does not fully
eliminate it. Moreover, when optimizing the objective function, it
o�en trades spatial sharpness for temporal smoothness. Bonneel
et al. [7] propose a gradient-domain technique that is blind to the
particular image processing algorithm. By inferring the temporal
regularity from the original unprocessed video, it takes a series
of processed frames that su�ers from �ickering and generates a
temporally consistent video sequence. While performing well in
most cases, it may still lead to low-frequency color dri�s between
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frames. Since the warping error from the previous output frame is
a part of the regularization term, the problem is especially severe
when occlusion occurs, as shown in Fig. 1(c).

Inspired by Bonneel et al. [7] and the technique of example-
based video color transfer proposed by Yao et al. [35], we develop
a general framework for video temporal consistency. In detail,
we select a stack of keyframes with the highest diversity of color
distribution, seeking to capture the objects that once appeared
but has disappeared or been occluded for a while. To maintain
temporal consistency, the PatchMatch method [4] is employed to
warp an intermediate frame with the processed keyframe patches.
Subsequently, we compensate the warping error of dynamic ob-
jects via Laplacian pyramid [8] decomposition and fusion, which
preserves the coarse intensity of the intermediate frame and the
high-frequency details of the per-frame processed frame. Finally,
seeing the strong expressivity of local a�ne transfer in the works
of Gharbi et al. [12] and Shih et al. [28], local color a�ne transfor-
mations are smoothed by edge-preserving �lters and applied as a
post-processing step for denoising and deblurring.

Noticing the lack of video quality measurements for temporal
consistency, we further re�ne the quality metric proposed by Yao et
al. [35], which considers the di�erence of warping errors between
the raw and processed video frames. For performance comparison,
we employ our framework on the per-frame processed videos of
various applications, including color grading [6], auto-coloring,
color harmonization [5], style transfer [35], dehazing [15] [30], and
spatially-varying white balance[17]. Experimental results show not
only the superiority of our approach but also the validity of the
proposed metric.

2 RELATEDWORK
Video temporal consistency can be deemed as two similar problems:
(1) color transfer with a geometrically identical but temporally
inconsistent guidance or (2) post-processing for enhancing temporal
coherence. �erefore, we discuss the related works in these two
perspectives respectively.

2.1 Color Transfer Methods
As many image processing tasks can be formulated into a color
mapping problem, the topic of image color transfer has been widely
researched started from Reinhard et al. [26]. Among the existing
methods, the idea of decomposing the intrinsic image content and
style content prevails recently. Xiao and Ma [33] focus on minimiz-
ing both the gradient di�erence between output and source images
and the histogram di�erence between output and reference images.
Aubry et al. [2] propose a fast local Laplacian �lter for multi-scale
image manipulation. Yao et al. [35] also separate the coarse and
detail layers by building Laplacian pyramids, and extend the color
transfer method to videos by inferring temporal warping. With the
advances in deep learning techniques, Gatys et al. [11], Johnson
et al. [19], and Li et al. [21] further resort to convolutional neural
networks to train the deep features of image and style contents.
Using the per-frame processed video as a guidance, all above can
be extended to videos e�ciently with the aid of our framework.

2.2 Video Temporal Consistency
Some video processing techniques achieve temporal coherence by
introducing temporal �lters to speci�c applications. Bonneel et al.
[6] transfer the color grade of one video to another via automatic
keyframe selection and transformation interpolation. Aydin et al.
[3] improve video tone mapping by separating the contents into
base and detail layers, and temporally �ltering the base layer. Ye
et al. [36] rely on optical �ow information and propose a causal-
anticausal, coarse-to-�ne iterative scheme to stabilize video intrin-
sic decomposition.

More general approaches have been proposed to deal with a
variety of image �lters. Paris [24] extends Gaussian kernel to time
domain, and adapts algorithms like bilateral �ltering and mean-
shi� clustering to videos. Lang et al. [20] temporally apply edge-
aware �lters on optimization-based techniques such as motion
estimation and colorization. Dong et al. [10] segment each frame
into regions and adjust the enhancement of these regions spatially
and temporally. While temporal �ltering reduces high-frequency
�ickering, low-frequency instability remains. Furthermore, spatial
details are o�en compromised for temporal smoothness.

