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ABSTRACT
Spectral hashing (SpH) is an efficient and simple binary
hashing method, which assumes that data are sampled from
a multidimensional uniform distribution. However, this as-
sumption is too restrictive in practice. In this paper we
propose an improved method, Fitted Spectral Hashing, to
relax this distribution assumption. Our work is based on
the fact that one-dimensional data of any distribution could
be mapped to a uniform distribution without changing the
local neighbor relations among data items. We have found
that this mapping on each PCA direction has certain reg-
ular pattern, and could fit data well by S-Curve function,
Sigmoid function. With more parameters Fourier function
also fit data well. Thus with Sigmoid function and Fourier
function, we propose two binary hashing methods. Experi-
ments show that our methods are efficient and outperform
state-of-the-art methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Similarity search is an essential problem in the field of

machine learning, computer vision and information retrieval.
However, with increasing amounts of data, similarity search
faces following challenges: efficient storing millions of items
in memory and quickly finding similar items to a query item.
Recent work [1] shows that binary hashing methods are a
powerful way to address those challenges:
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• The highly compressed binary codes can be loaded into
main memory efficiently;

• Searching similar items can be extremely fast with
Hamming distances calculated by bit XOR operation:
an ordinary PC today would be able to do millions of
hamming distance computation in just a few millisec-
onds .

The basic idea of binary hashing methods is to formulate
projections from items to binary codes, so as to approxi-
mately preserve a given similarity function of interest [2].
”Good” binary codes should meet the entropy maximizing
criterion. According to the information theory [3], the max-
imal entropy of a source alphabet is attained by having a
uniform probability distribution. If the entropy of binary
codes over data set is small, it means that data are mapped
to only a small number of codes, thus rendering the codes
inefficient.

However, many state-of-the-art methods do not meet this
criterion. One of the most well-known binary hashing meth-
ods is locality sensitive hashing method (E2LSH), which cal-
culates binary codes by projecting data on random vectors
with random thresholds, and as shown in [4] the hamming
distance between binary codes will asymptotically approach
the Euclidean distance between data items. The Kernel-
ized version (KLSH) [5] widens the accessibility of E2LSH
to generic normalized kernel functions. Rather than using
random vectors, the authors have pursued machine learning
approaches, e.g. the restricted Boltzmann method (RBM)
[6] and Boosting [7], to accelerate the document and image
retrieval.

When data are uniformly distributed in a hyper-rectangle,
Spectral hashing (SpH) [8], derived from the spectral graph
partitioning problem, meets the entropy maximizing crite-
rion. Bits can be calculated efficiently by the eigenfunc-
tions of the weighted Laplacian defined on R1. This sim-
ple method outperforms above methods. However, the as-
sumption of SpH is too restrictive in practice. Like SpH,
Self-Taught Hashing (STH) [1] is also related to the spec-
tral graph partitioning, but uses ration-cut to address the
entropy maximizing criterion and applies support vector ma-
chine (SVM) to yield hash codes for out-of-sample objects.
STH can work with any data distribution, while suffering
with high computational cost. The binarized dimensional-
ity reduction technique Latent Semantic Indexing (LSI) [9]
and its improved version Laplacian Co-Hashing (LCH) [10]
are efficient to get binary codes of documents. Via setting
the threshold to the median value of left singular vectors of
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Figure 1: Illustration of using our method to generate one bit binary code for image data set, and the steps
are: (a) Project data on one PCA direction; (b) Fit the projected data with Sigmoid function, in order to
map one-dimensional data to a uniform distribution; (c) Use eigenfuction (k = 1) of one-dimensional Laplacian
on uniform distribution to generate binary code.

the whole data matrix, they also meet the entropy maximiz-
ing criterion.
In order to relax the restrictive assumption of SpH on data

distribution, we propose an improved version Fitted Spec-
tral Hashing as shown in Figure 1. Our work is based on this
obvious fact that any distribution of one-dimensional data
could be mapped to a uniform distribution without changing
the local neighbor relations among them. The main contri-
butions are as follows:

1 We have found that this mapping has certain regular
pattern on each PCA direction. It could be well fitted
by S-Curve function, Sigmoid function. With more
parameters, the Fourier function also fits data well.

2 We integrate Spectral hashing with fitting functions
to approximately meet the entropy maximization cri-
terion, and propose two binary hashing methods, Sig-
moid Fitting Spectral Hashing (SFSpH) and Fourier
Fitting Spectral Hashing (FFSpH).

2. SPECTRAL HASHING
In this section we briefly introduce the related binary

hashing method, SpH. The SpH method is derived from the
graph partitioning problem. Let {yi}ni=1 be the list of binary
codes for n data points {xi}ni=1, and Wn×n be the similar
matrix, where W (i, j) = exp(− ∥ xi − xj ∥2 /ϵ2). The av-
erage Hamming distance between similar neighbors can be
written:

∑
i,j

W (i, j) ∥ yi − yj ∥2. With the assumption that

data point x is sampled from a probability distribution p(x),
the SpH problem can be written as:

min

∫
∥ y(x1)− y(x2) ∥2 W (x1, x2)p(x1)p(x2)dx1dx2,

s.t.

