
Smalltalk in the Business World: 
the Good, the Bad, and the Future (PANEL) 

Yen-Ping Shan, IBM, Software Sohtiom (moderator) 
Ken Auer, KSC 

Andrew J. Bear, AM!? 
Jim Adamczyk, Andersen Consulting 
Adele Goldberg, ParcPlace Systems 

Tom Love, IBM 
Dave Thomas, OTI 

1 Background 

During the past few years, Smalltalk has become one of 
the fastest (if not the fastest) growing programming 
languages for business computing. Many corporations, 
large and small, have decided to invest significantly in 
sma.l1talk. 

This panel will try to explain this phenomenon by 
examining the personal experiences of the panelists. By 
doing so, we hope to provide some insights for 
corporations that are making decisions on 00 
technology, point out pitfalls along the way, and identify 
potential opportunities for technology providers. 

Each panelist will present one good example and one 
bad example from his/her experience. The panel 
discussion will be from a variety of perspectives, 
including but not limited to: 

TheGood 
l What are the external factors that have made 

Smalltalk more attractive now than in the past? 
Hardware speed improvement? 

l What are the intrinsic features that make Smalltalk 
popular? Are they 00 or non-OO? In those 00 
features, what are general to all other 00 languages 
and what are unique to only Smalltalk? 

The Bad 
l What bad experiences can be encountered in 

applying Smalltak to business computing? Why? 
l Are those bad experiences caused by characteristics 

intrinsic to Smalltalk or some other factors? 
l What can we do to avoid repeating the bad 

experiences? 

The Future 
what’s the future of business computing? 
What are the roles that 00 and specifically 
Smalltak play in the future business world? 
Will Smalltalk continue to gain popuhuity in the 
future? What will be the market share of Smalltalk 
a year from now? Three years? Ten years? 
What’s coming for Smalltalk in the future? 
Jmprovements to the base? New tools on top? 
What are the dangers for Smalltalk users in the 
fllhll-e? 
What’s the recommendation for corporations 
interested in trying out smalltalk? 
Can Sma.llta.lk go beyond the business world? 

Ken Auer 

The Good: Smalltalk has been the most productive 
general purpose development environment there is since 
it hit the market. In many ways it was ahead of its time. 
However, when people started reahzing that GUJs, 
Networks, RDBs, and Client/Server were worth using, 
Smalltalk did not have the inter-operability necessary. In 
the past few years, that story has changed and many are 
starting to realize that Smalltalk is not just for research 
prototypes anymore. 

The productivity of the environment comes from the fact 
that it uses a simple, consistent metaphor that exploits 
the benefits of dynamic binding like no other 
environment has. Compared to its competition 
Smalltalk is very mature in the areas of class libraries, 
development tools, portability, and low-level language 
features (memory management, dynamic translation, 
etc.). There are a lot of environments that demo well, 
but Smalltalk has had the benefits of time necessary to 
create a robust environment ready for mission critical 
applications. 

145 



Unlike many of the other “client programming tools” 
(e.g. Powerbuilder, 4GLs). Smalltalk offers a complete 
programming solution that is appropriate for more than 
nice front ends to a database. With good 00 Design 
techniques, large, complex applications can be managed 
using Smalltalk and ENVY(R)/Developer. As large IS 
organizations move their systems into the 90s and 
beyond, COBOL doesn’t cut it, 4GLs and the like aren’t 
appropriate for mission critical business systems that 
exhibit more behavior than a database can provide, and 
languages like C++ are just too difficult to learn with too 
little pay-back. 

The Bad: Most of the bad experiences I’ve seen with 
Smalltalk are not unique to Smalltalk at all, but rather 
are the result of the dangers and uncertainties of moving 
to unfamiliar technologies. Although SmaIltalk does 
have some weaknesses that are not present in other 
environments, its strengths more than compensate for 
them. Much of the perceived weaknesses are not 
weaknesses at all, just uncharted territory for the new 
adopter. 

