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ABSTRACT
Understanding human activities in video is a fundamental
problem in computer vision. In real life, human activities
are composed of temporal and spatial arrangement of ac-
tions. Understanding such complex activities requires rec-
ognizing not only each individual action, but more impor-
tantly, capturing their spatio-temporal relationships. This
paper addresses the problem of complex activity recognition
with a unified hierarchical model. We expand triangular-
chain CRFs (TriCRFs) to the spatial dimension. The pro-
posed architecture can be perceived as a spatio-temporal
version of the TriCRFs, in which the labels of actions and
activity are modeled jointly and their complex dependencies
are exploited. Experiments show that our model generates
promising results, outperforming competing methods signif-
icantly. The framework also can be applied to model other
structured sequential data.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing

Keywords
Activity recognition, Hierarchical model, Joint learning, Spatio-
temporal dependencies, Triangular-chain CRFs

1. INTRODUCTION
Activity recognition is one of the most popular research

fields in computer vision which has spawned a rich litera-
ture [11, 4, 16, 3] due to its promising application in video
monitoring, behavioral analysis and artificial intelligence. In
real life, human activities are complex since humans are ca-
pable of performing multiple simple actions simultaneously.
Complex human activities are composed of temporal and s-
patial arrangement of atomic actions and each atomic action
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is composed by a temporal arrangement of body poses [9].
Understanding such complex activities requires recognizing
not only each individual action, but more importantly, cap-
turing their spatio-temporal relationships.

Much of the initial work in activity recognition has been
focused on analyzing either high-level coarse grained activ-
ities or mid-level fine grained actions. However, the recog-
nition result of each level is useful in practice which allows
multiple layers of abstraction. Besides, research in congni-
tive psychology has shown that human perceive activities as
hierarchical structures [7]. Therefore it is necessary to rec-
ognize activities and actions jointly in a hierarchical model.
Recently, there has been significant interest in it. [13] pre-
sented a framework for modeling complex composite activity
using stochastic grammar. However, the grammar induction
is very important for this model. It will be more robust
and more flexible if the model could be learned from da-
ta fully automatically, instead of using expert’s knowledge.
[9] proposed a compositional hierarchical model to recog-
nize human activities and actions by formulating an energy
minimization problem which is similar to a latent structural
SVM case. The energy terms are associated to the activ-
ity, actions and poses, as well as temporal transitions be-
tween actions and poses. However, the transitions between
actions in [9] are independent of activity, and there is no
energy terms to model the influence of pose observations to
activity recognition. [7] trained a hierarchical model based
on HMMs and a context-free grammar using HTK toolkit
which is a speech recognition engine to model human activ-
ities as temporally structured processes. [7] demonstrated
that applying techniques borrowed from speech recognition
is feasible since human activities and speech have similar
inherently hierarchical nature. The limitation of this mod-
el is that it can not capture spatial composition of actions.
Besides, it is based on HMMs which make strong indepen-
dence assumption of observations. Such assumption ignores
the multiple interacting features and long-range dependen-
cies of the observation [8].

Different from the existing deep learning methods [15, 12]
which mainly focused on feature extraction and representa-
tion, our work aims at modeling spatial and temporal re-
lationships of poses and actions in video. For modeling se-
quential data, [5] proposed TriCRFs shown in Figure 1, a
unified probabilistic model jointly representing the sequence
and meta-sequence labels. TriCRFs have been successfully
used in named entity recognition and dialog act classification
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Figure 1: Two structures of triangular-chain CRFs.
The transition potentials and observation potentials
are dependent of z in the left structure and inde-
pendent of z in the right structure.
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Figure 2: The structure of spatio-temporal
triangular-chain CRFs which could capture spatial
and temporal information in sequential data.

for spoken language understanding [5, 6, 14]. However, no
applications on computer vision tasks have been observed.
As mentioned above, modeling complex human activity is

still a challenging work because of its complicated spatio-
temporal relationships and multiple variabilities among ac-
tions. In this paper, we propose a novel framework for ac-
tivity and action recognition which could model the spatio-
temporal relationships of multi-level labels jointly in a u-
nified hierarchical model shown in Figure 2. Our model is
based on triangular-chain CRFs. Furthermore, we expand
traditional temporal TriCRFs to the spatial dimension. The
model could both explicitly encode dependencies and pre-
serves uncertainty between actions and activity. As far as
we know, we are the first to utilize spatio-temporal TriCRFs
in complex activity recognition. Experiments on composable
human activity dataset show that our approach outperforms
other methods which demonstrates the effectiveness of our
framework for modeling spatio-temporal relationships in ac-
tivity recognition. This model could also be applied to other
structured sequential modeling problems.

