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Abstract 

Many tools and techniques exist for the modeling 
and analysis of computer and communication sys- 
tems. These tools are often complex and tailored to a 
narrow range of problems. The system analysis task 
often requires coordinated use of multiple tools and 
techniques which is not supported by currently avail- 
able systems. The Tangram project goal is to develop 
an environment which makes a large set of tools and 
techniques readily accessible and is easily tailored to 
specialized applications. 

This system has been prototyped in an object- 
oriented extension to Prolog. The impact that these 
two paradigms, logic and objects, have had on the 
design is discussed. Several example applications are 
presented to illustrate the extensibility of the system. 

1 Introduction 

Will an increase in the discount rate drive this coun- 
try into a recession? Is the weather going to be good 
next year for growing avocados? Is the satellite likely 
to remain operational for the entire mission time? 
Getting answers to this type of question can be of 
critical importance. Unfortunately, it is generally in- 
feasible to conduct an experiment to answer these 
questions without committing to the very course of 
action whose outcome is in doubt. Instead, we try to 
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capture the behavior of these types of systems in a 
model. Querying this model gives predictions of the 
future. These predictions can be anywhere from ex- 
act to wildly inaccurate depending on how well the 
model represents the essential behavior of the real 
world system. Experience with the model as to how 
well it explains previous behavior can give confidence 
in its predictions of the future. 

While there have been tremendous advances in the 
mathematical techniques, the practice of modeling 
has advanced more slowly. Modeling typically re- 
quires specialized skills; knowledge of both the prob- 
lem domain and a solution package. It is very labor 
intensive. The process involves an expert abstracting 
the application domain, selecting a solution method 
or solver, translating the abstraction into the input 
format of the solver, and then interpreting the nu- 
merical results of the solution. The solution tools 
typically have a very primitive user interface requir- 
ing input in a rigid format. An expert is often only 
highly proficient in one tool; “if you only have a ham- 
mer, everything looks like a nail.” In addition, there 
is a shortage of experts and using the ones there are 
is costly. 

The answer to these problems is a whole new gener- 
ation of modeling tools. Driven by the personal com- 
puter revolution and by wider acceptance of primitive 
modeling tools such as spreadsheets and databases, 
the opportunity and the need for an advanced envi- 
ronment which can harness powerful modeling tools 
for non experts has never been greater. This pa- 
per proposes an architecture for such an advanced 
modeling environment. We are building Tangram, 
a prototype of such a system, using logic program- 
ming extended to support object-oriented program- 
ming [PAGE89,MUNT88]. 

1.1 Mathematical Modeling 

Mathematical modeling spans a large variety of tech- 
niques; queueing theory, mathematical programming, 
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Markov chains, semi-Markov models, etc. In the same 
sense that this body of knowledge is organized into 
areas and subareas, one of our goals in Tangram is 
to organize modeling knowledge into modules that 
we call domains. A doma.in encompasses a class of 
models, a set of solution methods (solvers) and an 
interpreter for queries. The idea is that models are 
created “in a domain” and any such model must be 
a member of the class of model associated with that 
domain. The choice of what class of models a do- 
main encompasses is a design decision. Basically, one 
would like to (a) incorporate a useful, general class of 
models and (b) subsume within the abstraction pro- 
vided by the domain a significant amount of detail. 
As a simple example, suppose we construct a domain 
that deals with finite Markov chains. This domain 
may have a number of different solution techniques 
available; e.g. some may be appropriat,e for nearly 
decomposable chains, others for sparse chains, etc. 
The idea of the domain abstmction is that a client 
should not have to be concerned about details such as 
how to choose the best solution methods, but &her 
just ask for a solution and have the system choose the 
appropriate solver. 

When the domain supports wha.t is a classical 
mathematical abstraction (e.g. Markov chain, lin- 
ear progxamming, queueing network, etc.) then it 
is perhaps more appropriate to call this a modeling 
domain. A specialization-generaliza.tion hiera.rchy of 
these domains occurs quite naturally. Further, as we 
shall demonstrate later in the paper, it is also con- 
venient to form domains for particular applications, 
which we call application domahs. 

In addition to the central concept of domains, the 
following constitute the goals of the Tangra.m system 
which we believe are essential. 

Extensibility: The system must be able to cope 
with a wide variety of a.pplicat.ion area.s. In our 
view, an applica.tion domain will be customized 
by an expert for a non-expert, to use. New appli- 
cations may be crea.ted by specia.lizing existing 
ones. New solution techniques must be incor- 
porated in the system without modifying exist- 
ing models or knowledge bases and be employed 
when appropriate. 