Since new adopters haven’t yet fully experienced the 
benefits, and are not really intimate with the technology, 
it is sometimes difficult to believe that the benefits are 
truly there or as significant as they are. Each perceived 
weakness can seem to be an insurmountable hurdle to 
managers and developers who are faced with building a 
mission critical system under tight deadlines with new 
technology. It’s kind of like telling someone who has 
always taken the bus and has no driver’s license, “Here’s 
a Porsche. Now get to such-and-such a place in 3 
hours.” 

Unfortunately, many who adopt new technology do so 
because their backs are against the wall and the old 
technology won’t cut it. Often, when Smalltalk is 
brought in, there’s already a challenge in addition to the 
challenge of learning the new technology. Not everyone 
thrives on double challenges. Lastly, the types of people 
who are not afraid of new technology are often 
“visionaries”. Visionaries are not often very good at 
developing and executing solid and realistic 
implementation plans. Yet these are often the people 
who are brave enough to be the guinea pigs, and they 
often don’t meet the expectations they’ve helped to set. 

The first project(s) at a company are going to be the 
guinea pigs. They’re going to hit all the surprises and 
have a rough road to implementation. In addition to 
being a bit anxious themselves, they are typically going 

to be surrounded by others who are atraid of what will 
happen if they succeed They are vemuring into 
mcharted territory without a lot of positive 
reinforcement. As they say, “You can tell the pioneers 
by the arrows in their backs”. The best one can do is 
realize this as the situation, and try to leverage others 
through hiring or ?enting” someone who’s been there 
before and learned from the experience, while you’re 
gaining your own. This is the very premise for KSc’s 
Smalltalk Apprentice Program which has been used by a 
nwnber of companies who have ultimately been 
successful with the technology. 

The Fbture: Smalltalk will continue to gain in 
popuhrity as it continues to mature and more and more 
successes are achieved and publicized. I believe it will 
stay ahead of the competition due to the same factors 
that are making it successful now (see above) for quite a 
while, i.e. 5 years or more. However, in order to do this 
it will have to continue to increase its portability and 
interoperability with more and more emerging standards, 
while expanding in other areas of functionality. 

I’m a bit concerned that the competition for the rapidly 
expanding client/server and distributed computing 
markets will bring extensions and new tools that are not 
nearly as robust or tractable as the early base 
class/environment. The demands of getting these 
extensions (e.g. more interoperability, better deployment 
options, bells and whistles) and tools (e.g. integrated 
&sign and life-cycle tools) to market and the lack of 
experienced, disciplined engineers paying attention to 
the quality of how the demands are met make this 
inevitable. This is true for all development 
environments in the ’90s. However, the consistent 
development environment of Smalltalk with which these 
extensions and tools can be developed gives it a clear 
advantage over the others towards becoming the 
development env&mment of choice for business 
computing by the year 2000. 

Unfortunately, there is no guammee that the vendors will 
pay attention to the quality of these tools in the same 
way or the same time-frame the user community would 
prefer. There are so many aspects of quality, that it is 
easy for a vendor to pay attention to all of them but the 
ones the majority of the customers believe to be the most 
critical and/or urgent. If the “rush& extensions and 
tools are improved in the proper aspects of quality over 
time, current adopters will be severely impacted (and 
annoyed, at best) if they want to take advantage of the 
new improvements... real improvements are never tully 
backward compatible. If the proper aspects of quality are 

146 



not given the necessary attention, the door will be open 
for a different development environment of choice for 
business computing by the year 2000. 

Personally, I’m betting these extensions and tools will 
improve over time, and Smalltalk will continue to gain 
momentum and become the development environment of 
choice. (I’ve been around Smalltalk prior to the first 
OOPSLA in 1986 and have a pretty good collection of 
data points with which to extrapolate). Therefore, I’d 
advise current adopters to realize the amount of change 
they’re going to see in the development environment and 
that what’s state-of-the-art now will have to migrate. Of 
course the other choice is to choose something that is 
inferior now and will have no good migration path in the 
future. To me, the choice is easy... but since I can’t 
afford to retire now, I’ll choose Smalltalk. 

