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ABSTRACT

Cross-media hashing, which conducts cross-media retrieval
by embedding data from different modalities into a common
low-dimensional hamming space, has attracted intensive at-
tention in recent years. This is motivated by the facts a)
the multi-modal data is widespread, e.g., the web images
on Flickr are associated with tags, and b) hashing is an ef-
fective technique towards large-scale high-dimensional data
processing, which is exactly the situation of cross-media re-
trieval. Inspired by recent advances in deep learning, we pro-
pose a cross-media hashing approach based on multi-modal
neural networks. By restricting in the learning objective a)
the hash codes for relevant cross-media data being similar,
and b) the hash codes being discriminative for predicting the
class labels, the learned Hamming space is expected to well
capture the cross-media semantic relationships and to be
semantically discriminative. The experiments on two real-
world data sets show that our approach achieves superior
cross-media retrieval performance compared with the state-
of-the-art methods.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval

Keywords

Cross-media hashing; Neural networks

1. INTRODUCTION
With the rapid development of Internet and social net-

works, huge amount of multi-modal data (e.g., images and
texts) is being generated at every moment. For example,
one uploaded image on the Flickr web site is usually tagged
with some related descriptions or labels. It is desirable to
support cross-media retrieval across different modalities. In
terms of the large-scale property of the multi-modal web
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data, hashing techniques that have been intensively investi-
gated for the large-scale retrieval applications, become the
natural choice. Consequently, cross-media hashing which in-
corporates hashing techniques into cross-media retrieval, is
a hot research focus recently.

Many cross-media hashing approaches have been proposed
in recent years [2, 3, 9, 8]. The first one was proposed
by Bronstein et al. in CMSSH [2]. Specifically, given two
modalities of data sets, CMSSH learns two groups of hash
functions to ensure that if two data points (with differen-
t modalities) are relevant, their corresponding hash codes
are similar and otherwise dissimilar. However, CMSSH only
preserves the inter-modal correlation but ignores the intra-
modal similarity. Kumar et al. extended Spectral Hashing
[7] from the traditional uni-modal setting to the multi-modal
scenario and proposed CVH [3]. CVH attempts to generate
the hash codes by minimizing the distance of hash codes for
the similar data and maximizing the distance for the dissim-
ilar data, which preserves the inter-modal and intra-modal
similarities at the same time. MLBE employs a generative
probabilistic model to encode the intra-similarity and inter-
similarity of data across multiple modalities according to the
estimation of maximum a posteriori [9].

Most of the existing cross-media hashing approaches ex-
ploit the symbiosis of multi-modal data when learning hash
functions. However, they do not consider the discriminative
capability of the learned hash codes, which is significantly
important for cross-media retrieval. Yu et al. propose D-
CDH which incorporate discriminative capability into cross-
media hashing for the first time and achieve significant im-
provement over the existing cross-media hashing approaches
[8]. However, DCDH has a limitation that it requires each
data point in the training set to be discriminative to a u-
nique class label thus can not handle the multi-class scenario,
which weakens its applicability to the real-world data sets.

In this paper, we propose to learn the hash functions with
the data symbiosis and discriminative capability into consid-
eration. Specifically, we minimize two loss functions in our
learning objective: a) the distance of hash codes for symbio-
sis data to make semantic relevant data have similar hash
codes; b) the inconsistency of hash codes and class labels to
make the hash codes discriminative. Motivated by the re-
cent remarkable advances of deep learning for multi-modal
data [5, 4], we exploit the NN to learn the hash functions, re-
ferred as Cross-Media Neural Network Hashing (CMNNH).
Due to the flexibility of designing the NN, we can easily ap-
ply the above two loss functions on different layers of NN
and optimize them through back propagation.
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2. THE FRAMEWORK OF CMNNH

2.1 Notations
To simplify our presentation, we assume that the data

points come from two modalities (e.g., images and texts):
X = [x1, ..., xnx

] ∈ R
dx×nx , Y = [y1, ..., yny

] ∈ R
dy×ny ,

where X and Y are the matrix representation of the da-
ta points, dx and dy denote the dimensionality of the data
points from the two modalities, respectively (usually, dx 6=
dy), nx and ny denote the number of the data points in the
data sets X and Y , respectively. In our scenario, the data
from different modality has pairwise relationship, i.e., each
data point xi is associated with a data point yi, which means
nx = ny = n. Therefore, we use n instead of nx and ny in
the following sections. Besides, T = [t1, ..., tn] ∈ R

c×n is the
class label matrix for the training set, where each ti ∈ R

c is
the ground-truth class label vector for the i-th training pair,
and c is the total number of labels. tij = 1 means the i-th
training pair is labeled with the j-th label and 0 otherwise.
Each class label vector ti is normalized by ti = ti/‖ti‖1.

