
An Object-Oriented Modeling Environment*

Thomas W. Page, Jr., Steven E. Berson, William C. Cheng, Richard R.

Department of Computer Science
University of California Los Angeles

Muntz

Abstract

Many tools and techniques exist for the modeling
and analysis of computer and communication sys-
tems. These tools are often complex and tailored to a
narrow range of problems. The system analysis task
often requires coordinated use of multiple tools and
techniques which is not supported by currently avail-
able systems. The Tangram project goal is to develop
an environment which makes a large set of tools and
techniques readily accessible and is easily tailored to
specialized applications.

This system has been prototyped in an object-
oriented extension to Prolog. The impact that these
two paradigms, logic and objects, have had on the
design is discussed. Several example applications are
presented to illustrate the extensibility of the system.

1 Introduction

Will an increase in the discount rate drive this coun-
try into a recession? Is the weather going to be good
next year for growing avocados? Is the satellite likely
to remain operational for the entire mission time?
Getting answers to this type of question can be of
critical importance. Unfortunately, it is generally in-
feasible to conduct an experiment to answer these
questions without committing to the very course of
action whose outcome is in doubt. Instead, we try to

*This work was partially supported by a MICRO grant from
the University of California and the Hughes Aircraft Company.

Permission to copy without fee aH or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0287 $1.50

capture the behavior of these types of systems in a
model. Querying this model gives predictions of the
future. These predictions can be anywhere from ex-
act to wildly inaccurate depending on how well the
model represents the essential behavior of the real
world system. Experience with the model as to how
well it explains previous behavior can give confidence
in its predictions of the future.

While there have been tremendous advances in the
mathematical techniques, the practice of modeling
has advanced more slowly. Modeling typically re-
quires specialized skills; knowledge of both the prob-
lem domain and a solution package. It is very labor
intensive. The process involves an expert abstracting
the application domain, selecting a solution method
or solver, translating the abstraction into the input
format of the solver, and then interpreting the nu-
merical results of the solution. The solution tools
typically have a very primitive user interface requir-
ing input in a rigid format. An expert is often only
highly proficient in one tool; “if you only have a ham-
mer, everything looks like a nail.” In addition, there
is a shortage of experts and using the ones there are
is costly.

The answer to these problems is a whole new gener-
ation of modeling tools. Driven by the personal com-
puter revolution and by wider acceptance of primitive
modeling tools such as spreadsheets and databases,
the opportunity and the need for an advanced envi-
ronment which can harness powerful modeling tools
for non experts has never been greater. This pa-
per proposes an architecture for such an advanced
modeling environment. We are building Tangram,
a prototype of such a system, using logic program-
ming extended to support object-oriented program-
ming [PAGE89,MUNT88].

1.1 Mathematical Modeling

Mathematical modeling spans a large variety of tech-
niques; queueing theory, mathematical programming,

October 1-6, 1989 OOPSLA ‘89 Proceedings 287

Markov chains, semi-Markov models, etc. In the same
sense that this body of knowledge is organized into
areas and subareas, one of our goals in Tangram is
to organize modeling knowledge into modules that
we call domains. A doma.in encompasses a class of
models, a set of solution methods (solvers) and an
interpreter for queries. The idea is that models are
created “in a domain” and any such model must be
a member of the class of model associated with that
domain. The choice of what class of models a do-
main encompasses is a design decision. Basically, one
would like to (a) incorporate a useful, general class of
models and (b) subsume within the abstraction pro-
vided by the domain a significant amount of detail.
As a simple example, suppose we construct a domain
that deals with finite Markov chains. This domain
may have a number of different solution techniques
available; e.g. some may be appropriat,e for nearly
decomposable chains, others for sparse chains, etc.
The idea of the domain abstmction is that a client
should not have to be concerned about details such as
how to choose the best solution methods, but &her
just ask for a solution and have the system choose the
appropriate solver.

When the domain supports wha.t is a classical
mathematical abstraction (e.g. Markov chain, lin-
ear progxamming, queueing network, etc.) then it
is perhaps more appropriate to call this a modeling
domain. A specialization-generaliza.tion hiera.rchy of
these domains occurs quite naturally. Further, as we
shall demonstrate later in the paper, it is also con-
venient to form domains for particular applications,
which we call application domahs.

In addition to the central concept of domains, the
following constitute the goals of the Tangra.m system
which we believe are essential.