3. Andrew J. Baer 

The Good: Smalltalk is becoming the language of 
choice for building the mission critical business systems 
that will give forward thinking companies a competitive 
edge. There are several factors influencing this move to 
SIMlltalL. 

Rapid Development - Smalltalk is more than a language, 
it is a complete, open, and extensible development 
environment for building applications (compiler, 
iterative debugger, code browser, incremental execution 
environment, etc.). This integrated development 
environment frees the application developer to focus on 
the rapid development of the business application instead 
of focusing on the problems of using a poorly integrated 
development environment. In addition, the base class 
library that comes as a standard part of the base 
development environment provides a very robust start to 
a reuse library. Finally, the Smalltalk development 
environment also frees the application developer from 
many of the low level technical issues, such as memory 
management, inherent in other object language 
enviromnents. This allows us to build applications more 
rapidly, and allow new application developers to 
transition to Smalltalk more quickly. 

Maintainability - The applications we need to build 
today must be more flexible than ever. Business itself is 
becoming more complex and business requimments 
change very rapidly. Object technology applications in 
general and Smalltalk applications in particular provide 
the flexible environment we need to handle today’s more 
complex business applications. This flexibility allows us 
to construct applications that better meet the current 

business needs and which are much more easily 
maintained. 

Staff Transition - At AMS, one of the big advantages we 
have found with Smalltalk over C++ is our ability to 
transition our staff of procedural language designers and 
developers @imarily COBOL) to object technology. 
Smalltalk is an English based language while C++ 
appears to the new developer as a symbol based 
language. Our procedural developers (even those that 
are already proficient in C) find Smalltalk a very natural 
way to build applications. Our experience also indicates 
thattheSmalltalkleamingcmveisshorterthantheC++ 
leaming curve. Also, only those developers that are 
heady exceptional engineers seem to become C++ 
experts. On the other hat& because Smalltalk insulates 
the application developer from many of the technical 
complexities, we fmd that good engineers become 
excellent Smalltalkers. 

The Bad: SmalltaIk can become the standard 
development environment for building business systems, 
butpriortothatbecomingarealitytherearestillseveral 
technical and organizational issues to address. 

Class Library Integration - While the integrated 
Smalltalk development enviromnent provides most of 
the components necessary to begin application 
development, building large scale business systems does 
require integration of additional class libraries. As the 
number of third party class libraries incmases, this 
coordination problem will increase. The industry needs 
some mechanism to better coordinate the release of these 
types of products. 

High Performance Distributed Objects - Today’s 
Smalltalk enviromnent is an excellent tool for building 
three tier client/server systems (workstation, work group 
server, and enterprise server). However, most of the 
Smalltalk execution takes place either on the workstation 
or the work group server. We are only beginning to see 
indushy standard products (based on OMG’s CORBA) 
that will allow us to build highly scalable applications 
where the Smalltalk (or for that matter C++) objects can 
seamlessly collaborate in real time with objects that are 
executing on different platforms. As these distributed 
object tools mature we will then be able to build high 
performance transactional systems that take maximm 
advantage of the combination of hardware and software 
that comprise our deployment environments. 

Integrated Design and Development Tools - The 
Smalltalk development environment is a highly 

147 



productive integrated tool environment. However, we do 
not yet have a robust analysis and design environment 
integrated with this development environment. Many 
organizations are working to solve this issue, but until 
we have a solution, we will have difficulty selling 
SmaIltalk for use on very large scale development 
efforts. It’s not that the current crop of I-CASE tools for 
the procedural world are all that good, it’s just that we 
now expect our support environment for the entire 
system life-cycle to be as good as the Smalltalk 
development environment is for system construction 

Staff Development - The Smalltalk comrmmity is being 
hurt somewhat by its own success. As we have more and 
more projects using Smalltalk, we need more and more 
trained SmaIltalk designers and developers. As an 
industry, we have had difficulty producing the number of 
Smalltalk developers we need to meet the demand Over 
the next few years, we need to find better and quicker 
ways to create the supply to meet this increasing 
demand. 

