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ABSTRACT
Ranking on image search has attracted considerable atten-
tions. Many graph-based algorithms have been proposed to
solve this problem. Despite their remarkable success, these
approaches are restricted to their separated image networks.
To improve the ranking performance, one effective strategy
is to work beyond the separated image graph by leverag-
ing fruitful information from manual semantic labeling (i.e.,
tags) associated with images, which leads to the technique
of co-ranking images and tags, a representative method that
aims to explore the reinforcing relationship between image
and tag graphs. The idea of co-ranking is implemented by
adopting the paradigm of random walks. However, there are
two problems hidden in co-ranking remained to be open: the
high computational complexity and the problem of out-of-
sample. To address the challenges above, in this paper, we
cast the co-ranking process into a Bregman divergence opti-
mization framework under which we transform the original
random walk into an equivalent optimal kernel matrix learn-
ing problem. Enhanced by this new formulation, we derive a
novel extension to achieve a better performance for both in-
sample and out-of-sample cases. Extensive experiments are
conducted to demonstrate the effectiveness and efficiency of
our approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: [Informa-
tion search and retrieval]
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1. INTRODUCTION
The explosion of online community-contributed multime-

dia data results in great focus on image retrieval. Most of so-
cial media sharing websites like Flickr allow users to upload
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personal images and annotate content with descriptive key-
words called tags. Many ranking algorithms specialized to
images on such social media repositories have been proposed
to help organize the shared media data [4] or to facilitate the
image ranking process [7]. However, these methods mainly
focus on centrality measures on image content and the eval-
uations of the relative importance of images have been car-
ried out independently, which ignores the rich information
from tags, and annotations, etc. Similarly, the well-studied
treatments on tag recommendation [4] and tag ranking [10]
are conducted solely on the tag graph. To leverage the use-
ful metadata including tags, and images vice versa, ranking
algorithms should consider the reinforcing dependency be-
tween images and tags, which is beneficial to further improv-
ing ranking results. To this end, in this paper, we study a
problem of great interest, that is, how to effectively and ef-
ficiently handle dual-relational data over two graphs, which
can be named as the Co-Ranking problem (CoR).

The main idea of CoR is to explore the mutually reinforc-
ing relationship between image and tag graphs by construct-
ing a combined graph connecting the two graphs together.
Then random walks are performed to rank the data with re-
spect to the intrinsic geometric structure revealed by a large
amount of data. CoR assigns each data point a relative rank-
ing score by collectively leveraging the ranking information
from both the image graph and tag graphs. Some works
have witnessed the feasibility of CoR on a variety of data
types [17, 14].

One of the main drawbacks of CoR is its high computa-
tional complexity. Given a query, CoR constructs two affin-
ity graphs and propagates the ranking scores over the com-
bined graph, yielding to a complexity of O(n3), where n is
the size of samples in the database. Such a high cost is pro-
hibited in large-sized databases. Another limitation of CoR
comes from the case of out-of-sample. Normally, if an in-
sample query is issued, CoR can use off-line pre-computation
to reduce the computational cost. However, if the query is
out of the database, the expensive ranking score propaga-
tion step needs to be performed in the on-line stage, which
is referred to be the out-of-sample problem [1].

In this paper, we reformulate the idea of random walks
into a Bregman divergence optimization fashion, which pro-
vides us a novel perspective towards the co-ranking algo-
rithm. That is, the optimal co-ranking function can be mod-
eled by learning an optimal kernel matrix under the Breg-
man divergence matrix based metric. Moveover, an efficient
and effective extension is induced to figure out the challenges
of high computational cost and out-of-sample case.
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We may summarize the main contributions of this paper
as follows: (i) We formulate the CoR algorithm as a Bregman
divergence optimization problem. (ii) With the new formu-
lation, we have a novel understanding of CoR’s aim, that is,
to learn an optimal kernel matrix, which allows a novel ex-
tension to combat the challenges of high computational cost
as well as out-of-sample problem.