User-friendliness: The user interface should ma.ke 
extensive use of graphics for defining models, 
queries, and expressing results. The form of the 
graphical communications should he customiz- 
able for each application. Applications should 
provide their own palette of objects customary 
to their domain. 

Flexibility: It must handle both top-down and 
bottom-up modeling. In the top-down view, 
models are successively refined into more de- 
tailed sub-models. The bottom-up approach 
abstracts detailed low-level models into simpler 
representations. 

Meta-modeling: The environment must function 
as a model-base management system for creat- 
ing, storing, retrieving, updating, sharing, and 
querying models. 

The following simple example is used to illustrate 
some of these features as they currently exist in Tan- 
gram. 

1.2 Example Modeling Application 

The Tangram system contains several base mod- 
eling domains (e.g. queueing networks, Markov 
chains) from which specialized problem-oriented en- 
vironments may be created. We consider a trivial 
example of an environment for creating models of car- 
washes, similar to those in [GOLD831 and [MlSR86], 
chosen to be easily understandable given space con- 
straints. The car-wash domain is constructed (by 
an expert) as a specialization of the system’s ba- 
sic queueing network domain. It provides a set of 
objects from which to build car-wash models, con- 
sistency constraints, a query language, and rules for 
translating a car-wash model into one the system can 
solve. 

The user first selects the application domain (from 
a pull-down menu). Graphical objects are then in- 
stantiated by the user from a palette of icons repre- 
senting object classes provided by the creator of the 
domain. Figure 1 shows a simple model constructed 
in the car-wash domain using Tangram’s graphical 
int.erfa.ce. Model objects include the at,tenda.nt,s, cal 
washing fa.cilities (two shown), and a hand waxing 
station. In this particular example the user specifies 
tha.t 10 percent of customers want their cars waxed 
(modeled by the branching probabilities at the exits 
of the car washing facilities), and that customers ar- 
rive at the attendant at a rate of 20 per hour. In 
this case, the very primitive query language consists 
of a generic query object (icon at upper left corner) 
with the a.ttached key word avg-wait= requesting the 
average customer waiting time. 

When the user selects solve from the pull-down 
menu (not shown), the model is sent the solve mes- 
sage. The rules provided by the domain expert can be 
viewed as an expert system which examines the model 
and the query and generates appropriate sub-models. 
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Figure 1: A Model in the Car-Wash Domain 

mean,servlce-tlme=l' 

avgwwalt(wash)= 

. . . . . . . . ...‘ .,',',.~.~.-. 

Figure 2: Queueing Model of the Car-Wash 

In this case, the system simply derives .an equiva,lent 
queueing network model as shown in Figure 2. 1 

In this queueing model, the customer arriva,l is 
modeled as a “source” with Poisson arrival with a rate 
of 0.3 per minute (20 per hour). The attendant and 
car washing facilities are aggregated and modeled as a 
multi-server (whose name is wash) with mean service 
time of 1 minute. The hand waxing facility is mod- 
eled as a first-in-first-out server with mean service 
time 15. The query to the queueing model becomes 
a function of the average waiting time at the *wash’ 
queue and the ‘wax’ queue. 

The basic queueing network domain is able to solve 
the derived queueing model. The queueing theory 
expert knowledge base embedded in the queueing do- 

‘Tangram does not currently generate the graphical repre- 
sentation of the derived queueing model; it exists only inter- 
nally. Such a representation could be generated and would be 
useful for model debugging and explanation, 

main is exploited in the car-wash domain by trans- 
forming the original problem into a queueing prob- 
lem. The answer to the original query is computed 
from the answers to the sub-model queries; in this 
case: 

nrlgm~~if. = avgmqwash) + .l(uvy-wuil(~war)). 

To illustrate the flexibility required of the mod- 
eling system, suppose we are now interested in the 
a,va.ila.bility of the car-wash; car washing machinery 
may break down and the car waxer may call in sick. 
In this domain’s simple query language, the user at- 
taches availability= to the query object and re-solves 
the model. The domain expert system reinterprets 
the car-wash model in the reliability domain generat- 
ing a.n instance of a reliability model (graphical repre- 
sentation omitted due to space constraints). The reli- 
ability domain, already provided by the base system, 
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solves the model with Markov solution techrriques. 
Further, we can imagine extending the car-wash 

domain to handle profit and loss queries. We could 
model the effect of throughput on reliability (the 
waxing person becomes sick easier when he has to 
work above some threshold) or add a backup waxer 
who works slower, but is healthier. Solving complex 
models generally implies approximations and coordi- 
nated use of mathematical tools in problem depen- 
dent ways. An advanced modeling environment en- 
courages experimentation with approximate analytic 
techniques such as decomposing the model and itera 
tively solving the sub-models (relaxation). In general, 
these sub-models are solved in different domains uti- 
lizing their own solution techniques, possibly using 
further decomposition. When the analysis procedure 
is validated through comparison with measurement 
data or simulation, it can be incorporated in the do- 
main knowledge base. 