2. FRAMEWORK

2.1 Background
Human activity, speech and natural language are all se-

quential data. Many problems of sequential data can be
treated as sequential labeling or sequence classification [5].

More specifically, sequential labeling is a problem of predict-
ing a sequence of label y given an input sequence of obser-
vations x which could be formulated as learning p(y|x). Se-
quence classification is a problem of predicting a single label
z given x, formulated as learning p(z|x). TriCRFs solve the
two correlated problems jointly by predicting the best labels
(ŷ, ẑ) using p(y, z|x) trained from data (x(n),y(n), z(n))Nn=1.

Linear-chain conditional random fields (CRFs) was pro-
posed to segment and label data by Lafferty in 2001 [8]. As
being discriminative that directly model the global condi-
tional distribution, CRFs offer several advantages over gen-
erative models such as hidden Markov models and stochastic
grammars which use non discriminant criterion, including
the ability to relax strong independence assumptions. CRF-
s could also avoid the fundamental label bias limitation of
maximum entropy Markov models (MEMMs) and other lo-
cally normalized discriminative models [8].

Spatio-temporal triangular-chain CRFs have all the ad-
vantages of CRFs. Besides, Spatio-temporal triangular-chain
CRFs can capture the spatial and temporal relationships of
atomic actions to model multi-level labels of activity at the
same time. It could model the complex dependencies be-
tween activity, actions and pose observations. Especially,
the transitions between actions are dependent of activity,
and there is potential terms to model the influence of pose
observations to activity recognition. Our model is shown in
Figure 2. Let R be the number of spatial regions. For each
region, the complex relationships between actions and ac-
tivities are modeled by temporal tiangular-chain CRFs. D-
ifferent regions are fused together in the activity level. The
figure illustrates the R = 2 case.

2.2 Formulation
In order to take spatial information into account, we ex-

tend TriCRFs to spatial dimension. Spatio-temporal triangular-
chain CRFs are defined as follows.

pλ(y, z|x) =

R∏
r=1

pλr (yr, z|xr) (1)

where we assume that the probability pλ(y, z|x) is propor-
tional to the product of every region’s probability pλr (yr, z|xr).

pλr (yr, z|xr) =
1

Z(xr)
·

T∏
t=1

(ϕr,t(z, yr,t, yr,t−1, xr))φr(z, xr)

(2)
where ϕr,t and φr are the potentials of spatio-temporal Tri-
CRFs. Z(xr) is for normalization which defined as follows.

Z(xr)
∆
=

∑
yr,z

T∏
t=1

ϕr,t(z, yr,t, yr,t−1,xr)φr(z,xr) (3)

As illustrated in Figure 2 and formulated with the equa-
tions, ϕr,t is time-dependent and φr is time-independent.
Specifically, ϕr,t could be partitioned into z-dependent and
z-independent factors. φr plays as a prior role.

φr(z,xr) = exp(
∑
k

λ0
r,kf

0
r,k(z,xr,0)) (4)

ϕr,t(z, yr,t, yr,t−1,xr) = ϕd
r,t(z, yr,t, yr,t−1,xr)

·ϕi
r,t(yr,t, yr,t−1,xr) (5)

where xr,0 is an observation feature vector for classifying z.
fr,k stands for a real-valued feature function and λr,k is a
weight parameter.
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z-dependent factor ϕd
r,t can be further partitioned into

observation item and transition item dependent of z.

