
Interactive Line Drawing Recognition and Vectorization
with Commodity Camera

Pradeep Kumar Jayaraman
School of Computer Engineering

Nanyang Technological University, Singapore
pradeepk001@e.ntu.edu.sg

Chi-Wing Fu
School of Computer Engineering

Nanyang Technological University, Singapore
cwfu@ntu.edu.sg

ABSTRACT
This paper presents a novel method that interactively rec-
ognizes and vectorizes hand-drawn strokes in front of a com-
modity webcam. Compared to existing methods, which rec-
ognize strokes on a completed drawing, our method captures
both spatial and temporal information of the strokes, and
faithfully vectorizes them with timestamps. By this, we can
avoid various stroke recognition ambiguities, enhance the
vectorization quality, and recover the stroke drawing order.
This is a challenging problem, requiring robust tracking of
pencil tip, accurate modeling of pen-paper contact, handling
pen-paper and hand-paper occlusion, while achieving inter-
active performance. To address these issues, we develop the
following novel techniques. First, we perform robust spatio-
temporal tracking of pencil tip by extracting discriminable
features, which can be classified with a fast cascade of classi-
fiers. Second, we model the pen-paper contact by analyzing
the edge-profile of the acquired trajectory and extracting
the portions related to individual strokes. Lastly, we pro-
pose a spatio-temporal method to reconstruct meaningful
strokes, which are coherent to the stroke drawing continu-
ity and drawing order. By integrating these techniques, our
method can support interactive recognition and vectoriza-
tion of drawn strokes that are faithful to the actual strokes
drawn by the user, and facilitate the development of vari-
ous multimedia applications such as video scribing, cartoon
production, and pen input interface.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Appli-
cations

Keywords
line drawing; vectorization; online computation; pen inter-
face; webcam

1. INTRODUCTION
The acquisition and vectorization of hand-drawn strokes on
paper is beneficial to a wide range of multimedia applica-
tions: from handwriting recognition to cartoon production,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM’14, November 3–7, 2014, Orlando, Florida, USA.
Copyright 2014 ACM 978-1-4503-3063-3/14/11 ...$15.00.
http://dx.doi.org/10.1145/2647868.2654939.

video scribing and sketch-based modeling. This bridges the
gap between paper and digital representations, and facili-
tates the development of computational methods for editing
and interaction.
In general, there are four major approaches for recognizing
and vectorizing paper-based line drawings according to the
kind of inputs being processed:
• Manual approach involves manual effort of tracing in-

dividual strokes in a scanned input image. While being
accurate and flexible, this approach can be extremely
tedious subject to the complexity of the drawing.

• Image-based approach [2, 20] takes a scanned image of
a completed drawing as an input, and attempts to au-
tomatically analyze the drawing contours to infer the
stroke geometry and produce the vector representa-
tion. Major challenges of this approach are the image
noise and the ambiguities in reconstructing the strokes
due to image resolution and line junctions.

• Sensor-based approach [25, 30] employs hardware de-
vices to track the pen trajectory on paper to detect
the pen strokes. This approach, however, requires
specially-designed devices that are not common, e.g.,
sensors in the ballpoint tip of a pen, etc.

• Camera-based approach [19, 23] captures the video of
the drawing process, and recognizes strokes on paper
by tracking and analyzing the pen-tip trajectory by
computer-vision methods. The two main advantages
of this approach are 1) the use of original writing in-
struments, i.e., pens/pencils, so involving no learning
overhead in practice, and 2) the availability of tempo-
ral information from the captured video.

Our goal in this work is to develop an interactive camera-
based method to capture and vectorize hand-drawn strokes
on paper through a commodity low-cost webcam that cap-
tures at 480p/720p resolution and 30 frames/second. By
this, we can faithfully vectorize drawn strokes with improved
stroke continuity, and also recover the temporal information
and drawing order of the strokes. With the emergence of
recent ubiquitous devices like the Google Glass [9], camera-
based approach could be particularly useful to help recognize
hand-drawn inputs in front of the embedded camera, and to
facilitate the development of pen input interface.
Previous methods for vectorizing hand-drawn strokes either
exist as online/offline approaches, which are constrained by
the stroke length, size, and direction, or strictly offline meth-
ods, which process the scanned images of the final drawings.
To the best of our knowledge, this is the first attempt of
developing an online camera-based method to acquire and

447

Figure 1: Top row: four line drawings on paper, revealing four common stroke recognition ambiguities: (a) spatial adjacency,
(b) junction ambiguities, (c) multiple-stroke intersection, and (d) self-intersection. Existing vectorization methods may mis-
recognize the original strokes as strokes of some other drawing continuity or break the original strokes into several shorter
strokes at the junctions and intersections. Bottom row: our method can faithfully recognize and vectorize these strokes even
in the presence of the ambiguities; color-coding is used to indicate individual recognized strokes.

vectorize freehand line drawings.
However, such problem is very challenging since we need to
robustly track the tip of the pen in the video, accurately
model the pen-paper contacts, handle the pen-paper as well
as hand-paper occlusion, and complete the entire computa-
tion with interactive performance. To address these issues,
we propose the following novel techniques, which are the
major technical contributions of this work:

• First, we identify three distinctive features, i.e., vari-
ance, color, and shape, and integrate them to robustly
locate the tip of pen/pencil while quickly rejecting neg-
ative samples. We also exploit a domain-specific idea
to generalize our shape feature to be invariant to ro-
tation and partial perspective distortion.

• Second, we model the pen-paper contact implicitly by
analyzing the zero-crossings of the Laplacian of Gaus-
sian filter response along the pen-tip trajectory, and
extracting an appropriate subset of it to estimate the
potential region of the drawing strokes.