The F’uture: At AMS, we are now beginning to see the 
results of the past couple of year’s investment in object 
technology and Smalltalk. Even in our initial projects 
(i.e., without the benefits of broad scale reuse), we have 
begun to see productivity significantly higher than the 
best projects that used procedural design and 
development paradigms. However, our use of object 
technology and Smalhalk can become that much more 
productive and have a wider application with the 
addition of several new capabilities. These include: 

Domain Libraries - The base Smalltalk class library is an 
excellent start to a reuse library. However we need to 
extend that library in several ways. At AMS we are 
focusing on extending the class library in two directions. 
First, we have built Object CORE, which is a reusable 
class library that provides many of the infrastructure 
classes required for building large business transaction 
processing systems. On top of these classes, we have also 
built highIy reusable objects for specific domains. Here 
we are building classes to support applications in the 
telecommunications, financial services, insurance, 
government, and education domains. These will allow 
us, and our customers, to assemble a custom application 
primarily from reusable components. In the future, AMS 
and others need to continue the development of these 
libraries. It is only through the use of these reusable 
objects that we will see the realization of the promise of 
object technology. 

Language Interoperability - Smalltalk is an excellent tool 
to use in building mission critical business systems. 
However it is not the only tool. We need a language 
independent object messaging engine to provide for a 
heterogeneous language environment. Again, there is 
significant progress in this area @imarily IBM’s SOM 
and DSOM), but we need to continue this work to the 
point where we a have high volume production ready 
Capability. 

Cross-Industry Reuse - Many organizations have now 
seen the benefits of reuse in the Smalltalk environment. 
However, I suggest that the benefits of reuse could be 
magnified exponentially if we had a way (both 
technically and legally) to share our reuse libraries 
across organizations. We strive to avoid reinventing the 
wheel within our own company, but I am sure several of 
us are, in fact, reinventing the wheel across 
organizations. I would like to see some from of public 
repository from which all with appropriate access can 
search and retrieve classes. Of course, we will also need 
an appropriate plan for compensating and recognizing 
those that contribute to this cross-industry library. 

Repository Search and Query Tools - As the nlILnber of 
classes in our npxitmies grow, we will need powerful 
search and query tools to allow designers and developers 
to ask questions about the repositories contents. Even 
today, we fmd most developers have trouble finding the 
classes they need in our ENVY repository. In the 
absence of such a search and query tool (and of course, 
appmpde class information to allow search and query), 
we find developers deciding that is just as easy to build 
their own version of a class since it takes less time than 
looking for a class that already exists. This process will 
certainly lower productivity, and will reduce application 
compatibility since applications will have different 
implementations of common functions. 

These are just a few of the new directions that will allow 
Smalltalk to have a prominent position in the tool chest 
of the corporate application developer. Object 
technology is a better way to build today’s complex 
mission critical business systems. Smalltalk is one of the 
best tools (although not the only tool) to take advantage 
of object technology. Hopefully, your organixadon has 
aheady made a significant move to object technology 
and Smalltalk. If not, you should start your transition 
now so that you won’t see your competitors introducing 
new products and services that you can’t even come 
close to offering. 

148 



4. John Davis 

MIS systems have traditionally mirrored their 
organizations. When businesses contained hieramhical 
organization structures and procedures, the supporting 
MIS systems had similar characteristics -- very 
hierarchical and procedural in nature. These traditional 
business models are being replaced by networked 
organizations and event-driven, customer focused 
procedures. 

New business systems must reflect and model their 
organizations. They must become non-procedural. They 
must be built from interacting pieces. In other words 
they must become object-oriented. 