The objective of CMNNH is to learn two hash functions
Hx and Hy to project the data points from different modal-
ities into a shared Hamming space: Hx : Rdx → {−1, 1}k

and Hy : Rdy → {−1, 1}k, where k is the dimensionality of
the shared space (i.e., the length of hash codes).

2.2 The Network Structure of CMNNH
The network structure of CMNNH can be seen as a com-

bination of two modality-specific NNs as shown in Figure
1. Each NN consists of L layers: one layer for the input
data, one layer for the hash codes, one layer for the output
(class label) predictions, and the rest L − 2 layers for the
hash functions, respectively. For simplification, we assume
all the NNs have the same number of layers in this paper.
In practice, the number of hash function layers for each NN
can be different.

Denote the two NNs corresponding to X and Y as NNx

and NNy , respectively. For each x ∈ X (y ∈ Y in a similar
way), we forward x layer-by-layer through NNx to gener-

ate the representation of each layer, i.e., x(1), ..., x(L) (for

simplification, we directly use x to represent x(1)). The lth

layer takes x(l) as the input and uses a projection function
to transform it to x(l+1) in the next layer:

x(l+1) = f (l)(W (l)x(l)) (1)

where x(l) and x(l+1) are the feature representation in the lth

and l + 1th layer, respectively; W l is the projection matrix.
f (l)(·) is the activation function, which is usually the sigmoid

or tanh function for l = 1 to L − 2, and is the softmax

function for l = L− 1.
From the perspective of the hash function Hx, it takes

x as input, forwards x to the hash code layer (the L − 1th

layer), and outputs the k-dimensional binary hash codes:

Hx(x) = sign(x(L−1)) (2)

where x(L−1) ∈ R
k is a k-dimensional real-value vector, and

we use the sign function to convert x(L−1) to a binary hash
code. The hash function Hy is formulated by analogy.

Nevertheless, the sign function is not differentiable, and
thus is hard to optimize directly. We simply remove the
sign function at the hash function learning stage and add
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Figure 1: The illustration of hashing with multi-
modal data (e.g., the pairs of images and texts) by a
deep model in CMNNH, which not only disentangles
the intrinsical structures of uni-modal data, but also
faithfully preserves modality-specific correlation and
discriminative cues (best viewed in color).

it at the testing stage similar with most of other hashing
approaches [7, 2, 3].

So far, the two networks NNx and NNy are still indepen-
dent, which does not exploit any prior symbiosis of the data
from different modalities. To associate NNx with NNy, we
add two constraints:

• Inter-modal pairwise correspondence: the hash
code layer should preserve the prior inter-modal corre-
spondence. For each paired xi and yi, their hash codes

x
(L−1)
i and y

(L−1)
i should be equal or similar.

• Intra-modal discriminative capability: the fea-
ture representation for x on the output layer, i.e., xL,
should be consistent with its ground-truth class labels.

The first constraint aims at preserving the inter-modal
similarity which is of crucial importance in cross-media re-
trieval. However, merely preserving the inter-modal corre-
lation often results in poor performance since the shared
embedding space is not semantically discriminative. There-
fore, we introduce additional supervised information, i.e.,
the class label side information, to make hash codes dis-
criminative for predicting the class labels. The flowchart of
CMNNH is given in Figure 1.

2.3 Learning Algorithm of CMNNH
The learning of CMNNH consists of two stages, namely

pre-training and fine-tuning.
Pre-training is a commonly used technique for providing

a good parameters initialization and preventing the learned
neural network from being trapped in a bad local optimum.
In CMNNH, we choose the stacked autoencoder (SAE) to
pre-train each layer of the NNx and NNy sequentially [1].