• Lastly, we combine the spatio-temporal information to
define a cost function to reconstruct a stroke while pre-
serving the stroke continuity and drawing order even
in the presence of recognition ambiguities.

Our method has several advantages over existing offline vec-
torization methods, which work only with completed draw-
ings. First, it is online, so it can capture and produce vec-
torized strokes with real-time feedback. Second, it involves
only everyday pens/pencils and a simple camera rather than
specialized pen/paper hardware. Third, our online method
enables the capture of strokes with temporal information
and drawing order, thus facilitating the development of var-
ious multimedia applications, and could potentially be in-
tegrated with camera-based interaction device such as the
Google Glass. Lastly, by using temporal information, we can
effectively avoid various stroke recognition ambiguities that
are common in existing vectorization methods, see Figure 1:
spatial adjacency, junction ambiguities, multiple-stroke in-
tersection, and self-intersection, see also [20]. From the re-
sults shown in Figure 1, we can see our method can avoid
these recognition ambiguities and faithfully recover each stroke
natural to the actual stroke drawn by the user while preserv-
ing the stroke continuity in the vectorization.

2. RELATED WORK
Line Drawing Vectorization. Line drawing is a common
form of raster images for vectorization. For example, manga
artists traditionally create their cartoon drawings on paper
with pencils, and then scan and vectorize their drawings for
further digital processing and editing.
Early methods for line drawing vectorization can only deal
with rather simple drawings such as technical layout plans
and maps, where the methods could approximate the draw-
ings with straight line segments [11] or employ morphological
operations such as thinning [14] and skeletonization [31, 34]
to extract the pixel-wide contours. Hilaire and Tombre [10]
also attempted to fit line segments and arcs in a least-squares
sense to images of technical drawings. As such, these meth-
ods are generally incapable of handling freehand drawings.
Several research works have been proposed to handle the
vectorization of higher-order primitives. Among them, Chang
et al. [5] studied piecewise fitting of Bezier curves for vector-
izing cartoon images. Bao et al. [2] proposed to trace near-
constant-width lines in line drawings by estimating a dense
orientation field that guides the tracing direction. Noris
et al. [20] reconstructed robust centerlines in topologically-
complex line drawings in the presence of certain junction am-
biguities. Some works that estimate temporal information
and tracing directions of strokes [8, 13] and extract curves
to trace contours with connectivity and orientation [26, 6]
may also be used in vectorizing line-drawings.
While recent methods mentioned above and commercial soft-
ware like Adobe Illustrator [28] and WinTopo [24] could
produce reasonable vectorized lines given in line drawing
images, they often cause fragmentation and/or stroke dis-
tortion problems especially near line junctions due to vari-
ous stroke recognition issues, see Figure 1. Moreover, none of
them could faithfully reconstruct strokes with spatio-temporal
coherence following how the artist creates a drawing.

Pen Interface. Another relevant research area is the de-
velopment of pen interfaces to capture and reconstruct pen
strokes in an environment that mimics how people use pens,
see [27] for a related survey. Generally, there are two major
approaches for pen interface:

i) Sensor-based approach develops pen interfaces [25, 7] by
using a combination of specially-designed hardware, e.g.,

448

Figure 2: Overview of our stroke recognition and vectorization method. From left to right: our input is a video stream and a
simple pen-tip template; (i) potential patches are searched in video frames to localize the pen tip and track its trajectory; (ii)
Laplacian of Gaussian filter response helps extract stroke points to estimate the actual drawn stroke; hand and pen occlusions
are also tracked; and (iii) lastly, spatio-temporal clustering is performed to identify individual strokes (color coded).

special paper with invisible dot pattern, camera-augmented
pen, capacitive touch sensor, infrared camera, etc. Though
there are some related commercial products, e.g., Anoto Dig-
ital pens [1] and the Wacom Inkling [30], this approach re-
quires special hardware devices that are not as common as
everyday pens and paper.
ii) Camera-based approach captures video frames of the pen
writing/drawing process through a camera, and attempts to
either localize or track the pen tip in each frame to obtain
the pen-tip trajectory and stroke. Lin et al. [15] and Tang et
al. [29] proposed various video-analysis schemes to recover
the spatio-temporal grouping of strokes in Chinese charac-
ters. They first extract strokes by thinning/skeletonizing the
final video frame of the completed drawing, and then infer
the stroke continuity by analyzing the evolution of strokes
over time. However, their method does not track the pen tip
and attempts to infer stroke connectivity by analyzing the
relevant pixels in the stroke skeleton throughout the video.
Hence, the method is highly sensitive to shadow and noise,
and requires tedious fine-tuning before the operation. Since
the occlusion problem is not handled, the analysis is per-
formed offline, and there is no interactive feedback.
Munich and Perona [18, 19] captured handwriting strokes
by analyzing visual input from a conventional camera. The
method was later extended to support handwriting recogni-
tion by Wienecke et al. [32]. In detail, they used a correlation-
based template matching method to detect the pen tip.
Hence, the method cannot handle planar rotations and per-
spective distortions. Pen-paper contact is estimated based
on a simple local analysis of intensity, which can be easily af-
fected by shadow or neighboring strokes. Since it assumes a
small image region that confines the handwriting strokes, oc-
clusions are handled with a fixed-size mask. More recently,
Seok et al. [23] assumed a specific conical-shaped colored
pen, and tracked the pen tip by simple color detection and
geometric cues. While robust to orientation and illumina-
tion changes, this method restricts the color and shape of
the pen tip. Though the method is online, it cannot handle
the occlusion problem because it assumes that the handwrit-
ing strokes are unidirectional, and the hand and pen body
would move away from the video view constantly. This as-
sumption does not hold in our case for freehand drawing

since user’s hand may move around and occlude previous
strokes. Moreover, [23] does not consider temporal informa-
tion to disambiguate strokes (see again Figure 1) to support
meaningful stroke-based editing, and assumes specific color
and shape constraints to detect the pen tip.
In sharp contrast, our proposed method is more general and
can overcome a number of problems and assumptions taken
by existing state-of-the-art methods: it considers hand and
pen occlusions over the paper; it can retain stroke continuity
and drawing order; it is stable for local cluttering caused
by neighboring strokes; it is an online method capable of
delivering interactive feedback; and it has the potential for
meaningful stroke-based editing.