∫
y(x)p(x)dx = 0,

∫
y(x)y(x)TP (x)dx = I

yi ∈ {−1, 1}k. (1)

Relaxing the constraint that yi ∈ {−1, 1}k gives a spectral
problem, whose solutions are eigenfunctions of the weighted
Laplace-Beltrami operators defined on manifold [11]. When
p(x) is a separable and multidimensional uniform distribu-
tion Pr(x) =

∏
i

ui(xi) , where ui(xi) is a one-dimensional

uniform distribution on [a, b], the solutions are

ϕk(x) = sin(
π

2
+

kπ

b− a
x). (2)

λk = 1− e−
ϵ2

2
| kπ
b−a

|2 . (3)

The Eq.2 can be used to code data points {xi}ni=1 directly.
However, this simple algorithm has an obvious limitation: it
assumes data points are generated from a multidimensional
uniform distribution. When dealing with the actual data,
we have found that the SpH algorithm can hardly meet the
entropy maximizing criterion as shown in Figure 2(b).

3. PROPOSED APPROACH
The fitted SpH uses PCA to align the axes like SpH, but

doesn’t need the distribution assumption. It is based on
this simple fact that any distribution of one-dimensional
data could be mapped to a uniform distribution. There-
fore, with a uniform distribution the fitted SpH algorithm
can approximately meet the entropy maximizing criterion,
and corresponding entropies1 are shown in Figure 2(c) and
Figure 2(d). However, there are two questions: (1) Does
this mapping change local neighbor relations among data
items? (2) Could this fitting model be efficiently computed
for out-of-sample objects?

Proposition 3.1. Let {pi}ni=1 be the projected values of
{xi}ni=1 on arbitrary PCA axis, {qi}ni=1 be data, which obey
uniform distribution, mapped from {pi}ni=1. After this map-
ping, we claim that: (1) the entropy of binary coding {qi}ni=1

can be maximized. (2) If the mapped function f is monoton-
ically increasing function, the sequence of {pi}ni=1 could be
preserved by {qi}ni=1. (3) The adjacency relationships among
data items can be preserved after this mapping.

Proof. (1) q obey the uniform distribution on [a, b], and
are translated to [0, b − a] without loss. Since q ∈ (0, b−a

2k
),

ϕk(q) > 0 ; q ∈ ( b−a
2k

, b−a
k

), ϕk(q) < 0, half of q on uniform
distribution could be coded as 1 or 0 by Eq.2 in the range
(0, b−a

k
). Because Eq.2 is a periodic function, the entropy of

binary coding {qi}ni=1 in every range (0+(i−1)× b−a
k

, b−a
k

+

(i−1)× b−a
k

)), i = 1, ..., k, can be maximized. (2) f(pi) = qi,
when {pi > pz > · · · > pj}, because f is monotonically in-
creasing function, then {qi > qz > · · · > qj}, the sequence of
1Let pr be the probability of one bit be 0, the entropy of pr
is: H(pr) = −prlog2(pr)− (1− pr)log2(1− pr)
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(a) Coding result on ideal data by
SpH (Entropy: 1)

(b) Coding result on actual data
by SpH (Entropy: 0.5574)

(c) Coding result on actual data
by FFSpH (Entropy: 0.9935)

(d) Coding result on actual data
by SFSpH (Entropy: 0.9909)

Figure 2: With ideal data(a), which obey uniform
distribution, half of the training samples are coded
as one or zero by SpH, while (b) is not balanced. (c)
and (d) are approximately balanced.

{pi}ni=1 is preserved by {qi}ni=1 (3) PCA axes are indepen-
dent from each other, therefore the mapping on one PCA
axis doesn’t affect others. Because the adjacency relation-
ships on each axis are preserved, the adjacency relationships
among data items are preserved.

For out-of-sample objects, we have found that this map-
ping could be well fitted by Sigmoid function:

f(x) = a0 × (1 + e
(
−(x−a1)

a2
)
)−1 + a3, (4)

where a0, a1, a2 and a3 are 4 parameters of Sigmoid func-
tion. Obviously Eq.4 is monotonically increasing function.
It has been observed in the literature [12] that the density
projections of large high-dimensional data sets onto a ran-
dom line generally follows a normal distribution, thus the
Cumulative Distribution Function (CDF) function could be
used as fitting function. Because Sigmoid function is the
commonly used CDF of normal function, thus it can fit data
well. For comparison, we also use the Fourier function which
can approximate any function:

f∗(x) = a0 + a1 × cos(x× w) + b1 × sin(x× w) + . . .

+ a8 × cos(8× x× w) + b8 × sin(8× x× w), (5)

where a0, w, a1, . . . , a8, b1, . . . , b8 are 18 parameters and more
parameters ensure the low Sum of Squares due to Error
(SSE) of Fourier function. Though with a little higher SSE,
the computational cost of Sigmoid function is lower as showed
in Experiments. There are many tools available to solve the
fitting functions, and CFtool in Matlab is used in this paper.