Extensibility: The system must be able to cope
with a wide variety of a.pplicat.ion area.s. In our
view, an applica.tion domain will be customized
by an expert for a non-expert, to use. New appli-
cations may be crea.ted by specia.lizing existing
ones. New solution techniques must be incor-
porated in the system without modifying exist-
ing models or knowledge bases and be employed
when appropriate.

User-friendliness: The user interface should ma.ke
extensive use of graphics for defining models,
queries, and expressing results. The form of the
graphical communications should he customiz-
able for each application. Applications should
provide their own palette of objects customary
to their domain.

Flexibility: It must handle both top-down and
bottom-up modeling. In the top-down view,
models are successively refined into more de-
tailed sub-models. The bottom-up approach
abstracts detailed low-level models into simpler
representations.

Meta-modeling: The environment must function
as a model-base management system for creat-
ing, storing, retrieving, updating, sharing, and
querying models.

The following simple example is used to illustrate
some of these features as they currently exist in Tan-
gram.

1.2 Example Modeling Application

The Tangram system contains several base mod-
eling domains (e.g. queueing networks, Markov
chains) from which specialized problem-oriented en-
vironments may be created. We consider a trivial
example of an environment for creating models of car-
washes, similar to those in [GOLD831 and [MlSR86],
chosen to be easily understandable given space con-
straints. The car-wash domain is constructed (by
an expert) as a specialization of the system’s ba-
sic queueing network domain. It provides a set of
objects from which to build car-wash models, con-
sistency constraints, a query language, and rules for
translating a car-wash model into one the system can
solve.

The user first selects the application domain (from
a pull-down menu). Graphical objects are then in-
stantiated by the user from a palette of icons repre-
senting object classes provided by the creator of the
domain. Figure 1 shows a simple model constructed
in the car-wash domain using Tangram’s graphical
int.erfa.ce. Model objects include the at,tenda.nt,s, cal
washing fa.cilities (two shown), and a hand waxing
station. In this particular example the user specifies
tha.t 10 percent of customers want their cars waxed
(modeled by the branching probabilities at the exits
of the car washing facilities), and that customers ar-
rive at the attendant at a rate of 20 per hour. In
this case, the very primitive query language consists
of a generic query object (icon at upper left corner)
with the a.ttached key word avg-wait= requesting the
average customer waiting time.

When the user selects solve from the pull-down
menu (not shown), the model is sent the solve mes-
sage. The rules provided by the domain expert can be
viewed as an expert system which examines the model
and the query and generates appropriate sub-models.

288 OOPSLA ‘89 Proceedings October 1-6, 1989

Figure 1: A Model in the Car-Wash Domain

mean,servlce-tlme=l'

avgwwalt(wash)=

.‘ .,',',.~.~.-.

Figure 2: Queueing Model of the Car-Wash

In this case, the system simply derives .an equiva,lent
queueing network model as shown in Figure 2. 1

In this queueing model, the customer arriva,l is
modeled as a “source” with Poisson arrival with a rate
of 0.3 per minute (20 per hour). The attendant and
car washing facilities are aggregated and modeled as a
multi-server (whose name is wash) with mean service
time of 1 minute. The hand waxing facility is mod-
eled as a first-in-first-out server with mean service
time 15. The query to the queueing model becomes
a function of the average waiting time at the *wash’
queue and the ‘wax’ queue.

The basic queueing network domain is able to solve
the derived queueing model. The queueing theory
expert knowledge base embedded in the queueing do-

‘Tangram does not currently generate the graphical repre-
sentation of the derived queueing model; it exists only inter-
nally. Such a representation could be generated and would be
useful for model debugging and explanation,

main is exploited in the car-wash domain by trans-
forming the original problem into a queueing prob-
lem. The answer to the original query is computed
from the answers to the sub-model queries; in this
case:

nrlgm~~if. = avgmqwash) + .l(uvy-wuil(~war)).