MIS departments are recognizing that they must undergo 
a radical re-engineering of their organizations, processes 
and technologies in order to build these new systems. 
This change will be even more significant than previous 
drastic changes such as the transition from batch to on- 
line, or host to client-server. because it is changing at the 
same time the business itself is re-engineering. 

MIS will cany forward its good things from the past - 
high level languages, high value on reuse, integrated 
development, CASE concepts. MIS departments will 
also carry forward their people as they re-engineer 
themselves. 

I believe that many MIS departments will select 
Smalltalk today because it most closely matches their 
mindset and expectations for productivity. It presents 
one of the best alternatives for starting with objects, yet 
retaining many of their people and best concepts from 
their current approaches. 

Smalltalk has a window to capture a significant share of 
future MIS development. However, Smalltalk and 
associated tools have to scale and grow to reflect the 
realities MIS departments and business systems. There 
are many competitors on the horizon who will be well 
positioned to compete for the MIS market: OOCOBOL, 
Microsoft and others. Smalltalk can do it, but the 
vendors have a lot of work to do in a short period of 
time. 

5. Adele Goldberg 

The critical assumption of Alan Kay’s Dynabook vision 
was that people would want to program computers. And 
so Smalltalk was born. Inside Xerox PARC, the term 
Smalltalk named a wholistic effort to understand 
hardware media, hardware packaging, programming 

languages, programmer interactionmodels, and 
pedagogy. The inclusion of pedagogy placed importance 
on ease of getting started (“simple things should be 
simple”) and ability to keep going (“challenging things 
should be feasible”). As we examine thestatusand 
future of the business of Smalltalk, we can hold our 
discussion independent of the original vision, or measure 
success in Dynabook terms. Since the former is simply a 
matter of reviewing revenue and profit forecasts, the 
latter portends a more interesting discussion. 

Two events mark the commerciahzation of Smalltalk-the 
recognition that the problem that Smalltalk proposed to 
solve was hard and so it would help to have more 
participation, and the williqness by several otherwise- 
comfortable technologists to go into business. At Xerox 
PARC, we carried out a multi-vendor project to obtain a 
review of a specification for implementing Small* 
and a document that became a series of publications, 
including the August 1981 issue of Byte Magazine. 
More than a decade later, two things are true. First, 
Smalltalk customers are able to implement the ideas they 
read about in 1981 to create new information systems, 
and to do so with measurably better productivity. 
Second, few new ideas that contribute to the Dynabook 
software vision have been offered, as the commercial 
vendors bowed to the necessary but insufficient need to 
deal with the language, tools and methods of systems 
engineering. Unquestionably, real customers challenged 
one’s assumptions about such systems issues as 
appropriate system boundaries, intemperability, 
distribution, and learnability. They also coniirmed the 
reseamherrorthatcreatingaSmalhalkforchildrenhas 
much to do with creating a Smalltalk for adults with 
independent sources for functional requimments. 

ThebusinessofSmalltalkbeganineamestinthelate 
1980’s with the formation of companies whose success 
depended on the strategic acceptance of Smalltalk. This 
success continues to depend on acknowledgment by both 
vendors and customers that the choice of programmmg 
language plays a minor role. The original wholistic view 
correctly stated that pedagogy, which 
tramlam into reusable frameworks and wmponents and 
techniques for leveraging these, is the critical success 
factor. 

The several-years adventure in the so-called real world 
has taught four other lessons, all pointing to why 
Smalltalk may not be successful-but all reparable. First, 
the Smalltalk community is so emotional as to create 
hype that makes the selling story tmbelievable. Second, 
the carpet baggers have now entered the market. 
SmaUtalk lives today because its proponents were driven 

149 



by a vision that sustained the burns created by the C++ 
flame throwers. Carpet baggets are not persistent 
objects-they take their money and run. Third, Smalltak 
would have fared better in the MIS world if the vendors 
had duplicated all the programming and project 
management tools already available to the mainfmme 
COBOL community. There is a bit of a scramble to 
improve this situation, although I doubt anyone wilI 
provide the core dumps one customer once requested. 