After NNx and NNy are well initialized, we fine-tune the
parameters by optimizing an loss function according to the
two constraints. First, to preserve inter-modal pairwise cor-
respondence, we define a loss function based on the least
square error of pairwise inter-modal correspondence:

ℓ1(x, y) =
1

2
‖x(L−1) − y(L−1)‖2F (3)

Second, to preserve the intra-modal discriminative capabil-
ity, we use the commonly used softmax regression function
as the loss function on the output layer as follows.

ℓ2(x, y, t) = KL(x(L), t) + KL(y(L), t) (4)
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where t is the class label for x and y, KL(·) is the KL-
divergence function. The loss of the output layer will be
back propagated to its former layers, so the hash code layer
is discriminative. Finally, we integrate the two loss functions
for all the data points in X and Y and minimize the overall
loss function as follows:

J =

n∑

i=1

ℓ1(xi, yi) + λ

n∑

i=1

ℓ2(xi, yi, ti) (5)

where λ is a hyper-parameter to balance the two losses.
With the collaborative effect of the two loss functions, the

learned hash functions Hx and Hy are expected to embed
the data sets X and Y into the same space with the hash
codes: a) preserving the inter-modal correlation; b) seman-
tically discriminative.

The training of CMNNH is conducted by the classical
back-propagation method. After NNx and NNy are trained,
we obtain the hash functions Hx and Hy using Eq.(2). The
overall procedures of CMNNH is given in Algorithm 1.

Algorithm 1 CMNNH

Input: data sets X,Y ,T ,λ
Output: The hash functions Hx, Hy

1: NNx ← SAE(X)
2: NNy ← SAE(Y )
3: repeat
4: Pick a random pair (xi, yi) and their corresponding

label vector ti
5: Make a gradient step for λℓ2(xi, yi, ti)
6: Update NNx and NNy , respectively
7: Make a gradient step for ℓ1(xi, yi)
8: Update NNx and NNy , respectively
9: until stopping criteria is met

3. EXPERIMENTS

3.1 Experimental Setup
We use two real-world data sets Wikipedia feature articles

(abbreviated as Wiki) 1 and NUS-WIDE2. Both data sets
are bi-modal containing images and texts.

The Wiki data set consists of 2,866 Wikipedia documents.
Each document contains one text-image pair and is labeled
by one of 10 semantic categories. For the image modality, we
extract 1,000-D Bag-of-Visual-Words (BoVW) for each im-
age. For the text modality, we calculate the frequency of all
words and select the most representative words to quantize
all texts into 5,000-D Bag-of-Words (BoW).

The NUS-WIDE data set contains 269,648 images and is
manually annotated with 81 categories. Each image with its
annotated tags can be taken as a pair of image-text data. We
select those pairs that belong to one of the 10 largest cate-
gories. For the image modality, 500-D BoVW are extracted
for each image. For the text modality, the corresponding
tags of each image are represented by a 1,000-D BoW.

For both data sets, we setup the NNs with the the number
of layers L = 3, i.e., the input layer is directly connected to
the hash code layer. The parameters between the input layer
and hash code layer are initialized by modality-specific SAE.
The reason for this setting is to give a fair comparison since

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

Table 1: The details of the data sets used in the
experiments

Data Set Wiki NUS-Wide
Image NN structure (1,000-k-10) (500-k-10)
Text NN structure (5,000-k-10) (1,000-k-10)

Data set size 2,866 186,577
Training set size 1,000 10,000

Validation set size* 866/866 5,000/20,000
Testing set size* 866/1,000 5,000/146,577

* k in the NN structure indicates the hash code length.
Partitions are ordered by query/database set respectively, and
the query set are randomly sampled from the database set.

all the compared methods adopt shadow models. Besides,
even using the 3-layers structure, we achieve good results.

The hyper-parameter λ is set to 10, which achieves the op-
timal results on the validation set and the activation func-
tion for each layer (except the output layer) is set to the
sigmoid function.

We conduct two retrieval schemes in the experiments : 1)
Image query vs. Text database (I→ T): use image queries
to retrieve relevant texts. 2) Text query vs. Image Database
(T → I): use text queries to retrieve relevant images. For
the two retrieval schemes, we compare CMNNH with the
state-of-the-art cross-media hashing methods: CMSSH [2],
CVH [3], MLBE [9] and LCMH [10]. However MLBE fails
to learn the hash function on the NUS-Wide data set due to
its high complexity on both training and testing stages.