To illustrate the flexibility required of the mod-
eling system, suppose we are now interested in the
a,va.ila.bility of the car-wash; car washing machinery
may break down and the car waxer may call in sick.
In this domain’s simple query language, the user at-
taches availability= to the query object and re-solves
the model. The domain expert system reinterprets
the car-wash model in the reliability domain generat-
ing a.n instance of a reliability model (graphical repre-
sentation omitted due to space constraints). The reli-
ability domain, already provided by the base system,

October 1-6, 1989 OOPSLA ‘89 Proceedings 289

solves the model with Markov solution techrriques.
Further, we can imagine extending the car-wash

domain to handle profit and loss queries. We could
model the effect of throughput on reliability (the
waxing person becomes sick easier when he has to
work above some threshold) or add a backup waxer
who works slower, but is healthier. Solving complex
models generally implies approximations and coordi-
nated use of mathematical tools in problem depen-
dent ways. An advanced modeling environment en-
courages experimentation with approximate analytic
techniques such as decomposing the model and itera
tively solving the sub-models (relaxation). In general,
these sub-models are solved in different domains uti-
lizing their own solution techniques, possibly using
further decomposition. When the analysis procedure
is validated through comparison with measurement
data or simulation, it can be incorporated in the do-
main knowledge base.

1.3 Related Work

Currently, most modeling pa.cka.ges are designed ei-
ther around one application (e.g. communica.tion net-
works) or around one solver (e.g. simulation). Tools
designed for analyzing the performance and relia.bility
of computer and communication networks are most
similar to Tangram’s. While many packages exist
for modeling reliability (e.g. SAVE [GOYAsG] from
IBM, HARP [BAVU87] and SHARPE [SAHNS?]
from Duke University, ARIES [MAKA82] from UCLA
and SURF [COST811 from CNRS), all have the same
problem. They provide a convenient interface for
models that fit into the anticipated mode but no oth-
ers. Tools for modeling queueing networks have sim-
ilar problems (e.g. PAW [MELA85], QNA [WHIT831
and PANACEA [RAMA82] from Bell Labs, RESQ
[SAUE81,SAUE84] from IBM and PAWS [BERR82]
from University of Texas). RESQ offers both exact
solution for a certain class of models and simulation
for others, but the structure of the models is differ-
ent depending on the analysis method. PANACEA
and PAW go a step further and use the same lan-
guage for several different analysis methods, but ha.ve
no facilities for easily adding new modeling primi-
tives or new analysis methods. At a.nother extreme
are tools such as petri nets [MOLL82,MARS84] tha.t
provide generality by using only the most primitive
constructs. This places too much burden on the mod-
eler. More recent efforts are starting to provide better
tools. Structured Modeling [GEOF87] is a.ttempting
to provide a general high level interface for 1inea.r pro-
gramming and other operations resea.rch tools. ANA-
LYTICOL [ANAL851 attempts to provide a high level

interfa.ce for statistical analysis. Finally, [BERS87]
describes an environment for generating and analyz-
ing Markov chains using an object-oriented approach.

A discussion of related work on object-oriented
Prolog is beyond the scope of this paper. The
interested reader is referred to [KAHN86,FUKU86,
GULL85,MCCA87].

1.4 Organization of the Paper

This introduction has motivated the need for an ad-
vanced environment for modeling and has given an
example using the prototype Tangram system. The
following section presents our approach of encapsu-
lating models and solvers in domains using object-
oriented logic programming. Section three details our
object-oriented Prolog language in which the Tan-
gram system is built and discusses the relevance of
this hybrid paradigm language for modeling. Section
four describes the architecture and current state of
our prototype and conclusions follow in section five.

2 Smart Models

The key to realizing the myriad design goals for a
multi-domain modeling environment is the concept
of smart models. A smart model must be able to
respond to messages by performing high-level oper-
ations on itself: solve yourself, display yourself, sug-
gest a solution technique, etc. We call the models
“smart” because much of the burden of solving mod-
els is shifted off of the user onto the system. In order
to create a model in an existing application domain,
a user need only know what base objects the domain
provides, how to connect them, and the query lan-
guage for this type of model. The model has the
intelligence (inherited from its domain) to select an
a.ppropriate solver, translate itself into the solver’s
input format, interpret the output of the solver, and
answer the query.

The concept of smart models is realized in Tangram
via the novel combination of several powerful ideas.
The use of object-oriented modeling organized in do-
rna.ins, declara.tive programming, Lion-deternlinisll~,
and a. new variation on multiple inheritance called
sem.nntic binding combine to make possible a very
flexible modeling environment.