2. PRELIMINARIES

2.1 The Co-Ranking Algorithm
Given the well-constructed image graphGM and tag graph

GT , the co-ranking paradigm is coupled with two random
walks over GM and GT . Consider the transition matrix Q
derived from GM , and rk(i) denotes the relevance score of
image vi with respect to the query image at iteration k. The
ranking score can be obtained from the unique solution as
the random walk converges:

rπ = (1− ρ)(I− ρQ̂)−1c (1)

where c is the initial ranking vector, Q is changed to be the
ergodic Q̂ and ρ denotes the damping factor [2].

Similarly, given the transition matrix Z (with random

walk matrix Ẑ) induced by the tag graph GT , the random
walks over GT converge to another stationary probability
distribution:

fπ = (1− ρ)(I− ρẐ)−1c̄ (2)

where c̄ denotes the initial relevance scores of a tag.
The random walk over the combined graph is presented

in terms of a random surfer who is capable of jumping over
images and their tags as well. Thus, in the process of cou-
pling two random walks, a probability distribution will have
the form (rπ,fπ) [17], satisfying ‖ rπ ‖1 + ‖ fπ ‖1= 1.

2.2 The Bregman Matrix Divergence
Let φ : Λ → R be a real-valued strictly convex function

defined over a convex set Λ. The Bregman divergence [3]
with respect to φ is defined as

Dφ(x,x0) = φ(x)− φ(x0)− (x− x0)
T∇φ(x0).

Intuitively, the Bregman divergence is used to measure the
closeness of two vectors. For example, if φ(x) = xTx then
the corresponding Bregman divergence turns out to be the
squared Euclidean distance: Dφ(x,x0) =‖ x−x0 ‖2. We can
naturally extend this definition to convex functions defined
over matrices [8]. In this case, given a strictly convex, con-
tinuously differentiable function φ(X), the Bregman matrix
divergence is defined to be

Dφ(X,X0) = φ(X)− φ(X0)− tr((∇φ(X0))
T (X−X0))

where tr(X0) denotes the trace of matrix X0. Examples
include φ(X) =‖ X ‖2F , which leads to the squared Frobenius
norm ‖ X−X0 ‖2F .

In this paper, we specialize on the log-determinant func-
tion φ(X) = − log detX, which can be expressed as the Burg
entropy of the eigenvalues, i.e., φ(X) = −∑

i logλi. The re-
sulting matrix divergence becomes

D(X,X0) = tr(XX−1
0 )− log det(XX−1

0 )− n (3)

which we call the Log-Determinant divergence [8].

3. BREGMAN DIVERGENCE DERIVED RAN-
DOM WALKS

In the following, we will derive the random walks from a
Bregman divergence optimization framework. By virtue of
the new derivation, some extensions can be naturally derived
to combat the aforementioned challenges.

Consider the convergent solution in Eq.(1), we can rewrite
it as follows:

r∗π = (I− ρQ̂)−1c = Kc. (4)

We omit the scaling factor 1-ρ as it does not influence the so-
lutions. Let T = [t1, t2, . . . , tn] ∈ R

m×n be the data repre-
sentation in a new tag feature space of the data samples. In
particular, we define ti = Φ(vi), for i = 1, . . . , n, where Φ is
a transformation function of the original image vector to the
new tag feature space. Specifically, we introduce a canon-
ical representation [t̃1, t̃2, . . . , t̃m] for ti, which is composed
of the 0-1 indication of the tag feature basis. Specifically,
we have

ti(j) =

{
1, if p(vi|t̃j) ≥ ε;
0, otherwise.

(5)

Intuitively, we project each image into a tag feature space
using a binary representation, which indicates to which ex-
tent the image is associated with basis tags.

We define the matrix K as

K = TTT, (6)

which is a positive semi-definite matrix. Then, we present
our primary theorem over the new derivation on random
walks as follows.

Theorem 1. The matrix K in the convergence formula-
tion (Eq. (4)) is the solution of the following optimization
problem:

minK D(K, I)
s.t.

∑
i,j ‖ 1

d(vi)
ti − 1

d(vj )
tj‖2qij ≤ ε, K � 0,

where ε is a smoothness parameter constraining similar
images having close distance in the new space.