1.3 Related Work 

Currently, most modeling pa.cka.ges are designed ei- 
ther around one application (e.g. communica.tion net- 
works) or around one solver (e.g. simulation). Tools 
designed for analyzing the performance and relia.bility 
of computer and communication networks are most 
similar to Tangram’s. While many packages exist 
for modeling reliability (e.g. SAVE [GOYAsG] from 
IBM, HARP [BAVU87] and SHARPE [SAHNS?] 
from Duke University, ARIES [MAKA82] from UCLA 
and SURF [COST811 from CNRS), all have the same 
problem. They provide a convenient interface for 
models that fit into the anticipated mode but no oth- 
ers. Tools for modeling queueing networks have sim- 
ilar problems (e.g. PAW [MELA85], QNA [WHIT831 
and PANACEA [RAMA82] from Bell Labs, RESQ 
[SAUE81,SAUE84] from IBM and PAWS [BERR82] 
from University of Texas). RESQ offers both exact 
solution for a certain class of models and simulation 
for others, but the structure of the models is differ- 
ent depending on the analysis method. PANACEA 
and PAW go a step further and use the same lan- 
guage for several different analysis methods, but ha.ve 
no facilities for easily adding new modeling primi- 
tives or new analysis methods. At a.nother extreme 
are tools such as petri nets [MOLL82,MARS84] tha.t 
provide generality by using only the most primitive 
constructs. This places too much burden on the mod- 
eler. More recent efforts are starting to provide better 
tools. Structured Modeling [GEOF87] is a.ttempting 
to provide a general high level interface for 1inea.r pro- 
gramming and other operations resea.rch tools. ANA- 
LYTICOL [ANAL851 attempts to provide a high level 

interfa.ce for statistical analysis. Finally, [BERS87] 
describes an environment for generating and analyz- 
ing Markov chains using an object-oriented approach. 

A discussion of related work on object-oriented 
Prolog is beyond the scope of this paper. The 
interested reader is referred to [KAHN86,FUKU86, 
GULL85,MCCA87]. 

1.4 Organization of the Paper 

This introduction has motivated the need for an ad- 
vanced environment for modeling and has given an 
example using the prototype Tangram system. The 
following section presents our approach of encapsu- 
lating models and solvers in domains using object- 
oriented logic programming. Section three details our 
object-oriented Prolog language in which the Tan- 
gram system is built and discusses the relevance of 
this hybrid paradigm language for modeling. Section 
four describes the architecture and current state of 
our prototype and conclusions follow in section five. 

2 Smart Models 

The key to realizing the myriad design goals for a 
multi-domain modeling environment is the concept 
of smart models. A smart model must be able to 
respond to messages by performing high-level oper- 
ations on itself: solve yourself, display yourself, sug- 
gest a solution technique, etc. We call the models 
“smart” because much of the burden of solving mod- 
els is shifted off of the user onto the system. In order 
to create a model in an existing application domain, 
a user need only know what base objects the domain 
provides, how to connect them, and the query lan- 
guage for this type of model. The model has the 
intelligence (inherited from its domain) to select an 
a.ppropriate solver, translate itself into the solver’s 
input format, interpret the output of the solver, and 
answer the query. 

The concept of smart models is realized in Tangram 
via the novel combination of several powerful ideas. 
The use of object-oriented modeling organized in do- 
rna.ins, declara.tive programming, Lion-deternlinisll~, 
and a. new variation on multiple inheritance called 
sem.nntic binding combine to make possible a very 
flexible modeling environment. 

2.1 Object-Oriented Modeling 

Foremost for the success of the system is the object- 
oriented structure of the modeling environment. It 
is na,tural to represent entities in an application do- 
main as objects which respond to a well defined set of 
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messages. For example, in a flexible manufa.cturing 
system model, domain objects might be tools, parts, 
and bins. New types of objects may be created by 
specializing existing ones. Complex subsystems can 
be modeled with composite objects (also called sub- 
models) and can be used in other models. A model 
as a whole is itself a composite object which responds 
to a set of messages. 