3. OVERVIEW
Figure 2 overviews our method with a running example. Our
system setup includes a drawing space with a sheet of pa-
per fixed on a desk, an everyday pen/pencil for drawing, a
commodity webcam that oversees the drawing space from
the top, and a desktop computer that processes the web-
cam’s video stream and performs our method to recognize
and vectorize the drawing strokes. In summary, our method
consists of the following three major steps:

i) Localizing the pen tip.
Extracting discriminable features around the pen tip for
efficient, rotation-invariant, and illumination-invariant
per-frame detection of pen tip (Section 4.2); Pruning
the search space by corner detection to accelerate the
performance (Section 4.3.1); and Classifying the ex-
tracted feature vectors using a cascaded approach to
quickly identify and track the pen tip over time to ob-
tain a meaningful pen-tip trajectory (Section 4.3.2).

ii) Reconstructing Strokes.
Extracting a subset of points along the pen-tip trajec-
tory to estimate the footprint of the drawn strokes by
analyzing the edge profile along the trajectory (Sec-
tion 5.1); and Resolving occlusion problem caused by
user’s hand and pen over the paper (Section 5.2).

iii) Spatio-temporal Grouping.
Grouping the extracted points into a stroke by formulat-

449

ing a cost function that considers the stroke connectiv-
ity, and spatial and temporal distance information (Sec-
tion 6); and Vectorizing the clustered stroke by fitting
a cubic spline over the grouped points, and outputting
the final result in SVG vector format.

In our implementation, the above computation takes only
∼0.072 sec. per video frame, showing that our method can
support online stroke recognition and vectorization at in-
teractive speed. However, since some drawn strokes may be
occluded fully or partially by user’s hand or pen, we can only
reconstruct their unoccluded parts during the online compu-
tation. Our method keeps tracking the hand and pen loca-
tions (see Section 5.2) to determine if the occlusion has been
removed, and then reconstructs and renders the previously-
occluded strokes once they become visible and can be de-
tected by our method. Hence, in a single video frame, our
method may recover more than one stroke at a time.

4. LOCALIZING THE PEN TIP

4.1 Initialization
Our input consists of a video stream of the pen drawing
process and a pen-tip template. To prepare a new pen-tip
template, which is just an offline one-time step, it only takes
a few seconds to mark a 60× 60 image region on a frame of
the video stream to enclose the pen tip. Here we only assume
the pen is placed over the paper, on which the drawing would
be done, and place no restrictions on the pen orientation as
our method can later automatically normalize the template
input to a canonical form that is rotation-invariant.
In detail, when extracting the pen-tip template, we also need
a foreground-background segmentation [33] on the video frame
to obtain a background-subtracted binary image, assuming
that the pen is not part of the initial scene. Here we set
a high adaptation time period in the background model to
avoid too-early merging of foreground into the background.

4.2 Feature Extraction
Given a patch, which could be a pen-tip template or a 60×60
region in a video frame, we next need to extract distinctive
features in the patch for supporting the pen-tip localization.
The set of features we carefully selected in this work are
background confidence, intensity variance, color, and shape.
These features are simple-to-compute and yet discrimina-
tive to help identify the pen tip under rotation, illumination
variation, and mild perspective distortions.

i) Background Confidence (Bi). By applying foreground-
background segmentation [33] on every video frame (in-
cluding the one for the pen-tip template and also the
video frames of the drawing process), we can obtain
a background-subtracted binary image M whose back-
ground pixels take zero values. Hence, given a patch in
M , we can count the number of background pixels in it,
and compute the patch’s background confidence (Bi),
i.e., the ratio of the number of background pixels to the
total number of pixels in the patch.

ii) Intensity Variance (σ2). The second feature we em-
ployed is the statistical variance of pixel grayscale val-
ues. This feature helps to measure the uniformity of
pixel intensities in a patch. Moreover, after we obtain
the pen-tip template, we pre-compute its intensity vari-
ance, say σ2, and define low and high intensity variance

Figure 3: Rotation-invariant shape feature. Given a binary
patch extracted around a detected corner point in a video
frame, we compute (a) the center of mass (red) of the largest
foreground blob, rotate and normalize the patch into (b) a
canonical shape representation, and then use (c) a log-polar
histogram to extract the shape feature vector.

thresholds 0.5σ2 and 1.5σ2, respectively, to support the
fast cascaded classifier later on.

iii) Color (Ci). Third, we use the CIELab color-space to
compute the color feature of a patch. Since the L chan-
nel represents the color luminance, we discard it for the
sake of illumination invariance. Then, we quantize the
chrominance by computing a 2D histogram of a and b
channels with 16 bins in each dimension, and flattening
the histogram as a 256-dimensional color feature vector.
By this, we can compute the color feature vector of the

pen tip template, say v
(c)
t , as well as the color feature

vector of any patch in a video frame, say v
(c)
i . Hence,

we can further compute the color similarity measure be-

tween them by Euclidean distance: Ci = ‖v(c)t − v
(c)
i ‖.