Proof. The optimization problem seeks a K closest to
the identity matrix measured by the Log-Determinant diver-
gence with a regularization on normalized graph Laplacian
smoothness, which can be written as a matrix form [16]:∑

i,j

‖ 1√
d(vi)

ti − 1√
d(vj)

tj‖2qij = tr(TLTT ),

where L = I− Q̂ is the normalized graph Laplacian.
Replacing the objective function with Eq.(3) and intro-

ducing the Lagrange multiplier, the minimizing optimization
problem can reformulated as follows:

min
K

D(K, I) (7)

= min
K�0

tr(KI−1)− log det(K) + ηtr(TLTT )

= min
K�0

tr(KI) + ηtr(TTTL)− log det(K)

= min
K�0

tr(KE)− log det(K),

where E = I + ηL is a positive-definite matrix and η is
the Lagrange multiplier. The optimal solution K∗ of the
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above optimization problem is K∗ = E−1 = (I+ ηL)−1 [6].

Recall that E = I+ ηL = (1+ η)(I− η
(1+η)

Q̂), then we have

K∗ = (I− βQ̂), where β = η
(1+η)

. We use K∗
M for the sake

of distinguish.

Similarly, we can derive another new extension from the
perspective of Bregman divergence metric for the random
walks over the tag graph, which is summarized in the fol-
lowing theorem. We define KT as KT = CTC, where
C = [c1, . . . , cn] ∈ R

m×n is the representation that trans-
forms the tag samples to a new feature space. Likewise, we
rewrite the Eq.(2) as follows:

f∗π = (I− ρẐ)−1c̄ = KT c̄. (8)

Theorem 2. The matrix KT in the convergence formu-
lation (Eq. (8)) is the solution of the following optimization
problem:

minKT D(KT , I)
s.t.

∑
i,j ‖ 1√

Dii

ci − 1√
Djj

cj‖2zij ≤ ε, KT � 0,

Likewise, we have the optimal matrixK∗
T , which is exactly

equal to the matrix KT in Eq. (8).

3.1 Efficient Co-Ranking Algorithm
In the perspective of Bregman divergence, the random

walk essentially learns an optimal matrix K close to the
identity matrix under certain constraints. However, we still
need to inverse a n× n matrix I + ηL, which has the com-
plexity of O(n3). In the following, we derive an efficient
extension of co-ranking algorithm. Suppose the mapping of
ti = Φ(vi) is linear, i.e., T = PTV, where P is a k × m
matrix, then we have

tr(KI−1)− log det(K) + ηtr(TLTT ) (9)

= tr(VTPPTV)− log det(VTPPTV) + ηtr(PTVLVTP)

= tr(HVVT )− log det(VVT )− log det(H) + ηtr(HVLVT ),

where H = PPT � 0.
As a result, the optimization problem Eq. (7) becomes

min
H�0

tr(H(VVT + ηVLVT︸ ︷︷ ︸
k×k

))− log det(H), (10)

where H is a k×k matrix. To get the optimal matrix H, we
only need to inverse a matrix with size k×k, which remains
unchanged as the size of database (n) grows. That is, if
k 
 n, the computational complexity of matrix inversion is
reduced dramatically. Thereby, we optimize a small matrix
H to estimate the optimal matrix K∗

T or K∗
M . Then, the

complexity is reduced from O(n3) to O(m3) +O(n2).
In fact, the computation of optimal matrix H learns a

distance metric:

d2H =‖ PTvi −PTvj ‖2= (vi − vj)
TH(vi − vj). (11)

With the learned distance metricH,K∗
M can be computed

by K∗
M = TTT = VTHV. Hence, each element of the K∗

M

can be calculated by

K∗
M [ij] = exp(−d2H(vi,vj)/2σ

2) (12)

Therefore, similar to Eq.(4), the ranking on image graph
can use K∗

M to compute ranking scores:

r∗π = K∗
Mc (13)

3.2 Out-of-Sample Extension
Given a sample query out of the database, e.g., a new

image query, we only need to compute a new column of
the matrix K∗

M , which avoids the update over the entire
matrix. Assume that V̂ = [V,vu] ∈ R

k×(n+1) is the new
data matrix with the new sample vu, then we have the new
optimal matrix K̂∗

M ∈ R
(n+1)×(n+1):

K̂∗
M =

(
K∗

M knu

knu 1

)
(14)

Compared with traditional ranking algorithms based on
random walks, which need O(n3) to propagate the ranking
score, our approach updates the matrix K∗

M with the com-
plexity of O(n).