2.1 Object-Oriented Modeling

Foremost for the success of the system is the object-
oriented structure of the modeling environment. It
is na,tural to represent entities in an application do-
main as objects which respond to a well defined set of

290 OOPSLA ‘89 Proceedings October 1-6, 1989

messages. For example, in a flexible manufa.cturing
system model, domain objects might be tools, parts,
and bins. New types of objects may be created by
specializing existing ones. Complex subsystems can
be modeled with composite objects (also called sub-
models) and can be used in other models. A model
as a whole is itself a composite object which responds
to a set of messages.

Solvers in Tangram are also represented as objects.
A solver must know what types of models it is ca.pable
of solving and be able to estimate its complexity and
accuracy. The object-oriented approach to both mod-
els and solvers immediately obviates the monolit,hic
nature of most modeling tools, naturally distributing
model specifications and integrating multiple solvers.

1 Domain 1

(1 Objects J
Solvers

Figure 3: Conceptual Diagram of a Doma.in

Models are declared within domains. A domain is
an environment which encapsulates the object defini-
tions, query la.nguage, solvers, and heuristic knowl-
edge base which combine to make up a customized
package for models in a particular a.pplication. The
knowledge base contains rules for checking the consis-
tency (well-formedness) of a model, selecting a solver
for a given model and query, a.nd selecting an a.p-
propriate representation for results. Domains may be
customized by expert users to create problem-specific
domains for use by novices. For example, an envi-
ronment for modeling the reliability characteristics
of computer systems with repairable components has
been created in Tangram as a specialization of a gen-
eral Markov chain domain. Specializing a domain in-
volves declaring rules for transforming a model and
a query in the application domain into a sub-model
and query in a more general domain.

Domain knowledge bases in Tangram are not imple-
mented as separate software components. Ra.ther, the
knowledge is distributed among the objects in each
domain. For example, solvers must “know” their own
complexity; model objects must “know” how to dis-
play themselves. These objects must provide methods

which query their portion of the domain knowledge.
Details of how this is implemented are discussed in
section four.

2.2 Semantic Binding

When an object receives a message, it is requested to
perform a function, identified by the message’s name,
on itself. For example, a matrix may be sent the
message “invert”. However, there may be more than
one implementation of the same logical function, e.g.
one invert procedure for small matrices and another
for large, sparse matrices. In our environment, we
wish to be able to maintain an extensible tool kit of
solvers; more than one solver may be applicable. In
a.ddition, the most appropriate solver is generally a
function of the specific model structure, parameters,
values to solve for, etc. Given an object and the name
of a function, the system must dynamically bind to
an implementation of the function.

In traditional object-oriented programming, given
an object’s class, a function name, and an inheritance
lattice, the system performs the binding to an imple-
mentation of a method. To accommodate more than
one implementation, either the class must be further
specialized or the logic to select which version to use
must be built into the method. The former is insuf-
ficient because it may not be known when the ob-
ject is created which version is appropriate. If more
tha.n one is applicable, the best choice is often a non-
trivial function of the object’s state, not simply its
class. The latter sacrifices the flexibility of adding
new implementations of the function without chang-
ing existing methods.

In general, a program must run to choose the cor-
rect binding of a function name to an implementation.
We term this process semantic binding. In Tangram,
connecting a solver to a model for a given query in-
volves running a domain specific expert system which
queries the model and solvers and chooses the most
a.ppropria.te binding. We call this binding program
a.n expert system firstly because the choice of a so-
lution technique for a particular model is an expert
decision; a naive user, for example, need not be con-
cerned with whether or not his queueing network is
product-form. Secondly, the expert knowledge used
to select a solver is most often best expressed in the
form of rules. Such declarative knowledge representa-
tion is highly extensible; adding a new solver involves
a.dding rules for that solver, not modifying rules. This
is the programming style of an expert system.

Section four describes how semantic binding is
implement,ed in Ta.ngram using conventional object-
oriented binding. For another view on varying object-

October 1-6, 1989 OOPSLA ‘89 Proceedings 291

oriented name binding rules see [MINS87]. The next
section presents the object-orient*ed extensions of Pro-
log upon which the Tangram environment is con-
structed.