iv) Shape (Si). Lastly, we compute the shape feature of a
patch by devising an efficient rotation-invariant method
based on the shape context [3]. Note that from the
video frames, since we create candidate patches to be
centered at detected corner points (Section 4.3.1), we
can be certain that the pen tip (if any) would always
appear at the center of a patch. Hence, for each patch,
we can compute the shape feature as follows:
(a) Find the largest connected foreground blob in the

given patch, and compute its center of mass, see
the red dot in Figure 3(a);

(b) Compute its offset angle, say θ, from the positive
x-axis in the image space, see again Figure 3(a);

(c) Rotate the patch image about its center (pen tip,
if any) by −θ in order to normalize the patch to a
canonical representation, see Figure 3(b);

(d) Calculate a 60-dimensional shape feature vector by
centering a log-polar histogram (5 radial bins and
12 angular bins) at the patch center and computing
its shape context, see Figure 3(c); and

(e) Lastly, compute shape similarity measure Si for a
given patch against the pen-tip template similar to
the mechanism for the color similarity measure.

Note that the advantages of using the log-polar his-
togram here are: 1) it is simple and efficient to com-
pute; 2) its coarse binning can sufficiently describe the
pen-tip shape; and 3) its uneven binning relates and
helps alleviate the effect of mild perspective distortion.

4.3 Feature Classification
4.3.1 Pruning the search space

In typical object localization, a sliding window is often used
to go over a given video frame and extract all possible patches
(potentially hundreds of thousands) for feature matching.

450

Figure 4: Detecting drawn strokes: (a) captured pen-tip trajectory in green; (b) thresholded L ◦G filter response reveals the
drawn stroke; stroke points (red) are further extracted by using (c) level-sets defined around the detected stroke.

Clearly, this approach is infeasible to deal with a large search
space for interactive applications, so we prune the search
space by two key observations in our problem:
• First, we assume fixed camera and paper. This is a

reasonable assumption in most camera-based meth-
ods. Given that, we assume that the pen-tip relatively
retains it’s scale while drawing, so we only consider
patches of the same size as the pen-tip template.
• Second, since the pen tip is always a sharp corner,

we perform corner detection [22], which is a very fast
process, to extract fixed-size patches around detected
corners to accelerate the search for the pen tip.

By these, we can reduce the cardinality of the search space
to the number of corners detected in each video frame and
greatly accelerate the pen-tip localization.

4.3.2 Cascaded Classifier
Given the set of patches {si} extracted from the pruning
method above, we exploit the four features described in the
previous subsection, and devise a fast cascaded approach
to further classify patches in {si}. Note that this is a lazy
approach in applying the features, so that we do not need
to compute all the four features for every patch in {si}.
• In the first step, we compute the background confi-

dence score Bi of each candidate patch in {si}, and re-
tain only those with Bi less than a threshold Tb, where
Tb is empirically set to be 0.95. This feature is highly
discriminative, and it helps to quickly filter out most
of the patches that belong to the background.
• In the second step, we compute the intensity variance

of the remaining patches, and filter out those with in-
tensity variance outside the prescribed threshold range
[0.5σ2, 1.5σ2]. This step enables us to quickly reject al-
most all irrelevant patches that are not similar to the
pen-tip template.
• In the third step, we compute the color similarity mea-

sure Ci of each remaining patch using the color feature
vectors of the patch and the pen-tip template. By this,
we can filter and retain only the patches whose Ci is
less than a threshold Tc, which is set to be 0.15 in all
our experiments.
• The last step is similar to the third step, but now

we compute the shape feature vector of the remaining
patches, and employ the shape similarity measure Si
to retain only the patches with Si less than a threshold
Ts, which is set to be 0.3 in all our experiments.

Since the fast cascaded filtering process above may still re-
tain more than one patch in the end, we may need to further
compute the average value of color and shape similarity mea-
sures for each remaining patch, and select the one with the
largest average to locate the pen-tip patch.

4.4 Tracking
There may also be scenarios where the pen tip is not de-
tected, i.e., no pen-tip patches are identified by the cascaded

classifier above, e.g., missing the pen tip in the corner de-
tection, and severe visual interference such as noise, shadow,
and clutter. Hence, in addition to per-frame detection, we
also employ the detected pen-tip location in the previous
video frame to perform short-term tracking of the pen tip
using the Lucas-Kanade optical flow method [16]. By this,
we can improve the pen-tip localization, and avoid breaking
the pen-tip trajectory due to the above mentioned reasons.
In detail, we initialize the tracker by each detected pen-
tip location from the cascade classifier, and continue the
short-term tracking until the cascade classifier finds a sub-
sequent detection, at which time the tracker is reinitialized.
By combining detection and tracking, we can obtain a highly
smooth pen-tip’s trajectory, say T, over the drawing space
as a function of time (e.g., see Figure 4(a)):

T =
{

(p1, t1), (p2, t2), . . . , (pn, tn) | pi ∈ R2, t ∈ R
}
,

where pi = (xi, yi) denotes a spatial coordinate, and ti a
monotonically-increasing timestamp (frame index).

5. RECONSTRUCTING STROKES
5.1 Detecting Stroke Points
Once we capture the pen-tip trajectory across the video
frames, our next step is to determine the set of stroke points
on the paper, say S (see Figure 4(a)). In detail, we determine
S by analyzing the response of the Laplacian of Gaussian
(L ◦G) filter over the video frames. The L ◦G filter cor-
responds to how the human visual system observes sudden
changes in contrast and downplays subtle differences [17].
Mathematically, it is represented by the curvature, or the
second derivative of the image intensity, see Figure 4(c).
The intensity profile of strokes in clean line drawings are gen-
erally in the form of a parabolic profile (see Figure 5(top)),
and the maxima of the filter response corresponds to the cen-

intensity
profile

+

-

2nd derivative

- -

+

black

1st derivative

intensity
profile

Figure 5: Stroke intensity profile. Top: intensity profile
across a stroke (perpendicular to stroke direction). Bottom:
first and second derivatives of the intensity profile, respec-
tively. The maxima of the second derivative corresponds to
the centerline of the stroke.