Bonneel et al. [7] present a framework of blind video temporal
consistency, serving as a post-processing black box that removes
�ickering from the processed videos. �e core spirit is to optimize
temporal coherence and preserve the high-frequency dynamics
of the per-frame processed video, where the former is calculated
by the warping error between successive frames and the later is
represented by a gradient term. �is is then solved by minimizing
the energy function:∫

‖∇On − ∇Pn ‖2 +w(x)‖On −warp(On−1)‖2dx (1)

whereOn and Pn denote the nth frame in the output and per-frame
processed videos respectively, x represents the spatial position,
and warp() uses backward �ow to advect the previous frame to
the current frame. �e weight of the temporal consistency term,
w(x), is regularized by a parameter λ and the temporal consistency
between the input video frames V , as shown in equation (2).

w(x) = λ exp(−α ‖Vn −warp(Vn−1)‖2) (2)
Despite the e�ectiveness in regular cases, inferring temporal

coherence by the warping error between successive frames has an
inherent drawback, that is, single previous frame does not contain
su�cient information to cover the whole history of a video. For
videos with occlusion, where an object once existed but is missing
in the previous frame, the method of Bonneel et al. may fail to
generate a temporally consistent output.

2.3 Evaluation Metrics
Eventually, a reliable evaluation metric for such algorithms is
needed. Chikkerur et al. [9] has made a thorough review of exist-
ing video quality assessment methods, concluding that multi-scale
structural similarity (MS-SSIM) of Wang et al. [32], natural visual
feature based video quality metric (VQM) of Pinson et al. [25], and
motion tuned spatio-temporal quality assessment of natural videos
(MOVIE) proposed by Seshadrinathan et al. [27] generally give the
best performance in evaluating natural videos. MS-SSIM measures
the structural similarity between input and output frames without
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Figure 2: An overview of the proposed framework.

considering temporal consistency. VQM and MOVIE both perform
well in evaluating natural videos but do not take the performance of
processing techniques into account. Observing that none of these
methods focuses on the change of temporal consistency caused by
video processing, we re�ne the quality metric proposed by Yao et
al. [35], which calculates the warping error of successive frames
before and a�er processing. �e high correlation between the pro-
posed metric and the subjective score demonstrates its reliability
in re�ecting human experience.

3 PROPOSED FRAMEWORK
Our framework takes a raw video sequence {V1,V2, ...} and its per-
frame processed version {P1, P2, ...} as inputs, then generates a
temporally consistent output {O1,O2, ...}. Speci�cally, temporal
coherence is maintained by the step of temporal warping, and the
warping error of dynamic objects are compensated through multi-
layer fusion. To handle occlusion, we store the history information
in a stack of keyframes {K1,K2, ...}. Finally, post-processing is
employed for denoising and detail reconstruction, producing the
�nal output sequence {O ′1,O

′
2, ...}. A framework overview is shown

in Fig.2.

3.1 Keyframe Selection
To store visual information of the temporally occluded or disap-
pearing objects, we maintain a stack of keyframes and keep track
of the most signi�cant variations throughout the input sequence.
Ideally, the keyframe stack ought to contain a maximum number
of diverse patches for temporal warping. Nonetheless, keeping
a large stack of patches would cost considerable time for search
and maintenance. Alternatively, we select a stack of N keyframes

with the maximum mutual distance in color distribution. Since
natural video frames without scene change typically do not contain
large temporal variations of patch textures, a great di�erence of
color histogram between frames could e�ectively and e�ciently
indicate a high temporal variation of patch diversity. To practically
do it online, we calculate the χ2 distances Dn between the color
histograms of each input frame Vn and all the stored keyframes Vk
as equation (3).

Dn =

N∑
i=1

[H(Vn ) − H(Vki )]2

H(Vn ) + H(Vki )
(3)

where H() calculates the color histogram of an image, and ki is the
index of keyframes. If Dn is greater than that of any keyframe, the
current frame is then substituted for the keyframe with the minimal
sum of distances to ensure the diversity of keyframe stack.

�e size of keyframe stack, N , is crucial to striking a balance
between computational complexity and system performance. A
large number of keyframes increases the processing time of warping
operation, whereas the insu�ciency of keyframes leads to poor
temporal consistency. In our experiments with video length of 50-
200 frames, the se�ing of N between [5, 10] produces satisfactory
output. For longer videos with massive and complicated occlusions,
the number of keyframes should be determined based on factors
like video length, number of scene changes, and the complexity of
object occlusion.