Solvers in Tangram are also represented as objects. 
A solver must know what types of models it is ca.pable 
of solving and be able to estimate its complexity and 
accuracy. The object-oriented approach to both mod- 
els and solvers immediately obviates the monolit,hic 
nature of most modeling tools, naturally distributing 
model specifications and integrating multiple solvers. 

1 Domain 1 

( 1 Objects J 
Solvers 

Figure 3: Conceptual Diagram of a Doma.in 

Models are declared within domains. A domain is 
an environment which encapsulates the object defini- 
tions, query la.nguage, solvers, and heuristic knowl- 
edge base which combine to make up a customized 
package for models in a particular a.pplication. The 
knowledge base contains rules for checking the consis- 
tency (well-formedness) of a model, selecting a solver 
for a given model and query, a.nd selecting an a.p- 
propriate representation for results. Domains may be 
customized by expert users to create problem-specific 
domains for use by novices. For example, an envi- 
ronment for modeling the reliability characteristics 
of computer systems with repairable components has 
been created in Tangram as a specialization of a gen- 
eral Markov chain domain. Specializing a domain in- 
volves declaring rules for transforming a model and 
a query in the application domain into a sub-model 
and query in a more general domain. 

Domain knowledge bases in Tangram are not imple- 
mented as separate software components. Ra.ther, the 
knowledge is distributed among the objects in each 
domain. For example, solvers must “know” their own 
complexity; model objects must “know” how to dis- 
play themselves. These objects must provide methods 

which query their portion of the domain knowledge. 
Details of how this is implemented are discussed in 
section four. 

2.2 Semantic Binding 

When an object receives a message, it is requested to 
perform a function, identified by the message’s name, 
on itself. For example, a matrix may be sent the 
message “invert”. However, there may be more than 
one implementation of the same logical function, e.g. 
one invert procedure for small matrices and another 
for large, sparse matrices. In our environment, we 
wish to be able to maintain an extensible tool kit of 
solvers; more than one solver may be applicable. In 
a.ddition, the most appropriate solver is generally a 
function of the specific model structure, parameters, 
values to solve for, etc. Given an object and the name 
of a function, the system must dynamically bind to 
an implementation of the function. 

In traditional object-oriented programming, given 
an object’s class, a function name, and an inheritance 
lattice, the system performs the binding to an imple- 
mentation of a method. To accommodate more than 
one implementation, either the class must be further 
specialized or the logic to select which version to use 
must be built into the method. The former is insuf- 
ficient because it may not be known when the ob- 
ject is created which version is appropriate. If more 
tha.n one is applicable, the best choice is often a non- 
trivial function of the object’s state, not simply its 
class. The latter sacrifices the flexibility of adding 
new implementations of the function without chang- 
ing existing methods. 

In general, a program must run to choose the cor- 
rect binding of a function name to an implementation. 
We term this process semantic binding. In Tangram, 
connecting a solver to a model for a given query in- 
volves running a domain specific expert system which 
queries the model and solvers and chooses the most 
a.ppropria.te binding. We call this binding program 
a.n expert system firstly because the choice of a so- 
lution technique for a particular model is an expert 
decision; a naive user, for example, need not be con- 
cerned with whether or not his queueing network is 
product-form. Secondly, the expert knowledge used 
to select a solver is most often best expressed in the 
form of rules. Such declarative knowledge representa- 
tion is highly extensible; adding a new solver involves 
a.dding rules for that solver, not modifying rules. This 
is the programming style of an expert system. 

Section four describes how semantic binding is 
implement,ed in Ta.ngram using conventional object- 
oriented binding. For another view on varying object- 
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oriented name binding rules see [MINS87]. The next 
section presents the object-orient*ed extensions of Pro- 
log upon which the Tangram environment is con- 
structed. 

3 Object-Oriented Prolog 

It is crucial to the success of the modeling environ- 
ment that we harness the advantages of both the logic 
and object-oriented paradigms. Declarative program- 
ming is essential to rapidly prototyping the behavior 
of model objects. Such rapid prototyping is neces- 
sary as one of the primary characteristics of a mod- 
eling environment is extreme flexibility. Further, the 
domain expertise is generally most conveniently and 
flexibly expressed as rules. To this end, we have speci- 
fied and implemented an extended logic programming 
language, Object-Oriented Prolog (0-OP) and used 
this language to implement the Tangram modeling 
environment.2 The remainder of this section presents 
details of this hybrid paradigm language. 