3 Object-Oriented Prolog

It is crucial to the success of the modeling environ-
ment that we harness the advantages of both the logic
and object-oriented paradigms. Declarative program-
ming is essential to rapidly prototyping the behavior
of model objects. Such rapid prototyping is neces-
sary as one of the primary characteristics of a mod-
eling environment is extreme flexibility. Further, the
domain expertise is generally most conveniently and
flexibly expressed as rules. To this end, we have speci-
fied and implemented an extended logic programming
language, Object-Oriented Prolog (0-OP) and used
this language to implement the Tangram modeling
environment.2 The remainder of this section presents
details of this hybrid paradigm language.

3.1 Combining Prolog and Objects

There are two fundamental ways to modula.rize pro-
grams. Programs may be divided into packa.ges of
related functions usually called libraries (e.g. a math
library, a statistics library, a string.5 library). Alter-
natively, we may group functions a.ccording to the set
of objects they may be applied to. The same function
name may bind to different code when applied to dif-
ferent objects. This is the object-oriented approach.

Centra.1 to object-oriented programming is the
equation Module _= Class [MEYE%]. Object-
oriented programming in Prolog amounts to using
modules to encapsulate objects, plus a name binding
facility for inheritance. Sending a messa.ge is inter-
preted as proving a goal in a module. While the two
paradigms may be freely mixed in 0-OP, it is natural
to organize high levels of a pr0gra.m in an object-
oriented (procedural) framework, while employing a.

more declara.tive style for the small, tight,ly circum-
scribed methods which implement object beha.vior.
In this hybrid para.digm each style may be used to
its best advantage: Prolog for programming in-the-
small, and objects for progra.mming in-the-large.

‘While our jmplementatjon js based on our own addition of
a modules facility to the Warren Abstract Machine[WARR83],
the 0-OP interpreter may be quickly adapted for any Prolog
with a basic modules facility.

3.2 The Object-Oriented Prolog Lan-

le!Fw

Object-oriented Prolog is a super-set of standard Pro-
log. The infix predicate send/2 may be freely em-
bedded in a pr0gra.m. Informally, the semantics of a
goal send(Object. Message(Args)), are “prove the goal
Message with arguments Args in the context associ-
ated with Object.” For each object instance, there is
a module of Prolog code which contains the instance
varia.bles of that object, including the object identi-
fier of its class (the “isa” pointer). For each class,
there is also a module containing both instance vari-
ables (in particular a pointer to its super class) and
method code.

When Prolog tries to prove the goal send(Object,

Message(Args)), it first locates the module associated
with Object and uses its “isa” pointer to locate the
module associated with that object’s class. If an im-
plementation for the Message(Args) occurs in that
cla.ss, it is used to attempt to prove the goal and
ma.y succeed (and thus bind some of the arguments)
or fa.il causing backtracking. If none is found, the in-
terpreter looks for the method in the super class. The
search continues up the hierarchy until an implemen-
tation is found or the root object is reached, causing
the send goa.l to fail, prompting backtracking.

Multiple inherita.nce is supported via backtracking.
There may be more than one “isa” or “super” in-
st,ance variable in an object. The interpreter back-
tra.cks through the multiple inheritance paths if more
than one exists, the ordering of clauses determining
the order in which results are found.

New objects are created via a message to a
class. While each class may specialize the new-object

method, in its general form it requires in its argu-
ments the object identifier of the new object and a list
of its initial instance variables. If the object identi-
fier is uninstantiated, an internally generated unique
identifier is used. New classes are created by send-
ing a message to the “class” object specifying code

for the class’s methods. Instance variables of specific
object instances are accessed from methods inherited
from ancest,or cla.sses running on the object’s behalf
via. the goal inst(VariableName(Args)). Instance vari-
ables may be inherited from ancestor classes allowing
default values. Cha.nges in object states are accom-
plished by methods which assert or retract instance
variables in the object’s module.

Objects may be made persistent via the save mes-
sage which causes a summary of their state to be
recorded on disk. Dormant (disk resident) objects are
addressed just as active, main-memory objects using
their object identifier. If a. dormant object is sent a

292 OOPSLA ‘89 Proceedings October I-6, 1989

message, the system transparently locates the object
on disk and creates a main-memory representation.
Thus the environment incorpora.tes a very primitive
object-oriented database.

Prolog’s powerful knowledge representation and
knowledge base querying capabilities are used in Tan-
gram by specifying object behaviors via Prolog rules.
The built-in unificalion pattern matching in Prolog
allows very general rules to be expressed quite sim-
ply. Solution packages written in other langua.ges may
be encapsulated within Prolog procedures using the
foreign function interface. By combining rule-based
specification with object-oriented structuring a,nd in-
heritance, 0-OP is an ideal language for building a
smart modeling environment. The next section de-
scribes the architecture of Tangram and the current
status of the system.