ϕd
r,t(z, yr,t, yr,t−1,xr) = ϕ1

r,t(z, yr,t,xr)ϕ
2
r,t(z, yr,t, yr,t−1)

(6)
ϕ1
r,t(z, yr,txr) = exp(

∑
k

λ1
r,kf

1
r,k(z, yr,t,xr)) (7)

ϕ2
r,t(z, yr,t, yr,t−1) = exp(

∑
k

λ2
r,kf

2
r,k(z, yr,t, yr,t−1))(8)

z-independent factor ϕi
r,t also can be partitioned into ob-

servation item and transition item independent of z.

ϕi
r,t(yr,t, yr,t−1,xr) = ϕ1

r,t(yr,t,xr)ϕ
2
r,t(yr,t, yr,t−1) (9)

ϕ1
r,t(yr,t,xr) = exp(

∑
k

λ1
r,kf

1
r,k(yr,t,xr)) (10)

ϕ2
r,t(yr,t, yr,t−1) = exp(

∑
k

λ2
r,kf

2
r,k(yr,t, yr,t−1)) (11)

2.3 Inference and Parameter Estimation
Spatio-temporal TriCRFs have efficient training and de-

coding algorithms based on dynamic programming. And
being a convex optimization problem, parameter estimation
is guaranteed to find the global optimum.
For inference, the marginal probability distributions

pλr (z, yr,t|xr), pλr (z, yr,t, yr,t−1|xr), pλr (z|xr) and the par-
tition function Z(xr) are calculated via the forward-backward
algorithm introduced in [5]. The viterbi decoding algorithm
for each chain is also the same as [5].
For parameter estimation, using conditional maximum log-

likelihood criterion, the objective function is formulated as
follows.

L(λ) =

R∑
r=1

N∑
n=1

T∑
t=1

K∑
k=1

λr,kfr,k(z
(n), y

(n)
r,t , y

(n)
r,t−1,x

(n)
r )

−
R∑

r=1

N∑
n=1

logZ(x(n)
r )−

R∑
r=1

K∑
k=1

λ2
r,k

2σ2
(12)

where the last term functions as a regularization term to
avoid over-fitting.
The parameters are learned through differentiating the

objective function. A limited memory version of the quasi-
Newton method is used to optimize the parameters.

∂L

∂λr,k
=

N∑
n=1

T∑
t=1

fr,k(z
(n), y

(n)
r,t , y

(n)
r,t−1,x

(n)
r )

−
N∑

n=1

T∑
t=1

∑
z′,yr,y′

r

fr,k(z
′, yr, y

′
r,,x

(n)
r )pλr (z, yr, y

′
r,|x(n)

r )

−
λr,k

σ2
(13)

The pseudo-likelihood parameters are used for initializa-
tion [1]. We modified the code published by Minwoo Jeong
[5, 6] to construct our spatio-temporal TriCRFs by taking
spatial information into account.

3. EXPERIMENTS

3.1 Composable Activity Dataset
We evaluate our method on Composable Activity dataset

which is introduced by Ivan et al. in [9]. The dataset consist-
s of 693 videos containing activities in 16 classes performed

Table 1: Recognition accuracy of different R
Algorithm Region number Accuracy

Our method 1 0.759
Our method 2 0.790
Our method 4 0.772

Table 2: Recognition accuracy comparison
Algorithm Codebook size Accuracy

Our method 200(fixed) 0.790
BoW 200(fixed) 0.672
BoW 600(fixed) 0.623

H-BoW [9] 200(fixed) 0.742
H-BoW [9] 600(fixed) 0.716

HMM 200(fixed) 0.765
HMM 600(fixed) 0.723

by 14 actors. Each activity is composed by spatio-temporal
combinations of atomic actions. For instance, composed ac-
tivity 2 is composed by walking, picking object, put an object,
erasing board in space and time. There are total 26 types
of atomic actions. The dataset offers a global annotation
at the activity level for each video, as well as per-frame an-
notations of the atomic actions with an array indicates the
associated body region (right arm, left arm, right leg and
left leg).

