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ABSTRACT

A Paired Discriminative K-SVD (PD-KSVD) dictionary learn-

ing method is presented in this paper for visual recognition.
To achieve high discrimination and low reconstruction er-
rors simultaneously for sparse coding, we propose to learn
class-specific sub-dictionaries from pairs of positive and neg-
ative classes to jointly reduce the reconstruction errors of
positive classes while keeping the reconstruction errors of
negative classes high. Then, multiple sub-dictionaries are
concatenated with respect to the same negative class so that
the non-zero sparse coefficients can be discriminatively dis-
tributed to improve classification accuracy. Compared to
the current dictionary learning methods, the proposed PD-
KSVD method achieves very competitive performance in a
variety of visual recognition tasks on several publicly avail-
able datasets.
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1. INTRODUCTION

In recent years, sparse coding is applied to a variety of
image processing and computer vision applications, such as
image classification [28, 15, 22, 26, 27, 23], image de-noising
[3], compression [2, 8], inpainting [3] and other applications.
It recovers a sparse linear representation of a query datum
with respect to a set of non-parametric basis set, known
as dictionary. Originally, predefined dictionaries have been
used based on various types of wavelets. Lately, learning the
dictionary instead of using predefined bases has been shown
to improve signal reconstruction significantly [2].

K-SVD [2] aims to learn the optimal dictionary that leads
to the lowest reconstruction error with a set of sparse coeffi-
cients. The success of K-SVD method triggers the applica-
tion in image classification tasks. Instead of learning one dic-
tionary for the whole dataset, class-specific sub-dictionaries
are learned to improve the discriminative capability of recon-
struction residual [17, 20, 6]. Later, researchers attempts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MM 16, October 1519, 2016, Amsterdam, Netherlands
© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. .. $15.00
DOL: http://dx.doi.org/10.1145/2964284.2967184

Yi-Ling Chen
National Taiwan University,
. Taiwan
yilingchenntu@ntu.edu.tw

67

Chen-Kuo Chiang
National Chung Cheng
University, Taiwan
ckchiang@cs.ccu.edu.tw

Positive class

Negative Classes

?{, Paired Dictionary Learning

;' pl2) p3) DL4) p(L.5)
HE N EY HE |(NF HENEY EEm
EE B [N HEE (NN EEN NS EEN
ES B |HF EE (BN EEN NS EEN
EN B |EN EEC(EE N || ||
ES B |EE EN'|NHSY HEEN|NN EEm
HN N |NF ENE |[NN EEN|EN EEE

Figure 1: An example of positive and negative
classes and the corresponding paired dictionaries of
the class “Dalmatian”.

to promote discrimination among classes by enforcing the
sparse coefficients to be discriminative[28, 15, 22, 26, 23, 27]
by means of including the class labels and learning the clas-
sifier simultaneously with the dictionary. Recent dictionary
learning methods achieve the discrimination by either en-
forcing structural constraints on the dictionary or imposing
class separation criterion in the sparse coding formulation
[27, 26, 23]. As a result, previous dictionary learning meth-
ods usually has very complex objective functions and require
difficult optimization approaches to obtain the solutions.

To develop a simple yet effective dictionary learning meth-
od, we go back to the essence of sparse coding that uses the
reconstruction error to achieve the discrimination. Moti-
vated by the current machine learning methods, discrimina-
tive classifiers are usually trained by positive and negative
data samples. Pair-wise relationships are utilized between
data samples or datasets to further improve the discrimi-
nation. In [14], highly discriminative variables are selected
from the high-dimensional data space according to the sta-
tistical analysis of paired samples for feature selection. In
[16], a multilinear canonical correlation analysis method is
proposed to extract features directly from tensors based on
tensor-to-vector projection of paired tensor sets.

We argue that the discrimination of dictionary can be also
achieved through learning from pairs of classes. To learn the
class-specific sub-dictionaries, images can be divided into
two kinds of classes: Positive class and Negative class. Posi-
tive class is the target class. Negative classes are all the rest
of classes. For example, when training the sub-dictionary



for class “Dalmatian”, the training class “Dalmatian” is the
positive class. The rest classes (“Crab”, “Cup”, “Panda”)
are negative classes in this case. Figure 1 depicts an ex-
ample of using positive class and negative classes to learn
sub-dictionaries for the class “Dalmatian”.