The details of the data sets are summarized in Table 1. To
evaluate the performance of the cross-media retrieval results,
we adopt the Mean Average Precision (MAP) criterion.

3.2 Performance Comparison
We evaluate the cross-media retrieval performance with

code length varying from 16 to 48 and report results in terms
of MAP in Table 2 and 3.

It can be noted that CMNNH significantly outperforms
the counterparts over different code lengths. The is because
that none of the compared methods consider the discrimina-
tive capability, while the hash codes generated by CMNNH
are discriminative and well represent the semantic informa-
tion. Besides, with the increasing of the code length, the per-
formance of all the counterparts have a setback. A possible
reason for this observation is that the learned hash functions
is farther from the optimal solutions when the code length
gets larger. In contrast, CMNNH does not suffer from the it
which reveals the fact that incorporating discriminative ca-
pability facilitate the performance of cross-media retrieval.

3.3 Discussion of Discriminative Capability
To show the discriminative capability of the hash codes,

we investigate the embedding Hamming space. We use the
text modality on the Wiki data set since it has rich textual
information and is convenient for illustrations.

First, we use the t-SNE method [6] to map the hash codes
of the texts into 2-dimensional space as shown in Figure 2.
From Figure 2, we can see that the hash codes of CMNNH
are grouped according to their class labels, and explicit mar-
gins are observed among different classes. By contrast, the
hash codes distribution of the other approaches do not have
similar discriminative effect.

Second, we can also demonstrate the topic words by using
the weight matrix W (1) ∈ R

k×dy from the textual NN. For
each row in W (1), the row weights indicate the contribution
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Figure 2: 2D t-SNE feature visualization of the hash codes on the textual modality of the Wiki data set. The
same color indicates the hash codes have the same class label (best viewed in color).

Table 2: The MAP performance comparison on the
Wiki data set.

Task Methods
Hash code length

k = 16 k = 32 k = 48

I→ T

CVH 0.1436 0.1382 0.1363
CMSSH 0.1446 0.1384 0.1396
MLBE 0.1393 0.1371 0.1358
LCMH 0.1256 0.1269 0.1287
CMNNH 0.1917 0.2172 0.2186

Task Methods
Hash code length

k = 16 k = 32 k = 48

T→ I

CVH 0.1380 0.1340 0.1331
CMSSH 0.1391 0.1340 0.1353
MLBE 0.1351 0.1367 0.1322
LCMH 0.1242 0.1238 0.1245
CMNNH 0.1523 0.1672 0.1658

Table 3: The MAP performance comparison on the
NUS-Wide data set.

Task Methods
Hash code length

k = 16 k = 32 k = 48

I→ T

CVH 0.3626 0.3552 0.3522
CMSSH 0.3608 0.3603 0.3602
MLBE - - -
LCMH 0.3417 0.3420 0.3426
CMNNH 0.4071 0.4266 0.4271

Task Methods
Hash code length

k = 16 k = 32 k = 48

T→ I

CVH 0.3621 0.3546 0.3516
CMSSH 0.3566 0.3657 0.3426
MLBE - - -
LCMH 0.3404 0.3407 0.3414
CMNNH 0.3958 0.4094 0.4171

of all words to the corresponding “topic” in the Hamming

space. The larger the weight valueW
(1)
ij is, the more positive

correlation between i-th topic and j-th word. The top 5
words for four topics are given in Table 4, and we manually
assign the most probable class labels for the four topics.
From Table 4, we can find that the topic words in each line
reflect a certain topic (i.e., class label).

4. CONCLUSIONS
In this paper, we propose a cross-media hashing approach

based on neural networks named CMNNH, which learns the
hash functions taking both the data symbiosis and discrimi-
native capability into consideration. The hash functions are
pre-trained using SAE and fine-tuned using the traditional
back-propagation algorithm. The experimental results on
the two data sets demonstrate the effectiveness of CMNNH.

Table 4: The representative topic words and its most
probable class labels.
Class Labels Representative Topic Words

History Lords Rome Reign Augustus Crown
Sport Champion Player Football Coach Stadium

Geography Creek Park Ridge Valley Forest
Art Theater Fiction Actress Film Poem
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