4 The Tangram Modeling Sys-
tem

A prototype of the Tangram object-oriented model-
ing system is operationa. on SUN 3/GOs. The user can
construct models, define new objects, and query mod-
els graphically. Our immediate applications are in
computer systems performance modeling and our first
domains were chosen to support this area’s queueing
network models and Markov chain analysis. In the
queueing network domain, we have incorporated sev-
eral exact and approximate analytic solvers. In addi-
tion, animated simulation is available. The Markov
chain domain uses Prolog’s backtra.cking to generate
a set of reachable states of the model and the state
transition rate matrix. Several numeric solvers for
Markov chains are present. A specia,lized reliabil-
ity analysis domain for modeling repaira.ble computer
systems is operational on top of the Markov cha.in

domain. Each domain was built in a very short time
frame (2 to 3 man-weeks).

4.1 The Architecture of Tangram

Figure 4 shows the basic components of the Tangram
modeling system. Rectangular boxes are software
components and ovals are classes and object instances
inside the Object-Oriented Prolog language.

In the Graphical Front-End, models are represented
by a collection of icons (graphical representations of
objects) and lines (relationships among icons) with
attributes (graphical instance variables) attached to
them as in Figure 1. Models are constructed with a
MacDraw3-like user interface (all figures in this pa-

3MacDraw is a trademark of Apple Computer Inc.

per are generated with this front-end tool), with ob-
ject orientation extensions, entirely implemented in
C running in the X Window System4. The graph-
ics interface also supports model hierarchies in which
sub-models may be represented by icons and used in
higher level models.

In our prototype implementation, after the graph-
ical representation of the model is specified, com-
mands in 0-OP to create the objects are generated
by a translator and batched together to be sent to
the object system. In the future, the front-end will
be implemented in 0-OP; instantiation at the front-
end will cause immediate instantiation in the object
system.

4.2 Sample Interaction

We again use the car-wash example to illustrate the
features of the Tangram prototype. When the user se-
lects solve from the pull-down menu after composing
the model shown in Figure 1, the translator gener-
ates the corresponding model and associated objects
(Figure 6) in the object system. The model is sent
the avg-wait query.

The class of all models in the car-wash domain con-
tains a query method which is inherited by this model
instance. The query method invokes the car-wash
domain expert system. From the constituents of the
model and the query posed, the domain expert system
generates 0-OP code as shown in Figure 5 to create a
queueing model and sends it a list of queries. Figure
6 shows part of the object hierarchy after the queue-
ing model is created. Ovals represent classes and
boxes are object instances with instance variables.
The small tabs on top of the objects depict, object
IDS; internally generated IDS are showu with single
quotes. Each new-object message in Figure 5 causes
an insta.nce of the specified class to be created. The
first argument of new-object is bound to the object ID
of the newly created instance and the second argu-
ment specifies a list of initial instance variables. The
add-center message registers a list of queue objects
with the model object, and add-routing specifies a list
of routes between queues with associated branching
probabilities. Finally, the query(Queries,Results) mes-
sage causes Ml to solve itself, answering the queries
specified in the first argument.

MI inherits the query method from the class of all
queueing models in the queueing network domain.
The method invokes the queueing domain expert sys
tern which deduces that this model can be solved

4X Window System is a trademark of the Massachusetts
Institute of Technology.

October l-6, 1989 OOPSLA ‘89 Proceedings 293

,--J Object Oriented Prolog ~~ 1
I

. .

L cmds/msgs-

Figure

send
-T-Y

The Architecture of Tangram

invbkes

bbjecg

queueing-model send new-object(M1, 0).
source send new-object(SrcObj, [distr(poisson), rate(O.3)]).
ms send new-object(MsObj, [meanzervice_time(l),num5ervers(2)]).

fifo send new-object(FifoObj, [meanxervice_time(l5)]).
sink send new-object(SinkObj, 0).

Ml send add-center([SrcObj,MsObj,FifoObj,SinkObj]).
Ml send add-routing([route(SrcObj,MsObj,l.O), route(MsObj,FifoObj,O.l),

route(MsObj,SinkObj,0.9), route(FifoObj,SinkObj,l.O)).
Ml send query([avg-wait(MsObj),avg-wait(FifoObj)], Results).