451

1.0

μs μs+3σs

GS(pi,ti)

(pj,tj)
ds

dsa b c

0.5

Figure 7: Spatio-temporal grouping of stroke points: (a) a subset of stroke points in red; (b) edge connectivity estimated
between two temporally-consecutive stroke points; and (c) the Gaussian function f for computing the spatio-temporal grouping
criterion GS (and similarly also for GT).

terline of edges, or in our case, the centerline of the drawn
strokes (see Figure 5(bottom)). From each frame, say F , we
derive a new image L = max(0,L ◦G(F)) by applying the
L◦G filter on F and clamping negative filter response to zero.
After that, we further threshold L at a value of 15 to remove
noise and weak responses, and obtain a set of edge pixels over
the video frame, say {q}. Next, we can define a level-sets
around the edge pixels in L using a distance transform with
the Euclidean distance metric: D(x) = minq ‖x−q‖, where
x is each pixel in the video frame. By this, we can extract a
set of stroke points S as a subset of the trajectory T lying
close to the drawn strokes within a threshold:

S = {(pi, ti) |D(pi) ≤ τ ; ∀(pi, ti) ∈ T} ,

where τ defines the maximum level set below which points
are on the drawn strokes; in practice, it is set to be 2.0.

5.2 Handling Occlusions
In the previous subsection, we presented an analysis method
to obtain stroke points on the paper based on the L◦G filter
response. However, it is important to note that not all edges
in the filtered image L actually correspond to the drawn
strokes. Typically, the user’s hand and pen inside the video
frames may occlude some of the drawn strokes, and affect the
edge profile and the stroke point analysis. Hence, to obtain
meaningful strokes points, we continuously track the posi-
tions of pen and hand in the video stream, and perform the
stroke point analysis (Section 5.1) only on the non-occluded
image region. In other words, we postpone the stroke point
analysis until the occlusion is clear. In detail, we estimate
the pen and hand occluding regions as follows:

• By the pen-tip localization method in Section 4, we
can always locate the pen tip over the video frames.
Hence, we can approximate the pen occluding region
by a small circular region around the pen tip (radius
equal to the size of the pen-tip template), see the gray
circle in Figure 6(c).

• To estimate the hand occluding regions, we first con-
vert the colors in each frame to the HSV color space.
Then, we perform a pixel-level classification based on [21]
to determine the skin color, and generate an initial

Figure 6: Occlusion detection: (a) thresholding skin color
in the hue-saturation space; (b) a sample frame from the
video; and (c) masks obtained for the pen (gray circle) and
for the hand (white).

mask of the hand. Note that the V channel is ig-
nored in the computation to account for illumination
invariance. By further applying morphological post-
processing operations such as erosion and closing, we
can obtain a clean mask of the user’s hand as shown
in Figure 6(c). Note also that we experimented our
method with three users of different skin colors, and
obtained the following threshold ranges in the classi-
fication model for hand tracking: 0 ≤ hue ≤ 10◦ and
0.08 ≤ saturation ≤ 0.59, see Figure 6(a).

6. SPATIO-TEMPORAL GROUPING
Given a set of strokes points S obtained from the previous
stage, our next task is to group them and form meaningful
drawing strokes that are spatio-temporally coherent. To do
so, we first need to remove redundant points with exactly
the same spatial coordinates. Note that redundant points
could be produced if the pen tip stays on the same image
location for more than one video frame.
After that, we define a cost function to measure whether two
temporally-consecutive stroke points, say (pi, ti) and (pj , tj),
should be grouped together in forming a drawing stroke.
The cost function has the following three components:

i) Edge Connectivity (GE). This criterion explores
the presence/absence of a stroke between (pi, ti) and
(pj , tj). In detail, we sum the L◦G response along the
line from (pi, ti) to (pj , tj) (e.g., the green line in Fig-
ure 7(b)), and normalize the sum by the length of the
line; if the sum is above a threshold value of 0.4, we put
GE as 1, and 0 otherwise.

ii) Spatial Cost (GS). The second criterion explores the
spatial proximity between (pi, ti) and (pj , tj) since we
should not group stroke points that are too far away
from each other. To compute this criterion, we mea-
sure the spatial distance, say ds, between the two stroke
points using the L2 norm, i.e., ds = ‖pi−pj‖, and com-
pute GS by mapping the distance value to range [0, 1]
(see Figure 7(b&c)): GS = f(ds, µs, σs), where µs

and σs are set to be 1.0 and 3.0, respectively, and f is
a Gaussian function:

f(x, µ, σ) = exp

(
−(x− µ)2

2σ2

)
.

iii) Temporal Cost (GT). The third criterion is similar
to the second one, but it explores the temporal proxim-
ity between (pi, ti) and (pj , tj). Here it computes the
temporal distance, say dt, between the two points using
the L1 norm, and again use f to map the distance value
to range [0, 1]: GT = f(dt, µt, σt), where µt and σt

are set to be 1.0 and 5.0, respectively.

452

Figure 8: Vectorization results of six different line drawings generated by our method. In each box, we show the vectorization
result with randomly-colored strokes on the right and a contrast-enhanced scanned image of the original drawing on the left.
From left to right: the drawings are old man, cat, duck, girl, cheetah, and hello-world; our method recognizes 42, 44,
17, 24, 25, and 6 strokes from them, respectively.