In this paper, we propose a novel Paired Discriminative K-
SVD (PD-KSVD) based on K-SVD [2] to learn sub-dictiona-
ries from pairs of positive and negative classes. The idea
is to learn such sub-dictionaries that can best reconstruct
the positive class while reconstructing the negative class
worse. With such capability of reconstruction, multiple sub-
dictionaries are concatenated with respect to the same neg-
ative class to discriminatively distribute the non-zero coeffi-
cients. The sparse coefficients are then used to train multiple
SVM classifiers [4].

2. PREVIOUS WORK

K-SVD [2] learns the dictionary by iteratively alternating
between sparse coding the input data based on the current
dictionary, and updating the dictionary atoms to better fit
the training data. It aims to find the optimal dictionary
that leads to the lowest reconstruction error with a set of
sparse coefficients. Typical reconstructive dictionary learn-
ing methods include method of optimal direction (MOD) [9],
K-SVD and analysis K-SVD [21].

The success of K-SVD method triggers the application in
image classification tasks. Rather than learning one dictio-
nary for all classes, one type of dictionary learning meth-
ods learn a sub-dictionary for each class and improving the
discriminative capability of reconstruction residual [17, 20,
6]. In the class-specific dictionary learning, each dictionary
atom is associated to a single class label. Mairal et al. [17]
assumed a dictionary associated to the class should recon-
struct this class better than the other classes. A penalty
term is introduced in the cost function to re-weight the re-
construction error. Ramirez et al. [20], introduce a new term
into sparse representation to promote the incoherence be-
tween dictionaries so that each sub-dictionary can represent
the class optimally.

3. PROPOSED METHOD

3.1 Reconstruction Error of Inverted Signals

Following the nature of K-SVD that reduces the recon-
struction errors of both positive and negative classes, our
idea is to inwvert the negative signals. If the dictionary is
learned from the inverted negative samples, the dictionary
can reconstruct the the inverted negative samples well. In
other words, using such dictionary to construct the original
negative samples leads to larger reconstruction errors.

The Caltech101 dataset [10] was used to evaluate our as-
sumption. we first set class 2 as our positive class. Then,
sub-dictionary was trained by only using samples from class
2. We create a new class by applying the inversion operation
to all samples in class 2. Using the trained sub-dictionary,
we calculate the reconstruction errors for all 102 classes (101
objects and one background class) in Caltect101 and the in-
verted class. The results are presented in Figure 2.
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Figure 2: Reconstruction errors of 102 classes of
Caltech101 dataset and the inverted class. The dic-
tionary is trained by class 2. The green triangle
presents the lowest reconstruction error of positive
class 2. The red star sign depicts the highest recon-
struction error of the inverted class among all the
classes.

One can see that the reconstruction error of class 2 is
the lowest (marked by the green triangle sign) since the
sub-dictionary was trained from class 2. The inverted class
(marked by red star sign) has the highest reconstruction er-
ror among all classes. Similar results can be obtained by
choosing another class as positive class and repeat the ex-
periment above.

We should note that the signals here are referred to as
the image features. Each feature can be considered as a
vector of signal. For example, one SIFT feature is a 128-
dimensional vector of signal. Figure 3 depicts one possible
operation of signal inversion. Signals can be inverted ac-
cording to the data mean of minimum and maximum val-
ues in this class. The maxz value of class ¢ can be calcu-
lated by: max(® = max(max(y\,...,y\”)) which calcu-
lates a maximum vector from all feature vectors y§c), s y,(f>.
Then, applying another maz operation to extract the max-
imum value of class c¢. The signal mean can be defined by
mean'® = (1/2)(max® +min(®). Denote yffj) the j-th el-
ement of ygc), the inverted signal g}fcj)
?QZ(CJ) = 2 xmean'® — yﬁ?. Under this operation, signals are
symmetry to class mean. The maximum value becomes the
minimum and vice versa. The operation of inversion can
be also conducted by finding the orthogonal vector of signal
ygc), which means to find a gjgc) such that ygc) . QEC) =0. In
our experiments, the difference of classification accuracy is

around 0.1%.

can be obtained by

3.2 Paired Discriminative K-SVD

Denote Y@ ¢ = 1, ...,C the positive training samples of
class ¢. The inverted signals can be defined by Y(¢. Our
goal of dictionary learning is to learn sub-dictionaries that
can simultaneously increase the reconstruct error of negative
classes while reducing the reconstruction error of the positive
class. To this end, our dictionary learning is performed on a
pair of one positive class and one inverted negative class. If
the learned dictionary achieves low reconstruction errors of
both the positive class and the inverted negative class in a
K-SVD fashion, it introduces high reconstruction errors to



the original negative class. This boosts the discrimination
capability between the positive class and the negative class.
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Figure 3: An example of one inverted signal.