Fourth, Smalltalk is currently not the language of choice 
for educational institutes. It should be. The problem is 
that, unlike C and C++, no already existing curriculum- 
no long-lived set of examples and class assignments-can 
be reused to create Smalltalk courses. More established 
languages have the benefit of concentrated efforts to 
present computer science and business school faculty 
with useable and useful materials, including funded 
ACM curricula projects. C++, for example, benefits 
from courses tbat can be based on modifications of C 
programming course materials. Smalltalk is the most 
under-published language. This makes some sense since 
there is very little about the language to report: Smalltalk 
suffers from being a remarkably uninteresting language 
syntactically. Most courses teach syntax and grade 
programming assignments. Lots of books can do this as 
well. Smalltalk has not lent itself to this sort of 
publication. 

Most other languages are good enough for teaching 
about basic algorithms and data structures-the topics of 
most fifit courses in programming. Of course, you can 
teach the same programming concepts using Smalltalk’s 
library of data structures-teaching about the general 
ideas as well as the specific given the explicit 
availability of both. But most faculty see that they might 
have to teach at a more abstract level than they are 
accustomed to doing, and perceive that there is 
unnecessary overhead in the use of a system based solely 
on objects. Perhaps there is a lesson to be learned from 
the difficulty grammar school teachers experienced when 
confronted with teaching the new math-it did not fit their 
model of how math should be taught, and it was not what 
they had learned and could reuse. 

Smalltalk becomes interesting when the topic is systems 
architecture and design for reuse-both diffiiult topics to 
present in book form. Both require more preparation to 
teach than most teachers of first-year programming 
courses wish to devote. This situation is compounded by 
the shift to vocational training by the majority of 
educational institutions, causing one student at a 
southeastern university, who was panicked that he would 
not be able to find a job, to seek help over the Internet to 

stop his foolish professor from teaching Smalltalk rather 
than c++. 

Real customers look for business maturity and 
commitment, which should help us weather the storm 
created by emotion, insufficient tools and methods, 
and carpet baggers. But more directed effort to get 
schools teaching Smalltalk is needed There is not much 
short-tern money to the bottom line to solve this 
problem, but I do not see Smalltalk persisting without 
such an effort. 

6. Tom Love 

We have all seen Smalltalk transformed from the favored 
plaything of ivory tower computer scientists into the 
programming tool of choice for corporate computing. 
Many who are unaware of this transformation think of 
objective programming in general and Smalltalk 
specifically as bleeding edge esoterica; in fact, there is 
no better way to develop large-scale business 
applications. 

The good: Smallta&‘s advantages over other 
programming languages are numerous. First, there is the 
built-in superiority of objects: reusability, rapid 
prototyping, and easier maintenance. Second, Smalltalk 
brings to objects a mature, fully-integrated programming 
environment. This speeds development and encourages 
reusability. All of these advantages together lead to 
higher quality products and lower programming costs. 

Businesses that have adopted Smalltalk and used it with 
care and skill have realized tremendous savings in both 
time and money. This is well documented. And while 
successes have far outnumbered failures, there are 
examples of Smalltalk used poorly, of Smalltalk 
development projects that have fallen through, and of 
companies that have gone back to procedural 
programming. Without proper prepaM& programming 
in Smalltalk can be a daunting-even a doomed-exercise 
in frustration. 

The bad: Many lessons have been learned in twenty 
years of Smalltalk programming, and it’s important to 
know these to reap its advantages. 

Smalltalk has a difficult learning curve. While it is far 
easier to master than C++, generous train& time must 
be allocated for any switch to Smalltalk programming. 
This is perhaps the most important investment you will 
make in object-oriented programming. 