The combined cost G of grouping points (pi, ti) and (pj , tj)
to a continuous stroke is then defined as:

G(i, j) = GE

[
(1− w) ·GS(i, j) + w ·GT(i, j)

]
,

where w is set to be 0.6 for putting more emphasis on the
temporal information. If G is greater than 0.5, we consider
the two points to go along a common continuous stroke.
Once we examine and group each pair of temporally-consecutive
points, we can form longer strokes, and then vectorize each
of them by cubic spline fitting.

7. RESULTS AND EVALUATION

7.1 Implementation
We implement and run our method on a desktop computer
with a 3.20 GHz Intel i7 CPU, 12 GB memory, and 64-
bit Windows 7. We employ the Logitech C615 webcam to
capture video streams at 480p/720p and 30 frames/sec. See
Figure 9: the webcam is fixed at ∼1.5ft above the drawing
space opposite to the user at an evaluation angle of ∼60
degree and a field-of-view of 74 degree.
Estimating the homography transformation between the we-
bcam view and paper is a one-time process: During the sys-
tem initialization, we first identify the largest white blob in
the image, and then use Hough line transform to extract
straight lines around the blob’s boundary edges. After that,
we compute line intersections to obtain the paper corners,
show them to the user for confirmation, and then estimate
the homography matrix by assuming the paper dimension.
We implement our software in Python 2.7, and use the fol-
lowing library APIs: OpenCV [4], NumPy, and SciPy [12]
for vision-based methods and numerical computation.

7.2 Evaluation: Performance
First, we perform an experiment to evaluate the performance
of our method in delivering interactive online computation.
To do so, we measure the time taken (in sec.) to process
each video frame (resolution 720p) for each stage in the
pipeline (see again Figure 2). Two drawing cases, chee-
tah and hello-world (see Figure 8), with totally 7680
and 3150 frames, respectively, are used here. The average
processing time taken by each stage is reported in Table 1.

Figure 9: System setup from two different views.

From the performance results, we see that the entire com-
putation consistently takes around 0.07-0.08 sec. per frame,
showing that it can attain interactive performance.

CHEETAH
HELLO-

WORLD

1 pen-tip localization 0.035 0.035

2a detecting stroke points 0.012 0.012

2b handling occlusions 0.009 0.008

3 spatio-temporal grouping 0.012 0.021

avg. time (sec)
methodstage

Table 1: Performance evaluation result: average time taken
to complete the various stages in our method.

7.3 Evaluation: Accuracy
Second, we evaluate the accuracy of our results by compar-
ing them with the actual strokes drawn on paper, as well as
with the vectorization results produced from the commer-
cial tool WinTopo Professional [24] (with the default option
One-Touch Vectorization in our experiments). The six line
drawings shown in Figure 8 are used in our evaluation and
the following four criteria are used:

i) Number of Strokes. First, we compare the total num-
ber of actual strokes drawn on paper against the total num-
ber of strokes vectorized by our method, and also by Win-
Topo, see Table 2. From the results, we can see that our
online method is able to accurately recognize all the user-
drawn strokes without missing any stroke. In sharp contrast,
WinTopo produces a lot more strokes than the actual num-

453

Figure 10: Visual comparison of stroke reconstruction results: our method (left) and WinTopo (right).

ours WinTopo
CAT 44 44 74 88.77 1.568
GIRL 24 24 43 88.50 1.520

HELLO-WORLD 6 6 30 94.89 1.215
OLD-MAN 42 42 50 86.29 2.957
DUCK 17 17 35 87.34 2.135

CHEETAH 25 25 42 83.66 1.994

avg.
deviation

drawing
actual
strokes

reconstructed overlap
%

Table 2: Evaluation of accuracy: the number of recon-
structed strokes, overlap percentage, and average deviation.

ber of strokes drawn by user due to its deficiency in resolving
various stroke recognition ambiguities, see again Figure 1.

ii) Overlap Percentage. Second, we evaluate how close
our vectorization results are to the actual drawing. Here
we first scan the paper drawing and use a simple binary seg-
mentation to extract the actual strokes. Then, we transform
and overlay our vectorized strokes onto the scanned image
(through the recovered homography) and compute the over-
lap percentage: |A∩B|/|B|, where A and B are sets of pixels
covered by the scanned strokes and the vectorized strokes,
respectively. Note that this measure aims to see how the vec-
torized strokes (actually one-pixel-wide lines) are contained
within the actual strokes in the scanned image space.
From Table 2, we can see that our method can attain very
high overlap percentage, but not yet perfect, because: 1)
the homography recovered for computing the overlap per-
centage is not perfect, and 2) we use a discrete set of stroke
points (captured in each frame) to reconstruct a stroke by
spline-fitting. Since WinTopo vectorizes strokes by binary-
thinning the scanned images, its vectorized results can al-
ways perfectly overlap with the original strokes. However,
from Figure 8, we can still see how similar our vectorization
results are with respect to the scanned drawings.

iii) Average Deviation. Third, we quantitatively mea-
sure the deviation of our reconstructed strokes from the
scanned drawings in pixel units. Like overlap measure, this
is done in the image space of the scanned drawings.
Let P and Q be the set of pixels belonging to the scanned
strokes and our reconstructed strokes (1-pixel wide), respec-

Figure 11: Our method supports a variety of pens and pen-
cils. Top row: different pen-tip templates; middle row: ac-
tual strokes drawn on paper; and bottom row: corresponding
strokes recognized by our method with the pen/pencil.