Results = [1.023, 27.2731

directly using numerical solvers. Each solver imple-
ments a query(Model,Queries,Results) method which

binds Results to the list of numerical values of the an-
swers to Queries for Model. The domain expert sys-
tem tries to semantically bind the query message sent
to the Ml with the query methods of the numerical
solvers in the domain.

To accomplish this, the domain expert system asks
each element of the domain’s list of candidate solvers
(implemented as the collection object “q-solvers” in
Figure 6) to estimate the complexity of answering the
query. The solver with the smallest complexity mea-
sure is selected and its query method is semantically
bound to the query message sent to Ml. The selected
solver is sent the message query(Ml,Queries,Results)
which will bind Results to a list containing the aver-

age waiting time for the car wash a.nd the car wa.x
facilities.

If the queueing model is more complicated and can
not be solved directly with numerical solvers, more
sophisticated techniques such as decomposition can
be invoked to solve the model. Once the queueing
model has solved itself, the car-wash domain expert
system uses the results to compute the answer to the

original query and updates the display in the front-
end.

5 Conclusions

We began with the goal of creating a modeling system
which could accommodate a variety of analytic and
simulation modeling techniques and would be easily
extensible with respect to both integrating new solu-
tion techniques and tailoring the system to special-
ized applications. In support of these goals we devel-
oped a design philosophy that combines features from
both the object-oriented and the logic programming
paradigms. We introduced the notion of ‘&smart mod-
els” which allows us to think of models which are not
rnerely passive but rather can respond to high level
queries to solve themselves, suggest solution meth-
ods, et.c. This is accomplished by creating models in
a “modeling domain” from which a model instance
inherits knowledge of how to solve itself, etc.

A prototype of the system exists and is being used.
It currently features modeling domains for queueing
networks and Markov chains. Several specialized do-

Figure 5: Sa.mple 0-OP Code

294 OOPSLA ‘89 Proceedings October 1-6, 1989

Figure 6: Part of Object Hierarchy Containing A Queueing Model

mains (e.g. reliability models) have been built, on t,he
basic system. We have found it very easy to add new
solution modules to existing domains, create new do-
mains, or specializing existing domains. In the near
future we expect the system to expand quickly. We
will be adding domains for analysis of distributed
algorithms, load balancing, etc. We also expect a
quickly expanding set of users from outside the im-
plementation group. The expanding user base and
range of applications will test our goals of providing
a sufficiently flexible and powerful system satisfying
diverse needs. While this remains to be verified, our
experience thus far has been quite positive.

Acknowledgements

The authors wish to acknowledge the contributions of
Gary Rozenblat, Leana Golubchik, and Jon Edwards
to the implementation of the Tangram modeling sys-
tem.

References

[ANAL851 “ANALYTICOL - An Analytical Com-
puting Environment,” AT&T Tech,nical
Journal, Vol. 64, No. 9, November 1985.

[BAVU87] S. 3. B avuso, J. B. Dugan, K. S. Trivedi,
E. M. Rothmann, and W. E. Smith,

[BERR82]

[BERS87]

[COSTS11

[G EOF87]

“Analysis of Typical Fault-Tolerant Ar-
chitectures using HARP,” IEEE Trans-
actions on Reliability, Vol. R-36, No. 1,
June 1987, 176-185.

R. Berry, K. M. Chandy, J. Misra, and
D. M. Neuse, “Paws 2.0: Performance
Analyst’s Workbench Modeling Method-
ology and User’s Manual,” Information
Research Associates, Austin, Texas, 1980.

S. Berson, E. de Souza e Silva, and R.
R. Muntz, ‘(An Object Oriented Method-
ology for the Specification of Markov
Models,” UCLA Technical Report CSD-

87’0030, July 1987.

A. Costes, J. E. Doucet, C. Landrault,
and J. C. Laprie, “SURF: A Pro-
gram for Dependability Evaluation of
Complex Fault-Tolerant Computing Sys-
tems,” Proceedings of FTCS-II, June
1981, 72-78.

I<. Fukunaga and S. Hirose, “An Ex-
perience with a Prolog-based Object-
Oriented Language,” Proceedings OOP-
SLA ‘86, September 29 - October 2, 1986,
224-231.