150 



Reuse is not free. Sharing objects is difticult without 
proper planning. Objects must be designed with care and 
reusability in mid. Failure to heed this will lead to 
wholesale rewriting of libraries, so that the chief 
productivity benefit of objects is lost. The object 
paradigm presents special challenges for management. 
Managers must be able to read and understand every line 
of code. Inadequate software management has been a 
common cause of failure. 

Time and space always matter. There is no excuse for 
bulky programs or slow execution. In this way, object 
programming is no different Finn procedural 
programming. 

These lessons can be summarized as The Seven Deadly 
Sins of Object Programming: 

1. Gluttony-Procedural programmers, lie Roman 
Gladiators, are rewarded for their excesses, but too much 
code will kill many development projects. Bulk is not 
better. Aim for leanness. 

2. Envy-I want what you’ve got and hate what I’ve got. 
The continual introduction of new products makes it 
easy to develop a love/hate relationship with tools. And 
while it is important to be quick to adopt those tools that 
can help speed development and improve quality, others 
must be avoided because of additional training times, 
unnecessary complexities, and inappropriateness to the 
job at hand. 

3. Desire (mst)-Inheritance is a powerful tool, but only 
when used judiciously. The desire to use inheritance 
indiscriminately must be curbed in favor of a planned 
approach to structure and reuse. Otherwise you end up 
with the object equivalent of spaghetti code. 

4. Anger-Object programming is a team effort, but when 
a group or team member indulges in one of the other six 
Deadly Sins, feelings of anger result. Courtesy and grace 
are required for successful teamwork. 

5. Sloth-Sloppy engineering leads to programs that 
perform poorly. Program optimization must be pursue!d 
with the same diligence as the creation of objects. 
Performance effects not only the success of the project, 
but also the entire corporate well-being. 

6. Avarice (greed)-Wealth is not gained by hoarding 
cleverly designed objects and nifty new algorithms or 
making them difficult for others to obtain. Sharing is one 
of the primary benefits in object programming. 

7, Pride-One is never too important or superior to learn 
from others or to take the time to become educated in 
new techniques and tools. Failure to train properly, to 

reuse the work of others, or to change to meet new 
challenges will bring certain doom. 

These Seven Deadly Programming Sins together can be 
remembered using the following acronym: GE D ASAP 
(Get Everything Done As Soon As Possible). 

The fuhwe: Predicting the future is difficult, yet 
planning for it is mandatory. Smalltalk has a few obvious 
shortcomings: too few commercial class libraries 
available, relatively immature object databases, and a 
paucity of trained Smalltalk programmers. Clearly, it is 
only a matter of time until these are overcome and 
forgotten. But what else will the future bring to 
Smalltalkprogmmming? 

One would hope to see a fully standard&d version of 
Smalltalk, but if the history of UNIX is any indication 
multiple standards will likely persist, and there will be 
intense competition to supply and upgrade the millions 
of copies of Smalltalk that will be in circulation by the 
end of the century. 

Smalltalk will benefit bum advances in hardware. Faster 
processors,moreRAM,andthesUndarduseoflarge 
color monitors all will make Smalhalk programming 
easier. More exciting though are the likely advances in 
full-motion video conferencing and massively parallel 
processing. These wilI make networking essential and 
multimedia an indispensable element in computing. 

Pure object languages, especially Smalltalk, will be the 
mm and will make widespread adoption of reusable 
components more likely. Nonlinear increases in both 
computing and programming power have never 
happened before. This will be an exciting decade. 

7. Dave Thomas 

The Pragmatic Reality: Smalltalk is successful today 
because it has a sound intellectual foundation whichhas 
matured in the hands of multiple implementors. 
researchers and most importantly application developers. 
If you have an ridiculous schedule on which to develop 
an application with vague and changing requirements 
and need to deploy it over night on multiple platforms 
what other choice is there? In my view Smalltalk makes 
building complex customer driven applications barely 
possible. 