tively. We compute the average deviation between them as
dev(P,Q) =

∑
qi∈Q min ‖qi − pj‖/|Q|, where pj is the pixel

in P that is the nearest to qi in the image space. From the
results shown on the rightmost column of Table 2, we can
see that the average deviation is consistently around 1 to
2 pixels, indicating that our results are sufficiently close to
the original strokes. Note that the resolution of the scanned
images used in this experiment is 877×637 pixels.

iv) Visual Comparison. Lastly, we randomly colorize the
recognized strokes for both our results and WinTopo, and
perform a visual comparison. Two comparison examples
are shown in Figure 10. From the zoomed views shown in
the figure, we can clearly see that WinTopo suffers from
stroke recognition ambiguities, and tends to break strokes
at junctions, thereby producing excessive strokes. On the
contrary, our method, which employs temporal information,
can accurately reconstruct the long strokes while retaining
the original stroke continuity and avoiding various stroke
recognition ambiguities.

7.4 Evaluation: Variety of Pens and Pencils
Our method supports a variety of pens and pencils, see Fig-
ure 11 (first row). To include a new pen/pencil to stroke
recognition, we only need a few seconds’ time to take a pic-
ture of the pen tip in front of the camera, and then apply our

454

Figure 13: Video scribing. Our method enables us to easily re-render the vectorized strokes, which have temporal information,
and produce a video scribing effect. The drawing video is spatio-temporal coherent with the original drawing by the user but
goes without the pen and the user’s hand.

Figure 12: Example of how occlusion could interfere the
analysis of stroke points: (a) notice a number of stroke are
points occluded by the hand and the pen-tip at the moment;
(b) L ◦G response affected by the occlusion; attempting to
recognize stroke points in the presence of occlusion is error-
prone; (c) occlusion mask computed by our method; and (d)
valid L◦G response of the stroke after the occlusion is clear.

interface to crop the picture and create a pen-tip template.
After that, our method can employ the pen-tip template to
automatically locate the pen-tip trajectory.
Figure 11 presents the related results with five different kinds
of pens and pencils. The top, middle and bottom rows in
the figure show the pen-tip templates, scanned image of a
drawn stroke, the recognition results respectively.

7.5 Evaluation: Occlusion Detection
Next, we explore and illustrate how occlusion detection helps
to improve the stroke recognition. A typical case is presented
in Figure 12. During the drawing process, hand and pen oc-
clusions could seriously interfere the stroke point analysis
process described in Section 5.1. See the drawing in Fig-
ure 12(a) and the resulting L ◦G response in Figure 12(b).
If we analyze this response and extract the stroke points
around the pen-tip trajectory at this moment (video frame
#84), the analysis result would be error-prone.
Hence, we detect and track the hand and pen occlusion re-
gions over the video frames, see Figure 12(c), and postpone
the stroke point analysis and extraction till the occlusion is
clear, see Figure 12(d). By this mechanism, we can improve
the extraction quality while attaining full automation.

7.6 Evaluation: Vectorization Results
Figure 8 presents the vectorization results generated by our
method and compares them side by side with scanned images
of the original drawings. Notice the individual reconstructed
strokes (each randomly-colored). They are free of the vari-
ous stroke recognition ambiguities we mentioned in Section 1
(see also Figure 1); in addition, they can correspond nicely
to the actual strokes drawn by the user. This demonstrates
one key advantage of our online method in improving the
stroke recognition quality.
Furthermore, we develop a video-scribing application, which
renders the vectorized strokes on a virtual paper according to
their spatio-temporal orders but without the pen and user’s
hand, see Figure 13 for image snapshots. By this, we can
simulate and visualize the actual drawing process, and create
visually-pleasing animation effects.

8. CONCLUSION
This paper presents a novel interactive camera-based method
to capture and vectorize freehand line drawings on paper.
There are three key contributions in this work. First, we
propose a robust spatio-temporal tracking technique that
can efficiently localize and track the pen tip in video frames.
This technique combines the strength of a fast-cascade clas-
sifier with discriminable features and optical-flow tracking
(which is less accurate) to achieve high performance and ac-
curacy. Second, we extract stroke points in the video frames
by considering not only the edge profiles around the esti-
mated pen-tip trajectory but also the hand and pen occlu-
sion to improve the stroke recognition accuracy. Lastly, we
develop an efficient spatio-temporal clustering method to
produce meaningful strokes that are coherent with the ac-
tual strokes drawn by the users. As for the evaluation, we
perform a number of experiments to examine different as-
pects of our method: computation performance, accuracy
against actual drawings and an offline commercial tool for
vectorization, as well as pen and hand occlusion. In the end,
we use the method to produce assorted vectorization results,
as well as apply it to produce the video-scribing animation
effect with some of our results.

Future Work. First, we would look for ways to enable
a moving camera, so that we could extend our interface for
smart-glasses. Second, we would also like to improve the

455

system performance, e.g., by multi-core processing on com-
modity CPUs. Third, we would explore the use of a pa-
rameter calibration module for better adaptation to varying
lighting conditions. Lastly, we also plan to explore the use
of crowdsourcing to study and evaluate our interface.

Acknowledgments. We thank reviewers for various con-
structive comments that helped to improve this paper. This
work is funded in part by MOE Tier-2 grant (MOE2011-T2-
2-041 (ARC 5/12)) and MOE Tier-1 grant (RG 29/11).

9. REFERENCES
[1] Anoto. Anoto Digital Pens. http://www.anoto.com.

[2] B. Bao and H. Fu. Vectorizing line drawings with
near-constant line width. In IEEE International
Conference on Image Processing, pages 805–808, 2012.