3.2 Features
In order to facilitate a fair comparison, we follow the same

experimental settings as [9]. Performance is evaluated in
leave-one-subject-out experiment setup. Observed features
are extracted using the method in [2, 10] from RGB-D videos
which include relative location between body joints, angles
between limbs and angles between limbs and plans spanned
by body parts. Using the feature extraction code in [9],
right arm, left arm, right leg and left leg are represented by
a 21-dimension feature vector respectively. [9] quantized the
observed features of each body part into M clusters of poses.
The three techniques for comparison are a BoW represen-
tation plus a lineal SVM classifier (BoW-approach), a ver-
sion of authors’ hierarchical model without learning the pose
dictionary (H-BoW approach), and a Hidden Markov Model
approach (HMM approach). It is more equitable to compare
our spatio-temporal model with the three techniques which
also quantize the observations using k-means. The classifi-
cation result of our model is higher than the other methods
including the version of model in [9] with fixed pose dictio-
nary. Experiments in [9] showed that jointly learning pose
dictionary with actions and activities could improve the ac-
curacy. Our model also can include a third semantic level.
It is straightforward to add another layer in our model to
represent pose and it is feasible to use other more appropri-
ate methods to obtain a pose dictionary. The performance
could probably be improved further.

3.3 Results and Analysis
We divide the whole body into R regions, where R =

{1, 2, 4}. For the case R = 4, the body is divided into 4
regions which are right arm, left arm, right leg and left leg;
There are 4 chains in spatio-temporal TriCRFs. For the
case R = 2, the body is divided into upper body and lower
body; The upper body is composed of right arm and left
arm, while the lower body is composed of right leg and left
leg; We concatenate the right arm observed features and left
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Table 3: The comparison of robustness. The table
lists the decreases of accuracies by randomly select
a part to be occluded in every testing sequence.

Algorithm Our method Method in [9] BoW HMM
Decrease 0.0527 0.072 0.125 0.103

arm observed features together to represent the upper body
part; The same setting is for the lower body part; There are
2 chains in spatio-temporal TriCRFs. For the case R = 1,
the body is treated as a whole part and there is only one
temporal TriCRFs chain.
For spatio-temporal TriCRFs, the accuracy of action la-

beling is 33.8%, 55.7%, 56.6% for R=1,2,4 respectively. The
accuracies of activity recognition are shown in Table 1. Di-
viding the whole body into spatial regions does increase the
recognition accuracies of actions and activities at the same
time, which on the other side demonstrates that our spatio-
temporal TriCRFs model captures the relationships in space
successfully. The reason for why 2-region setting is better
than 4-region setting is probably because the action labels
are not fine-grained for each body part. In different actions,
some body parts may show the same pose, resulting in that
there is relatively small between-action-class distance, which
is less discriminative to predict the action and activity la-
bel. The unsupervised clustering method used to quantize
observations also should be improved.
As shown in Table 2. The accuracy of spatio-temporal Tri-

CRFs shows clear improvement over the competing meth-
ods. The strength of our model can be measured against
BoW, H-BoW and HMM with the same setting to obtain a
fixed pose dictionary by k-means without dictionary learn-
ing. Our spatio-temporal TriCRFs model does better in
modeling dependencies between multi-level labels. Adding
pose learning method in our model with extra layer could
probably further increase performance.
To evaluate the robustness, we randomly select a part to

be occluded in every testing sequence. The accuracy of our
model decreases by 5.27 %, while the method in [9] decreases
by 7.2 %, BoW decreases by 12.5 % and HMM decreases by
10.3 % as shown in Table 3.

4. CONCLUSION
We have presented spatio-temporal triangular-chain CRF-

s, a unified hierarchical model that is powerful in exploit-
ing dependencies between multiple layers for complex activ-
ity recognition. Spatio-temporal TriCRFs could model the
complex relationships between activity, actions and pose ob-
servations. Our model takes more information into account
than other existing methods. The transitions between ac-
tions are dependent of activity, and there is potential terms
to model the influence of pose observations to activity recog-
nition. Furthermore, interactions between different spatial
regions are included. Experiments demonstrates the effec-
tiveness of our model. The framework is also applicable in
other sequential modeling problems.
For future work, we consider to add another layer to learn

pose representations jointly with actions and activity. We
can add several constraints in inference to make sure action
labels of different body parts are consistent with each other.
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