3.2 Temporal Warping
Based on the keyframe stack, we warp a temporally consistent
sequence of intermediate frames {I1, I2, ...} by motion estimation.
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Figure 3: Temporal variation of the histogram distance be-
tween the current input frame and keyframes. �e red dots
indicate the frames selected into the �nal keyframe stack.
Obviously, our approach successfully records the most cru-
cial events throughout the sequence.

�e PatchMatch algorithm [4] is applied to �nd the optimal patch-
wise correspondence between the current input frame and the
stored keyframes. In detail, for each 7×7 patch in the current frame
Vn , we search for similar patches pkv within the keyframe stack,
and choose the one with the minimum warping error. �e idea can
be represented as the following formulation:

v̂ I(x) = arg min
vk

‖pv(x) −warpvk (pkv )‖
2 (4)

where v̂ I(x) is the optimal motion �ow for warping at spatial posi-
tion x , vk is a three-dimensional vector specifying the horizontal
and vertical displacements and the index of keyframe, and pv(x) is
the unprocessed patch at x . �e estimated motion is then used to
�nd the optimal processed patch from the corresponding output
patch pkO :

p̂I(x) = warpv̂ I(x )(pkO ) (5)

Finally, these partially overlapping patches, p̂I(x) ∀ x , are averaged
spatially to warp the entire intermediate frame In .

Other than PatchMatch, optical �ow can be used as an alternative
warping operator. We test the performance of PatchMatch and
several optical �ow techniques, including SIFT �ow of Liu et al.
[22], method of Sun et al. [29], and CPM �ow of Hu et al. [18]. In
general, we �nd that PatchMatch is more robust to rapid motion
and resistant to noise, but it introduces a spatially-smoothing e�ect.
Optical �ow performs rather well if the raw sequence is originally
inconsistent, since it is constrained by gradient and thus more
robust to color intensity �uctuations. Comparing the computational
cost, while it takes about 30-60 minutes for optical �ow to process 50
frames at 960 × 540 resolution, PatchMatch only costs 3-5 minutes.

3.3 Content Compensation
In the patch-warping step, the intermediate frames are warped by
averaging the patches with a �xed size and a shape of square, which
may blur the edges and damage the detail structures. Moreover,
for the objects newly appearing in the current frame, it would be
di�cult to �nd patches similar enough to warp them. Hence, we

preserve the high-frequency dynamics of the processed frame in
the step of content compensation.

Bonneel et al. [7] maintain the high-frequency details by solving
large linear systems, which costs a great amount of processing time.
Instead, we refer to exposure fusion of Mertens et al. [23] and con-
struct Laplacian pyramids [8] as a fast multi-scale decomposition.
Brie�y speaking, layers of a pyramid {LP1,LP2, ...} are de�ned by
the di�erence between successively up/down-sampled versions of
the original image, say, I l , and I l+1 = downSample(I l ):

LP l = I l − upSample(I l+1) (6)

where downSample() and upSample() are Gaussian �lter operators
for sub-sampling and interpolation respectively. To reconstruct
the image, a Laplacian pyramid can be collapsed by recursively
applying I l = LP l + upSample(I l+1) until I1 is obtained.

In our framework, Laplacian pyramids are built to decompose the
intermediate and processed frames into layers of di�erent frequen-
cies. A�erwards, a multi-layer fusion is applied on the pyramids,
enhancing the detail layers by the processed frame while keeping
the coarse layers of the intermediate frames. As shown in equation
(7), each layer of the output pyramid LPo is a weighted fusion of
the intermediate and processed pyramids, LPI and LPp .

LP lo = (1 −wl (x)) LP lI + wl (x) LP lp ∀ l ∈ {1, 2, ...,L} (7)

�e number of layers L is determined depending on the size of
video frames. For the test cases with size 960 × 540, we choose L
between [4, 6] to give ideal results. �e spatial weighting of each
layer, wl (x), is also calculated by down-sampling the bo�om layer,
which is determined as the normalized warping error:

w1(x) =
‖pv(x) −warp(p̂kv (x))‖2

max
y
‖pv(y) −warp(p̂kv (y))‖2

(8)

where y is any spatial position in the frame, and p̂kv is the optimal
unprocessed patch for warping. If an object has appeared previously,
the corresponding patches are expected to be su�ciently similar,
so we put more weight on the intermediate frame to guarantee
temporal coherence. For the regions with higher warping error,
where we assume to be the boundaries or new objects, the patches
from the per-frame processed video are weighted higher. Eventually,
LPo is collapsed to generate the output frame On .