[3] S. Belongie and J. Malik. Matching with shape
contexts. In IEEE Workshop on Content-based Access
of Image and Video Libraries, pages 20–26, 2000.

[4] G. Bradski. OpenCV. Dr. Dobb’s Journal of Software
Tools, 2000.

[5] H.-H. Chang and H. Yan. Vectorization of hand-drawn
image using piecewise cubic bézier curves fitting.
Pattern Recognition, 31(11):1747 – 1755, 1998.

[6] M.-M. Cheng. Curve structure extraction for cartoon
images. In Harmonious Human Machine Env., pages
13–25, 2009.

[7] M. Chikano, K. Kise, M. Iwamura, S. Uchida, and
S. Omachi. Recovery and localization of handwritings
by a camera-pen based on tracking and document
image retrieval. Pattern Recognition Letters,
35:214–224, 2014.

[8] D. Doermann and A. Rosenfeld. Recovery of temporal
information from static images of handwriting.
International Journal of Computer Vision,
15(1-2):143–164, 1995.

[9] Google. Google Glass.
http://www.google.com/glass/start/, 2013.

[10] X. Hilaire and K. Tombre. Robust and Accurate
Vectorization of Line Drawings. IEEE Trans. on
Pattern Analysis Machine Intell., 28(6):890–904, 2006.

[11] R. D. Janssen and A. M. Vossepoel. Adaptive
vectorization of line drawing images. Computer Vision
and Image Understanding, 65(1):38 – 56, 1997.

[12] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open
source scientific tools for Python, 2001.

[13] Y. Kato and M. Yasuhara. Recovery of drawing order
from scanned images of multi-stroke handwriting. In
Proceedings of International Conference on Document
Analysis and Recognition., pages 261–264, 1999.

[14] L. Lam, S.-W. Lee, and C. Suen. Thinning
methodologies - A comprehensive survey. IEEE
Transactions on Pattern Analysis Machine
Intelligence, 14(9):869–885, 1992.

[15] F. Lin and X. Tang. Dynamic stroke information
analysis for video-based handwritten chinese character
recognition. In IEEE International Conference on
Computer Vision, volume 1, pages 695–700, 2003.

[16] B. D. Lucas and T. Kanade. An iterative image
registration technique with an application to stereo
vision. In Proc. of International Joint Conference on
Artificial Intelligence, volume 2, pages 674–679, 1981.

[17] D. Marr and E. Hildreth. Theory of edge detection.
Proceedings of the Royal Society of London Series B,
207(1167):187–217, 1980.

[18] M. Munich and P. Perona. Visual input for pen-based
computers. In Proceedings of the 13th International
Conference on Pattern Recognition, 1996., volume 3,
pages 33–37, 1996.

[19] M. Munich and P. Perona. Visual Input for Pen-based
Computers. IEEE Transactions on Pattern Analysis
Machine Intelligence, 24(3):313–328, 2002.

[20] G. Noris, A. Hornung, R. W. Sumner, M. Simmons,
and M. Gross. Topology-driven Vectorization of Clean
Line Drawings. ACM Transactions on Graphics,
32(1):4:1–4:11, 2013.

[21] S. Phung, A. Bouzerdoum, and S. Chai, D. Skin
segmentation using color pixel classification: analysis
and comparison. IEEE Transactions on Pattern
Analysis Machine Intelligence, 27(1):148–154, 2005.

[22] E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In European Conference
on Computer Vision, volume 1, pages 430–443, 2006.

[23] J.-H. Seok, S. Levasseur, K.-E. Kim, and J. H. Kim.
Tracing handwriting on paper document under video
camera. In Proceedings of the International Conference
on Frontiers in Handwriting Recognition, pages
109–110, 2008.

[24] SoftSoft. WinTopo. http://wintopo.com/, 2012.

[25] M. Sperber, M. Klinkigt, K. Kise, M. Iwamura,
B. Adrian, and A. Dengel. Handwriting reconstruction
for a camera pen using random dot patterns. In
International Conference on Frontiers in Handwriting
Recognition, pages 160–165, 2010.

[26] C. Steger. Extracting curvilinear structures: A
differential geometric approach. In Computer Vision -
ECCV ’96, volume 1064 of Lecture Notes in Computer
Science, pages 630–641. 1996.

[27] J. Steimle. Survey of pen-and-paper computing. In
Pen-and-Paper User Interfaces, Human-Computer
Interaction Series, pages 19–65. 2012.

[28] A. Systems. Adobe Illustrator.
http://www.adobe.com/products/illustrator.html.

[29] X. Tang, F. Lin, and J. Liu. Video-based handwritten
Chinese character recognition. IEEE Trans. on
Circuits and Sys. for Video Tech., 15(1):167–174, 2005.

[30] Wacom. Inkling. http://inkling.wacom.com/.

[31] L. Wenyin and D. Dori. A survey of non-thinning
based vectorization methods. In Advances in Pattern
Recognition, volume 1451 of Lecture Notes in
Computer Science, pages 230–241. 1998.

[32] M. Wienecke, G. A. Fink, and G. Sagerer. A
handwriting recognition system based on visual input.
2nd International Workshop on Computer Vision
Systems, pages 63–72, 2001.

[33] Z. Zivkovic and F. van der Heijden. Efficient adaptive
density estimation per image pixel for the task of
background subtraction. Pattern Recognition Letters,
27(7):773 – 780, 2006.

[34] J. J. Zou and H. Yan. Cartoon Image Vectorization
Based on Shape Subdivision. In Proceedings of the
International Conference on Computer Graphics, CGI
’01, pages 225–231, 2001.

456

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140822115357
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140822115357
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryList_V1
 qi2base