To obtain the sub-dictionary of the positive class ¢, we
choose one negative class ¢’ with the minimal reconstruction
error. Then we form the training set by joining Y and

the inverted negative class Yi(c/>. The objective function of
paired discriminative dictionary learning can be written as:
N v . o
Min e,y x(eren [V OV ] = DEDXED T,
N
stV ||z | < To

where D) is the dictionary learned from the paired pos-
itive class ¢ and the inverted negative class ¢’. X is the
sparse coefficients. Then, the reconstruction residual can be
formulated as:

||[Y(C)Y(Cl)] _ D(c,c’)X(c,c’)”%
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The reconstruction error when taking out the k** atom
can be written as:
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To learn dictionary column d;f’cl), SVD is applied to de-

’ ’
compose e;“ ) to three matrices: er” ) = UAVT. The first

column of U is used to update dictionary column d,(:’c/) and

first column of V' multiplied by A (1,1) is exploited to up-

date the row mi(c’c/) of the coefficient matrix. In PD-KSVD,
a sub-dictionary is learned from the positive class ¢ and one

of its negative class c’.

3.3 C(lassification

To efficiently exploit all sub-dictionaries for classification,
all sub-dictionaries with respect to the same negative class
are combined. Denote the combined dictionary with respect
to negative class ¢/, D) = [D(l’c/),D@’c/),...,D(i’cl)],z‘ =

1,...,C,i # . Therefore, D), can not reconstruct samples
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of class ¢’ well. On the contrary, it can well construct class
c,e=1,...,C,c#c.

The reasons to combine such sub-dictionaries are two-
fold. Firstly, for a test sample y; of class 1, using Dﬁ?,)m =
[D®2 DG DO to reconstruct y; makes the non-
zero coefficients more concentrated on dictionary atoms of
D®2 since D™ is trained by positive samples of class 1
and inverted negative samples of class 2. To better recon-
struct y1, more dictionary atoms in D? which are trained
from class 1 should be selected for reconstruction instead of
using dictionary atoms trained from inverted negative sam-
ples of class 2. This makes the non-zero coefficients more
concentrated to the dictionary atoms of the correct class.
Secondly, after combining all sub-dictionaries with respect
to the same negative class, it reduces the number of dic-
tionaries which could have practical significance in terms of
computational efficiency in real-world applications.

In the classification process, training signals are sparsely
coded by dictionary D = [Dg},ln, Dﬁ?,Zn, e DS?,;} The corre-
sponding sparse coefficients SPlegm, SPt(fa)m,...,SPt(Sl)m are
used to train multiple multi-class SVMs: SV MM SV M2
., SVM () After obtaining all the decisions from SVMs,
a major voting mechanism is exploited to predict the class
label. The process of classification is depicted in Figure 4.
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Figure 4: The classification process using combined
sub-dictionaries.

4. EXPERIMENTAL RESULTS

We applied PD-KSVD to the tasks of object recognition,
handwritten digits recognition and scene recognition in our
experiments. Our method was evaluated on the following
datasets: Caltech101 database [10], Caltech256 database
[12], USPS database [1] and MIT Indoor Scene Database
[19]. The parameter setting of PD-KSVD is easy. Our
method is nearly parameter-free except for the sparsity fac-
tor when solving the sparse coefficients. Following the ex-
perimental settings in [15], the sparsity factor was set to 30
in our experiments and the maximum number of iterations
was set to 80 following [2].

We compared PD-KSVD to SVM [7], K-SVD [2], Label
Consistent K-SVD (LC-KSVD) [15], Dictionary Pair Learn-



Table 1: Recognition accuracy (%) on Caltech256
Dataset with dictionary size 7710 and 15420, respec-
tively.

Dictionary Size 7710 15420
SVM [7] 18.5 245
K-SVD [2] 15.8  20.2
DPL [13] 15.9 218
SVGDL [5] 19.9 232
JDDLDR [11] 18.3  21.3
PD-KSVD 22.2 29.3

ing (DPL)[13], Support Vector Guided Dictionary Learn-
ing(SVGDL) [5], Joint Discriminative Dimensionality Re-
duction and Dictionary Learning(JDDLDR) [11]. We used
OMP [18] for solving the optimization problem of sparse
coding. SVM is used as the baseline method in our compar-
ison. K-SVD and another K-SVD based method LC-KSVD
were also included in our comparison. DLP and SVGDL
which also explore the pair-wise relationship in dictionary
learning achieve the state-of-the-art performance.