4. EXPERIMENTS
In this section, we conduct experimental studies over the

task of contented-based image retrieval (CBIR) to show the
effectiveness and efficiency of our approach.
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Figure 1: Time complexity. We report the running time

performances of the three algorithms by ranging the size

of sample from 1k to 6k. This experiment is performed

over the benchmark of Caltech101 database.

4.1 Experimental Setup
Databases. All experiments are conducted on two real-

world image databases: COREL and Caltech101. COREL
is a widely used database for CBIR, which contains 7,000
images categorized into 70 classes [15, 5]. The Caltech101
database contains about 9,000 images divided into 101 cat-
egories with 90 averaged images per category 1.

Baselines. We implemented the following algorithms as
baselines.

• PCA: PCA is the most popular linearly dimensional
reduction method [13]. We set the reduced dimension-
ality to be 40 in our experiments.

• CoR: Co-Ranking is the simple paradigm using com-
bined random walks to do image and tag ranking [14].

• DCoR: the efficient extension on co-ranking made in
this paper by using the Bregman divergence principle.

1http : //www.vision.caltech.edu/ImageDatasets/Caltech101
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Image Features. We extract three features from each im-
age: Grid color moment, wavelet texture [9] and local binary
pattern [12]. Thereby, a 260-dimensional vector is formed to
describe images.

Evaluation Metrics. Three evaluation metrics are consid-
ered: the Precision at top K (P@K), NDCG@K and Mean
Average Precision (MAP) [11]. We present the definitions
of NDCG@K and MAP in the follows:

NDCG@K = Zn

K∑
j=1

2r(j) − 1

log2(j + 1)
, (15)

where r(j) is the relevance score of the jth returned item
and Zn is a normalization constant.

MAP, as defined in [11] is:

MAP (Q) =
1

|Q|
|Q|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk) (16)

where Q is a set of queries, qj is one query from Q with mj

relevant items {i1, . . . , imj }, and Rjk is the set of ranked
items for qj until ik is reached.

4.2 Performance Evaluations

Table 1: Results on COREL and Caltech101 data
sets over P@K, NDCG@K and MAP.

COREL Caltech101

Metric PCA CoR DCoR PCA CoR DCoR

P@10 40.57% 42.99% 44.77% 34.54% 34.94% 38.65%

P@20 34.46% 37.55% 38.35% 29.83% 30.87% 35.79%

P@30 31.83% 34.67% 34.05% 29.83% 30.88% 33.73%

NDCG@10 42.49% 45.09% 47.51% 35.43% 36.31% 40.37%

NDCG@20 38.12% 41.02% 41.98% 33.15% 36.07% 37.67%

NDCG@30 34.47% 38.20% 38.27% 31.81% 32.84% 36.05%

MAP 32.38% 36.71% 35.47% 31.07% 35.22% 36.56%

Ranking evaluations. As shown in Table 1, in terms of
COREL database, as the image features are discriminative,
the baselines of PCA and CoR perform reasonably well by
simply using the Euclidean distance. Our approach only
loses slightly to the best performance shown by CoR.

For the Caltech101 database, the method of PCA doesn’t
show good performance, partially due to the large number
of categories and complex content in images. Also, the ap-
proach of CoR is unable to show promising results because
the graphs used in CoR are based on the Euclidean distance,
which cannot capture the true metrics between images. In
contrast, our method constantly shows superior results over
baselines by the virtue of distance metric learning.

Time complexity. We show running time complexity in
Fig.1. It can be seen that CoR needs high computational cost
and it is hard to be applied on the application of large-scaled
databases. Although PCA reduces the running time to some
degree, the cost of its computation is still not low enough to
make it applicable on large-sized data sets. In contrast, our
approach is more efficient as the size of database increases.

5. CONCLUSIONS
In this paper, we present a new perspective of random

walks, which learns an optimal kernel matrix implemented
by the Bregman matrix divergence metric. This novel for-
mulation allows us to derive an efficient extension over the
co-ranking algorithm as well as an effective strategy for the

case of out-of-sample. The two extensions reduce the com-
putational complexity dramatically. Extensive experiments
are conducted to show the superiority of our approach.
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