
Verifying Correct Usage of Atomic Blocks Using Access Permissions

Nels E. Beckman
Carnegie Mellon University

nb eck man@cs .cmu.edu

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Verification

1. Introduction
While the number of cores in the CPUs of modern computers
has been steadily increasing, improvements in the way we
program concurrent applications have proceeded at a slower
pace. One idea that seems to have gained a fair amount of
traction is transactional memory (TM). Transactional mem-
ory is a means of simplifying mutual exclusion in shared-
memory applications. While it is a complex topic, at its core,
transactional memory provides a simple language primitive
to programmers, the atomic block. Code executing inside of
the atomic block will execute as if no other threads were ex-
ecuting at the same time.

c l a s s Connec t ion {
boolean i s C o n n e c t e d () {

a tomic : { re tu rn t h i s . s o c k e t != n u l l } ;
}}
. . .

}
boolean t rySendMsg (S t r i n g msg , Connec t i on c)
{

i f (c . i s C o n n e c t e d ()) {
c . send (msg) ;
re tu rn tru e ;

}
re tu rn f a l s e ;

}

Figure 1. An example where a race condition could occur
at the level of program logic.

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

But as the code shown in Figure 1 illustrates, while trans-
actional memory makes programming concurrent applica-
tions easier, it remains a difficult and error-prone task. This
program is a short excerpt from a multi-threaded, networked
application where many threads hold reference to a single
Connection object, an abstraction of a host-to-host connec-
tion. Each thread may send messages, and if necessary, dis-
connect the connection. The important thing to note is that
even if a programmer consistently accesses all thread-shared
memory inside of an atomic block, race conditions can still
occur. Here, in between the time when one thread checks
that the connection is open and sends a message across that
connection, another thread could disconnect the connection,
setting the socket field of Connection to null, resulting in
an eventual null-pointer dereference.

2. Proposed Thesis Plan
For my thesis, I plan to develop an analysis based on access
permissions (Bierhoff and Aldrich 2007) to solve this sort of
race condition.

Thesis Statement The goal of this thesis is to show that ac-
cess permissions, which statically describe the aliasing be-
havior of program references in object-oriented programs,
provide a good basis for the verification of the implementa-
tion and usage of object protocols in concurrent systems.

2.1 Approach
In work that already begun (Beckman et al. 2008), we dis-
covered that by recasting access permissions (Bierhoff and
Aldrich 2007), which were originally developed as a means
of statically controlling aliasing patterns, we can soundly
approximate thread-sharing in a concurrent context. This in
turn allowed us to to verify object protocol implementation
and usage in multi-threaded code. This verification helps de-
velopers ensure the absence of “application-level” race con-
ditions; race conditions that exist at the level of program
logic. This work uses the atomic block, a primitive provided
by transactional memory systems, as its mutual exclusion
primitive. We have developed a type system, proven sound,
that formalizes our verification methodology. We have also
developed a modular, branch sensitive data-flow analysis for
the static verification of Java source code based on the for-
mal rules of this system.

905

While a full description of access permissions is outside
the scope of this abstract, it is quite helpful to understand the
five basic permissions.
Unique A unique reference points to an object that can only
be read and modified by a single thread.
Full A full to a reference allows one thread to modify an
object that several others can concurrently read.
Immutable An immutable reference points to an object that
can be read by many threads but modified by none.
Share A share reference points to an object that can be
concurrently read and modified by any thread in the system.
Pure A pure reference is a reference to an object that can be
read by the given thread, but could be modified concurrently
by other threads.

Software annotated with these permissions can be checked
for consistency, at which point object protocol specifications
can be modularly verified. Object protocols are abstract de-
scriptions of the states that an object can be in, and determine
the methods that can legally be called when objects are in
a given state. The idea of statically checking object proto-
col conformance is known as “type-state” checking. As an
example, consider the following type-state specification for
the send and isConnected methods of Figure 1:
@Pure
@ T r u e I n d i c a t e s (” c o n n e c t e d ”)
@ F a l s e I n d i c a t e s (” d i s c o n n e c t e d ”)
boolean i s C o n n e c t e d () { . . . }

@Share (r e q u i r e s =” c o n n e c t e d ” ,
e n s u r e s =” c o n n e c t e d ”)

void send (S t r i n g s t r) { . . . }

The first specification states that, in order call the is-

Connected method, the caller must at least have a pure
(non-modifying) permission to the receiver, but that object
can be in any state. Depending on whether the method re-
turns true or false, at the return the receiver will be known to
be in either the connected or disconnected state. The second
specification states that, in order to call the send method,
the caller must have a share (modifying) permission to the
receiver and that object must be known to be in the con-
nected state. Putting it all together, the analysis itself works
by tracking these states but discarding any known state in-
formation for objects whose permissions indicate they could
potentially be modified by other threads (that is, pure and
share permissions). At the moment, I have formalized and
proven sound this analysis, and we are in the early stages of
implementing a prototype checker.

2.2 Remaining Work and Proposed Timeline
In between my proposal date (Fall, 2008) and my ideal
date of defense (Spring 2010), there are several major tasks
that need to be accomplished. I need to complete a robust
implementation of a checker for the system (3 months).
Currently an implementation exists that works on smaller
examples, but needs to be improved for the purposes of

larger case studies. Turning the system of typing rules into a
data-flow analysis is a non-trivial problem, and some work
remains to be done in order to support the full specifications
we describe. I plan to then evaluate this tool on six to eight
minor case studies (3 months). The experience that I gain
verifying these smaller programs I will then use to improve
the design of the analysis and implementation (3 months).
At the end of this phase, I will begin a series of two to four
larger case studies (6 months) to fully evaluate the precision
and overhead of our approach. Finally, I will write my thesis
document and defend (4 months). In total, I plan on spending
19 months from proposal to defense.

3. Benefit of Doctoral Symposium
While I believe that my work thus far is a strong founda-
tion for a thesis, I also believe that I am at somewhat of a
crossroads regarding the structure of the rest of my thesis.
I strongly believe that participation in the OOPSLA Doc-
toral Symposium will help me settle on a direction. The
essence of my dilemma is the following: Should I spend sig-
nificant effort evaluating my existing work on real programs
or should I continue to supplement my analysis with fea-
tures that could help demonstrate the important significance
of software transactional memory to object-oriented verifi-
cation?

In favor of the former approach is the importance of ver-
ifying the practicability of a theoretical approach. Given the
questions I have already received from peers, it is not clear
that the analysis as it stands is precise enough to verify real
programs, nor that the sorts of behavioral properties it veri-
fies (type-state) are all that common in concurrent programs.
A large empirical study would help answer these questions
as well as suggest practically motivated improvements. On
the other hand, I believe there are specific technical means
by which I can help to improve the quality of code pro-
grammers write by exploiting the interplay between verifica-
tion and TM. For example, our analysis implies certain opti-
mizations that could be used to reduce the overhead of TM
implementations. Also, by extending our analysis, I believe
that we can alleviate the loss of composability that normally
comes with the introduction of blocking primitives into TM
systems. A thesis that fully explored these and other features
inspired by this interplay would be extremely interesting, but
most likely less well-validated. I believe that by participat-
ing in OOPSLA’s Doctoral Symposium, I will receive the
guidance necessary to choose a path forward.

References
Nels Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying

correct usage of atomic blocks and typestate. In OOPSLA, 2008.
Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking

of aliased objects. In OOPSLA, 2007.

906