We use bag-of-words (BOW) of 200 vocabulary and spatial
pyramid matching (SPM) as feature representation of each
image. SIFT descriptors are extracted on three level spatial
pyramid of sizes 1x1, 2x2 and 4x4 regions. Then, we ob-
tain 4200-dimension features for image representation. We
also extract LLC [24] feature with 1204 vocabulary in BOW
model with the SPM representation of sizes 1x1, 2x2 and
4x4. Finally, the 21,504 dimensional feature is extracted.

The reference codes of the methods listed above are all
available on authors’ websites. We ran their reference codes
with features extracted as aforementioned to compare the
experimental results. Therefore, the accuracy might be dif-
ferent from those reported in the original papers.

4.1 Caltech 256 Object Dataset

Caltech 256 [12] contains 30607 images in 256 object cat-
egories and one background class. It is a very challenging
dataset because the number of object categories is very high
and contains more object variations in each category. Fol-
lowing the custom setup, 30 and 60 images per class are
randomly selected for training, and all the rest for testing.
SPM feature is used for performance evaluation.

The experiments are repeated three times and the average
accuracy are reported. The results are summarized in Table
1. On this benchmark, the proposed PD-KSVD outperforms
all these five methods by using 7710 and 15420 dictionary
atoms. It achieves nearly 5% higher than the second best
recognition accuracy with 15420 dictionary atoms.

4.2 USPS Handwritten Digit Dataset

We then perform handwritten digit recognition on the
USPS dataset [1]. It contains images with contents from
”0” to ”9” in 8-bit grayscale format. The dataset is com-
posed of 10 classes with 1100 images for each class. The
images in the dataset are resized to 16x16. Then, features
are extracted by the 256-dimensional histogram of the image
intensity in grayscale.

In this experiment, we use 100 and 500 images per class
for training, and the rest 1000 and 600 images for testing.
The results are summarized in Table 2. From the table,
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Table 2: Recognition accuracy (%) on USPS
Dataset.
Dictionary Size 1000 5000
SVM [7] 853  87.8
SRC [25] 86.2  95.0
K-SVD [2] 84.7 88.8
LC-KSVD [15]  83.7 89.7
DPL [13] 89.8 95.2
SVGDL 5] 88.7 91.8
JDDLDR [11]  86.0 87.8
PD-KSVD 87.7 925

Table 3: Recognition accuracy (%) on MIT Indoor
Scene Dataset with dictionary size 5360.

Method Accuracy

SVM (7] 15.3
K-SVD [2] 14.8
LC-KSVD [15]  12.6
DPL [13] 13.3
SVGDL [5] 20.9
JDDLDR [11] 16.9
PD-KSVD 21.4

DPL [13] outperforms other methods. Our PD-KSVD also
provide comparable recognition accuracy for handwritten
digit recognition. It is worth pointing out that the recogni-
tion can achieve 93.5 when PD-KSVD trains dictionary of
size 2500.

4.3 MIT Indoor Scene Dataset

MIT Indoor Scene dataset contains 67 Indoor categories.
It is a very challenging dataset because of the large within-
class variety and significant between-class confusion. Each
category has at least 100 images. The dataset has 15620
images in total. We use 80 images per class for training, and
all the rest for testing. SPM feature is used for performance
evaluation.

Table 3 lists the recognition results of PD-KSVD and the
competing methods. It can be seen that accuracy of PD-
KSVD is superior to all the other methods.

S. CONCLUSIONS

In this paper, we propose PD-KSVD algorithm to learn
class-specific sub-dictionaries by using pairs of positive and
negative classes. The data samples from the negative class
are inverted to train the sub-dictionary, making the recon-
struction of samples from the original negative class worse
by the learned dictionary. Overall, PD-KSVD is simple yet
effective. It also holds a good property that better recogni-
tion results can be achieved by reducing the dictionary size.
This makes it efficient for real applications. The experi-
mental results show that the accuracy of PD-KSVD is very
competitive to others methods in all recognition tasks. In
the future, we would like to analyze the importance of each
sub-dictionary. It will be interesting to weighted combine
these sub-dictionaries based on the analysis of their impor-
tance to improve the discrimination of dictionary learning.
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