3.4 Post-processing
While the coarse appearance of output sequence {O1,O2, ...} is
temporally smoothed, the video quality may still be unsatisfying
compared with the raw sequence in the following cases. (1) �e
patches and motion �ow for warping are noisy. (2) Object bound-
aries are blurred by the per-frame processing algorithm. (3) Large
camera motion or drastic �uctuation of color distribution causes a
high warping error, which is particularly severe around the edges.

To further improve color �delity and detail sharpness, the video
frames are segmented into small regions according to their color
distribution, and a �nal output video {O ′1,O

′
2, ...} is generated by

applying local a�ne transformations between the RGB channels of
{V1,V2, ...} and {O1,O2, ...}. For each segment in Vn and On , the
pixel values are stored in matricesMv andMo , andMv is augmented
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with one dimension of 1s. �e transformation can be wri�en as:

Mo′ = Mo M+v Mv = A Mv (9)

where Mo′ is the �nal output pixel values, M+v is the pseudoinverse
of Mv, and A ∈ R3×4 is the a�ne transformation.

For video segmentation, we experiment on image-based methods
like SLIC superpixel of Achanta et al. [1] and temporally regular-
ized approaches such as multi-level segmentation of Grundmann et
al. [14] and supervoxel proposed by Xu et al. [34]. Methods of tem-
poral segmentation o�en sacri�ce spatial smoothness to maintain
temporal continuity, yet post-processing is aimed to re�ne details.
�erefore, SLIC superpixel is more suitable for our framework. �e
size of superpixel should be carefully determined. Large superpixels
eliminate noise but lead to poor color �delity. Small superpixels
enhance edges but cost more computation time.

Considering that naive application of any color transfer method
would cause artifacts around the region boundaries, Gong et al.
[13] decompose shading adjustment from color transfer for post-
processing. Similar in spirit, we smooth the coe�cients of a�ne
transformation, A, by an edge-preserving �lter. In our testing,
guided �lter [16] performs be�er than bilateral �lter [31] in noise
reduction and boundary preservation.

4 PROPOSED EVALUATION METRIC
When evaluating the performance of temporal consistency algo-
rithms, the quality of both the raw input (V ) and the processed
video (O) should be taken into consideration. If the successive
frames of the raw video are temporally coherent, then a smoother
output sequence is expected, and vice versa.

Yao et al. [35] propose a temporal consistency metric (TCM) by
calculating the warping error between frames. We further mod-
ify its formulation and normalize the value into [0,1]. First, the
motion �eld between successive input frames, say Vn and Vn−1,
are estimated by PatchMatch or optical �ow. �en, we use the
estimated motion to warp two intermediate frames from Vn−1 and
On−1 respectively. Finally, the re�ned TCM is de�ned based on the
ratio of the two warping errors, as shown in equation (10).

TCMn = exp
(
−

���� ‖On −warp(On−1)‖2
‖Vn −warp(Vn−1)‖2

− 1
���� ) (10)

Note that the motion �eld used in the warp() operator is the same
forVn−1 and On−1 so as to examine the same local correspondence.
If the current input frame defers signi�cantly from the previous
input frame, the warping error of Vn−1 will be rather large, so a
higher warping error of On−1 should be tolerated. Trivially, since
the ratio of the two warping errors is be�er close to 1, larger TCM
value indicates higher algorithm performance.

For a be�er evaluation on videos with temporal occlusions or
quality degradation, one can trade computational cost with per-
formance by storing the history information. In the steps of mo-
tion estimation and warping, optimal patches for warping can be
searched within all the previous frames instead of merely the ex-
actly previous one. It is more complicated and time-consuming to
handle cross-frame matching and warping, yet it provides a more
reliable evaluation.

5 EXPERIMENTAL RESULTS
Section 5.1 shows a variety of video processing applications. �e
results are plo�ed in Fig. 4, where videos 1-6 are provided by
the supplemental materials of Bonneel et al. [7], and the rest are
generated by running the source code of di�erent methods. In
section 5.2 we compare the performance of our algorithm with the
existing methods by subjective test and the proposed TCM metric.