A. M. Geoffrion, “An Introduction to
Structured Modeling,” Management Sci-
ence, Vol. 34, No. 5, May 1987, 547-588.

October 1-6, 1989 OOPSLA ‘89 Proceedings 295

[GOLD831

[GOYA86]

[GULL851

[KAHN861

[MAKA82]

[MARS84],

[MCCA87]

[MELA85]

[MEYE86]

[MINS87]

[MISR86]

A. Goldberg and D. Robson, Smalltalk-
80: The Language and its Implemen-
tation. Addison-Wesley, Reading, Mas-
sachusetts, 1983.

A. Goyal, W. C. Carter, E. de Souza
e Silva, S. S. Lavenberg, and K. S.
Trivedi, “The System Availability Esti-
mator,” Proceedings of FTCS-16, July
1986, 84-89.

E. Gullichsen, “Biggertalk: Object-
Oriented Prolog,” MCC Technical Re-
port STP-1%5-85 Austin, Texas, Novem-
ber 1985.

K. Kahn, E. l’ribble, M. Miller, D.
Bobrow, “Vulcan: Logical Concurrent
Objects,” Proceedings OOPSLA ‘86,
September 29 - October 2, 1986, 580-618.

S. V. Makam and A. Avizienis “ARIES
81: A Reliability and Life-Cycle Evalu-
ation Tool for Fault Tolerant Systems,”
Proceedings of FTCS-lt, June 1982, 276-
274.

A. M. Marsan, G. Conte, and G. Balbo,
uA Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of
Multiprocessors Systems,” ACM Trans-
actions of Computer Systems, May 1984,
93-122.

F. G. McCabe, “Logic and Objects,” Im-
perial College Department of Computing
Tech. Report 86/9, London, England, 14
May 1987.

B. Melamed and R. J. T. Morris, “Vi-
sual Simulation: The Performance Anal-
ysis Workstation,” IEEE Computer, Au-
gust 1985, 87-94.

B. Meyer, “Genericity Versus
Inheritance,” Proceedings OOPSLA ‘86,
September 1986, 391-405.

N. H. Minsky and D. Rozenshtein, “A
Law-Based Approach to Object-Oriented
Programming,” Proceedings OOPSLA
‘87, October 1987, 482-493.

J. Misra, “Distributed Discrete-Event
Simulation,” ACM Computing Surveys,
Vol. 18, No. 1, March 1986, 39-65.

[MOLL82] M. K. Molloy, “Performance Analysis Us-
ing Stochastic Petri Nets,” IEEE Trans-
actions on Computers, Vol. C-31, No. 9,
September 1982, 913-917.

[MUNT88]

[PAGE891

[RAM A821

[SAHN87]

[SAUE81]

[SAUE84]

[WARR83]

[WHIT831

R. R. Muntz and D. S. Parker, “Tangram:
Project Overview,” UCLA Technical Re-
port CSD-880036, April 1988.

T. W. Page, Jr., “Object-Oriented Pro-
log,” Ph.D. Dissertation, UCLA Depart-
ment of Computer Science, Los Angeles,
CA, September 1989.

K. G. Ramakrishnan and D. Mitra,
“An Overview of PANACEA, a Soft-
ware Package for Analyzing Queueing
Networks,” Bell System Technical Jour-
nal Vol. 10, No. 10, 2849-2872, December
1982.

R. A. Sahner and K. S. Trivedi, “Relia-
bility Modeling Using SHARPE,” IEEE
Transactions on Reliability, Vol. R-36,
No. 2, June 1987, 186-193.

C. H. Sauer, E. A. MacNair, and J. F.
Kurose, “Computer Communication Sys-
tem Modeling with the Research Queue-
ing Package Version 2,” IBM Technical
Report RA-1.28, November 1981.

C. H. Sauer, E. A. MacNair, and J.
F. Kurose, “Queueing Network Simu-
lations of Computer Communication,”
IEEE Journal on Selected Areas in Com-
munications, Vol. SAC-2, No. 1, January
1984, 203-220.

D. H. D. Warren, “An Abstract Prolog
Instruction Set,” SRI Technical Report
909, October 1983.

W. Whitt, “The Queueing Network An-
alyzer,” Bell System Technical Journal,
Vol. 62, No. 9, November 1983, 2779-
2815.

296 OOPSLA ‘69 Proceedings October l-6, 1969