The more worthy 00 competitors such as Eiffel, Trellis, 
Modula3 have lacked the commercial momentum of the 
more complex C++ leaving Smalltalk alone as the only 
serious alternative for those not engaged in systems 

151 



software. The Smalltalk community has won where the 
Forth, APL, Lisp communities have failed because the 
commtity has focused on building applications and 
tools which are needed to deliver those applications. 
Team programming, packaging, practical design 
approaches, interfaces to other languages, 
implementation of widely available PC platforms 
snubbed by the Lisp and APL community that felt they 
were not “real computers”. Smalltalk implementations 
remained close to each other allowing tedious by still 
minor conversion between different vendors. 

The Good: There is no feeling like that of shipping a 
successful product or application. Smalltalk technology 
from multiple vendors makes that possible, but good 
architecture and disciplined engineering are the real 
secret to success. Smalhalk allows the iteration of the 
design which means that much more of the essential 
architecture can last through the first release. 

The major reason that Smalltalk is attractive for complex 
business and engineering applications is that the level of 
discourse with Smalltalk is in the application domain 
The programming environment despite its age is still the 
only complete and open environment. To build even 
simple tools, other technologies force developers to use a 
plethora of command languages and programming 
languages to build tools and utilities. Smalltalk remains 
one of the most productive platforms for interactive tool 
construction. 

Tbe Bad: Successful Smalltalk development requires an 
architecture and a disciplined team that work as a 
concurrent engineering team to build a product. In our 
experience the major problems have been the inability to 
“see the big picture” and “focus and finish the &tails”. 

OOPS and Smalltalk require an investment, if you don’t 
make it you will waste our effort. It is far better to build 
3 successful 4-8 person teams than 300 mediocre 3 or 
4GL programmers who are using Smalltalk as a 4GL. 

There has been an over emphasis of the importance of 
surface and scaffolding technology such as GUI builders 
and database interfaces. They are clearly useful and 
necessary, but not nearly as important as a business 
architecture and model. 

The Smalltalk implementations while stable utilize 
terminology which is neither meaningful to a computer 
scientist or an commercial programmer. Many of the 
libraries are showing the age, not only in their names but 
in their algorithms and their organization. The existing 
implementations contain too many had examples mixed 
with the many new ones. Unforhmate lyitseemstobe 
the bad ones that people copy. Despite the existence of 
research and commercial implementations of Name 
Scopes (packages, modules, projects, applications) there 
is still no widespread implementation of separate name 
spaces which are needed to reduce accidental library 
name space collision. 34 years after ALGOL 60 you 
would think that Smalltalk could have a publication 
format. 

Only recently have the cormnercial Smalltalk platforms 
stabilized enough to provide a commercial platform form 
component developers, yet there is no agree upon 
commercial binary format for them to distribute their 
libraries. 

Theseweaknessesdimincomparisontothepoorquality 
and performance of the mainstream operating system 
platforms, and windowing systems. It is really 
unforttmate we have not moved beyond operating 
systems into en viroments which allow sofhvare to grow 
rather than be blasted out of granite and stuck together 
with mud 

The Future: In 1988 I said that in the 1990s. Smalltalk 
will run on everything fium an “mainframe to a watch”. 
In the next 5 years multiprocessor and distributed 
Smalltalk environments will provide application level 
control of complex multi-processors. I remain confident 
that both will happen within the next two years. 

The emerging ANSI Smalltalk standard promises to 
provide a solid base for the language based on successful 
vendor implementations specified using modern protocol 
based techniques which leave open alternative compliant 
implementations. smallws will support industry 
standards and hopefully begin to influence their 
direction. There will be new tools for refactoring, 
metrics, testing, analysis and design but most 
importantly there will be commercial libraries for 
business objects which raise the level of discourse above 
“ordered collection” to “sales order” and “waveform”. 

Finally there are some applications such as embedded 
systems, high perfolmanc e transaction processing where 
off the shelf Smalltalk technology just isn’t ready. These 
systems can only be developed with custom technology 
and mixed C, COBOL programming. 

152 