5.1 Applications
�e proposed video temporal consistency framework has a wide
variety of applications, including all processing techniques that
can be deemed as color transfer. In this section we demonstrate
the results of our framework applying on several video processing
techniques. It can be seen that these techniques bene�t from our
framework and the visual experience is improved signi�cantly.

Color Grading By using a reference image or video to guild
color grading, one can produce the intended color style in any video
sequence. Bonneel et al. [6] propose a video color grading algorithm
by matching the luminance histogram and chrominance covariance
matrix of the segmented foreground and background components.
We apply its per-frame process on the test videos shown in Fig. 7
and 9, demonstrating that the results of our general framework is
even more temporally consistent than the task-speci�c approach.

Auto-coloring Automatic enhancement of the color and tone is
a typical video processing task. Video 5 shown in Fig. 4 is processed
by a combination of Adobe Photoshop’s ’Auto Color’, ’Auto Con-
trast’, and ’Auto Tone’ tools. �e high-frequency �ickering caused
by per-frame processing is greatly removed in the resulting video.

Color harmonization �is is a color-matching technique for
pale�e registration of multiple images. Bonneel et al. use sliced
Wasserstein barycenter [5] to harmonize three videos per frame
and generate the output of test video 4 shown in Fig. 4.

Style transfer While similar to color grading, style transfer
methods focus on matching the detail structures and texture be-
tween images. Yao et al. [35] propose an example-based approach
to transfer the color style between the reference image and input
video. �e resulting videos are shown in Fig. 1 and 8.

Dehazing Dehazing is another common color-transferring task
which makes images clearer. Algorithms of He et al. [15] and Tang
et al. [30] are applied on test videos 2 and 3 respectively, as shown
in Fig. 4. �rough the re�nements of our framework, they both
perform well on videos.

Spatially-varying white balance Hsu et al. [17] propose a
white balance algorithm by clustering images into regions of di�er-
ent albedo. Since �ne-tuning the parameters for each video frame
to produce temporally consistent result would be an arduous work,
our framework serves as a be�er solution. �e results are shown
in video 6 of Fig.4.
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video 1 video 2 video 3 video 4 video 5 video 6 video 7 video 8 video 9 video 10

Figure 4: Test videos 1-10. �e upper row shows the raw videos, and the lower row shows the processed ones. Videos 1 and
8 captures static scene and huge objects passing in the background. Videos 2, 4, and 9 tracks foreground contents with fast-
changing background. Videos 3, 5, 6 focus on content details in slowly shi�ing scene. Video 7 and 10 contain highly dynamic
objects and complex occlusion e�ects.
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Figure 5: Performance comparison by subjective test with respect to (a) temporal consistency, (b) color �delity, and (c) detail
preservation, which demonstrates the superiority of our framework (either w/ or w/o post-processing). Note that we only
compare 4 output versions of each test video for the convenience of subjective ranking. In general, per-frame processed
videos su�er from �ickering, the method of Lang et al. [20] blurs detail structures, and the results of Bonneel et al. [7] have
poor color �delity. Our framework performs better overall, especially on the videos with occlusion (videos 1, 6, 7, and 8).
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Figure 6: Performance comparison by the proposed TCM metric, which is highly consistent with the subjective scores of
temporal consistency. For the raw videos with rapid motion or color �uctuation (videos 2, 9 and 10), TCM may wrongly
predict visual experience based on inaccurate motion estimation.

5.2 Comparisons
Considering that Lang et al. [20], Bonneel et al. [7], and our meth-
ods share common applications and means of usage, we compare
them as well as per-frame processing in several video streams. �e

result of subjective measurement is plo�ed in Fig. 5. For each
raw-processed video pair, we ask 20 people to rank 4 versions of
output video in aspects of temporal consistency, color �delity, and
detail preservation, separately. 3 scores will be given to the version
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Input video Per-frame Lang (σ = 2) Lang (σ = 10) Bonneel [6] Bonneel [7] (λ = 1) Our result

Figure 7: �e resulting frames 1, 16, and 40 of color grading application. In the per-frame processed video, the entire back-
ground turns pale suddenly when the pedestrian appears, especially the marked red blocks. �e method of Lang et al. [20]
with short kernels (σ = 2) does not remove low-frequency inconsistency, and long kernels (σ = 10) create spatial blurring. �e
approach of Bonneel et al. [6] also over-smooths the details on the man’s face. Comparing Bonneel et al. [7] and our methods,
they both successfully eliminate the sudden paleness in the middle frame. However, observing from the �nal colors of the
red blocks, our approach maintains better temporal consistency a�er occlusion.