In Algorithm 1, the cost of eigenvalue decomposition of
matrix X∗ ∈ Rm×m is lower than state-of-art methods deal-
ing with Rn×n [1] [9] [10], where m is the dimensionality and
n is the number of samples. This Algorithm first learns the
fitting function on each selected PCA direction, and then

Algorithm 1 Fitted Spectral Hashing

Input: Matrix X ∈ Rn×m, the number of bits k
Output: Binary codes Y ∈ Rn×k, Mode M
1: Compute eigenvectors and eigenvalues ofX∗, X∗ = X ′×

X;
2: According to the order of eigenvalues, select k eigenvec-

tors {V1, V2, . . . , Vk} as the PCA axes and save them in
M ;

3: for i=1 to k do
4: Compute projected value p with X and Vi

5: Compute fi using Eq.4 or Eq.5 with p
6: Evaluate the k smallest eigenvalues {λ1, λ2, . . . , λk}

by Eq.3 with p
7: Save fi, {λ1, λ2, . . . , λk} in M
8: end for
9: Select k eigenfunctions {ϕ1, ϕ2, . . . , ϕk} by Eq.2 accord-

ing to the order of λ in M and save them in M
10: for j=1 to k do
11: Find corresponding Vi according to λj

12: Compute projected value p with X and Vi

13: q = fi(p)
14: Threshold eigenfunctions ϕj(a) at zero to obtain bi-

nary codes Y (:, j)
15: end for

uses Eq.2 to generate the binary codes for one-dimensional
uniform data.

4. EXPERIMENTS
In this section, we evaluate the proposed methods and

discuss their computational costs. We compare our methods
with LSI [9], LCH [10] and STH [1], which are well known
binary hash methods and meet the entropy maximization
criterion. SpH is used as baseline.

4.1 Data Sets
We choose the well-known tiny image dataset CIFAR-

10(60K) and real-world text dataset 20Newsgroups as our
experiment data sets. CIFAR-10 contains 60K 32× 32 color
images of 10 classes and 6K images in each class. We ex-
tract 512-D GIST features for each image and use 80% im-
ages for training, 20% left for testing. The 20Newsgroups
corpus contains 18846 documents distributed across 20 cat-
egories. The document dataset has been pre-processed by
stopword removal, Poster stemming, and TF-IDF weight-
ing. The time-based split leads to 11314 (60%) documents
for training and 7532 (40%) documents for testing.

4.2 Results and Discussions
Retrieval performance: As shown in the Figure 3 the

proposed methods give the best results on 20Newsgroup,
and top-3 results on CIFAR-10. Our methods use fitting
functions to approximately meet entropy maximization cri-
terion and achieve average 60% improvement on 20News-
groups and average 19% improvement on CIAFR-10 com-
pared with SpH. Compared with other methods [9] [10] [1],
the PCA directions, which represent the directions of maxi-
mum variance, ensure better retrieval performace.

Our methods, SFSpH and FFSpH, work almost the same
on 20Newsgroups. With more parameters, the performance
of FFSpH on CIFAR-10 is slightly better than SFSpH’s.
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(a) 20Newsgroups (b) CIAFR-10

Figure 3: Comparisons with different methods:(a)
Our methods give the best results on 20News-
groups. (b) Our method give the top-three results
on CIAFR-10.

(a) 20Newsgroups (b) CIAFR-10

Figure 4: The performances of SFSpH under differ-
ent sampling rates are almost as good as using all
samples.

Thus we claim that Sigmoid function could fit data well
with much less parameters.
Computational cost: As shown in Figure 5 the compu-

tational cost of SFSpH is much lower than other methods’,
only 60% of FFSpH’s, 25.3% of LCH’s, 25.2% of LSI’s and
3% of STH’s, while a litter higher than SpH’s. Because SpH
only needs to calculate the PCA directions, while our meth-
ods need extra fitting function computation.
The computational cost of fitting function is relevant with

the number of parameters and the scale of samples. The Sig-
moid function needs 4 parameters, while Fourier function
needs 18 parameters. Therefore the cost of FFSpH is higher
than that of SFSpH. Due to the simplicity of Sigmoid func-
tion, low sampling rate gives almost as good result as full
sampling. The performance comparisons of SFSpH under
different sampling rates are shown in Figure 4.
The LCH and LSI need the SVD (singular vectors decom-

position) of whole data matrix Rn×n to compute projecting
directions, thus the computational complexity is higher than
proposed methods with matrix Rm×m. The STH method
has to construct the spectral graph with complexity ofO(mn2),
and compute the eigenvectors of similar matrix Rn×n, then
train k SVM models to generate binary codes, therefore its
cost is the highest.

5. CONCLUSIONS
In this paper, we propose two fitted spectral hashing meth-

ods and prove their rationality. The hashing codes of our
methods approximately meet the entropy maximizing crite-
rion. Experiments show that these two fitted spectral hash-

Figure 5: The CPU time comparisons of different
methods. Compared with LCH, LSI and STH, which
all meet the entropy maximization,the cost of our
method is much lower. Though SpH has the lowest
cost, it doesn’t meet this criterion.

ing methods out-perform stat-of-the-art methods. Further-
more, due to the efficiency, we claim that our methods can
be efficient to train large data sets with short code lengths.
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