Frame 1

Frame 14

Frame 25

Input video Per-frame processed Bonneel et al [7] Our result

Figure 8: �e results of Bonneel et al. [7] and our frameworks applied on style transferred video [35]. Obviously, per-frame
process causes abrupt brightness on the windows as the bus comes across the scene. In addition, a�er temporally occluded by
the bus, the marked red cars are wrongly colored by the method of Bonneel et al..

with the best quality, 2 for the second place, and so forth. If there
is a draw, then the versions with the same quality will share the
scores evenly. It can be observed that all three methods averagely
produce more consistent outputs than the per-frame processed
video, whereas our framework outperforms the method of Bon-
neel et al. [7] in color �delity, and preserves �ner details than
the results of Lang et al. [20]. Since local color a�ne model is

applied frame-by-frame to mainly re�nes boundary sharpness and
color transformation, the step of post-processing slightly a�ects
temporal coherence, but produces be�er details and colors. Fig. 6
shows the result of TCM evaluation, which further demonstrates
the superiority of our framework. On the other hand, we calculate
the numerical correlation scores between the results in Fig. 5 and
6 with respect to consistency, color, and detail, respectively. �e
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Frame 25

Frame 50

Input video Per-frame processed Bonneel et al [7] Ours (patch match) Ours (optical �ow)

Figure 9: We seek to produce a winter style on the raw video by color transfer [35]. Nevertheless, as the color distribution
of the raw sequence is originally �uctuating, it is di�cult to track object motion accurately. Hence, most proposed methods
fail to give a consistent output. We experiment on substituting the warping operator by optical �ow, which is constrained by
gradient instead of intensity. �e result shows that it indeed is more robust to such cases.

Pearson correlation scores are 0.844, 0.858, 0.821, and the Spear-
man correlation scores are 0.728, 0.788, 0.731. �e high correlation
substantiates the e�ectiveness of the proposed metric in re�ecting
human visual perception.

In Fig. 7 and 8 we show the resulting frames of di�erent methods.
Apparently, the entire frame turns pale suddenly as a large object
movement changes the color distribution of the scene rapidly, either
the pedestrian in Fig. 7 or the bus in Fig. 8. �e approach of Lang
et al. [20] with short kernels (σ = 2) fails to eliminate temporal
variations, yet longer kernels (σ = 10) bring a spatially-blurring
e�ect. �e method of Bonneel et al. [6] also over-smooths the de-
tails. Bonneel et al. [7] and our approaches both �x the inconsistent
problem successfully. However, a�er the color histogram recovers,
some temporally occluded objects may have inconsistent colors,
like the red blocks in Fig. 7 and the red cars in Fig. 8. Since method
of Bonneel et al. uses only the patches of a single previous frame, it
is prone to color discrepancy a�er occlusions. On the contrary, the
step of keyframe storage in our framework prevents such problem.

Other issues such as low-frequency color shi� and the validity
of transferring colors are demonstrated in Fig. 1. Our framework is
shown to be robust to not only high-frequency �ickering, but also
long-term color dri�. �e drawback of our method is discussed in
Fig. 9. With an originally incoherent input video, the Patch Match
approach would probably �nd erroneous patch correspondence.
We resort to optical �ow for it is gradient-constrained and thus
more reliable in such cases.

6 CONCLUSIONS
Temporal coherence in video streams is crucial to visual experience,
and it has a wide variety of applications. By inpu�ing an original
video and its processed version, which su�ers from temporal in-
consistency, the proposed framework is able to remove artifacts
from the processed video e�ectively. Furthermore, it is generic to
all processing techniques that can be formulated as a color transfer
task. Compared with the existing methods, our approach is more
robust to occlusion and achieves higher temporal consistency. �e
proposed TCM metric is also shown to be an appropriate evaluation
of video temporal consistency since it matches the results of human
visual perception. Although the parameters in our framework, N

and L, are already easy to determine, future work on automatic
parameter se�ing can be done for a more convenient use.
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