3.1 Combining Prolog and Objects 

There are two fundamental ways to modula.rize pro- 
grams. Programs may be divided into packa.ges of 
related functions usually called libraries (e.g. a math 
library, a statistics library, a string.5 library). Alter- 
natively, we may group functions a.ccording to the set 
of objects they may be applied to. The same function 
name may bind to different code when applied to dif- 
ferent objects. This is the object-oriented approach. 

Centra.1 to object-oriented programming is the 
equation Module _= Class [MEYE%]. Object- 
oriented programming in Prolog amounts to using 
modules to encapsulate objects, plus a name binding 
facility for inheritance. Sending a messa.ge is inter- 
preted as proving a goal in a module. While the two 
paradigms may be freely mixed in 0-OP, it is natural 
to organize high levels of a pr0gra.m in an object- 
oriented (procedural) framework, while employing a. 

more declara.tive style for the small, tight,ly circum- 
scribed methods which implement object beha.vior. 
In this hybrid para.digm each style may be used to 
its best advantage: Prolog for programming in-the- 
small, and objects for progra.mming in-the-large. 

‘While our jmplementatjon js based on our own addition of 
a modules facility to the Warren Abstract Machine[WARR83], 
the 0-OP interpreter may be quickly adapted for any Prolog 
with a basic modules facility. 

3.2 The Object-Oriented Prolog Lan- 

le!Fw 

Object-oriented Prolog is a super-set of standard Pro- 
log. The infix predicate send/2 may be freely em- 
bedded in a pr0gra.m. Informally, the semantics of a 
goal send(Object. Message(Args)), are “prove the goal 
Message with arguments Args in the context associ- 
ated with Object.” For each object instance, there is 
a module of Prolog code which contains the instance 
varia.bles of that object, including the object identi- 
fier of its class (the “isa” pointer). For each class, 
there is also a module containing both instance vari- 
ables (in particular a pointer to its super class) and 
method code. 

When Prolog tries to prove the goal send(Object, 

Message(Args)), it first locates the module associated 
with Object and uses its “isa” pointer to locate the 
module associated with that object’s class. If an im- 
plementation for the Message(Args) occurs in that 
cla.ss, it is used to attempt to prove the goal and 
ma.y succeed (and thus bind some of the arguments) 
or fa.il causing backtracking. If none is found, the in- 
terpreter looks for the method in the super class. The 
search continues up the hierarchy until an implemen- 
tation is found or the root object is reached, causing 
the send goa.l to fail, prompting backtracking. 

Multiple inherita.nce is supported via backtracking. 
There may be more than one “isa” or “super” in- 
st,ance variable in an object. The interpreter back- 
tra.cks through the multiple inheritance paths if more 
than one exists, the ordering of clauses determining 
the order in which results are found. 

New objects are created via a message to a 
class. While each class may specialize the new-object 

method, in its general form it requires in its argu- 
ments the object identifier of the new object and a list 
of its initial instance variables. If the object identi- 
fier is uninstantiated, an internally generated unique 
identifier is used. New classes are created by send- 
ing a message to the “class” object specifying code 

for the class’s methods. Instance variables of specific 
object instances are accessed from methods inherited 
from ancest,or cla.sses running on the object’s behalf 
via. the goal inst(VariableName(Args)). Instance vari- 
ables may be inherited from ancestor classes allowing 
default values. Cha.nges in object states are accom- 
plished by methods which assert or retract instance 
variables in the object’s module. 

Objects may be made persistent via the save mes- 
sage which causes a summary of their state to be 
recorded on disk. Dormant (disk resident) objects are 
addressed just as active, main-memory objects using 
their object identifier. If a. dormant object is sent a 

292 OOPSLA ‘89 Proceedings October I-6, 1989 



message, the system transparently locates the object 
on disk and creates a main-memory representation. 
Thus the environment incorpora.tes a very primitive 
object-oriented database. 

Prolog’s powerful knowledge representation and 
knowledge base querying capabilities are used in Tan- 
gram by specifying object behaviors via Prolog rules. 
The built-in unificalion pattern matching in Prolog 
allows very general rules to be expressed quite sim- 
ply. Solution packages written in other langua.ges may 
be encapsulated within Prolog procedures using the 
foreign function interface. By combining rule-based 
specification with object-oriented structuring a,nd in- 
heritance, 0-OP is an ideal language for building a 
smart modeling environment. The next section de- 
scribes the architecture of Tangram and the current 
status of the system. 

4 The Tangram Modeling Sys- 
tem 

A prototype of the Tangram object-oriented model- 
ing system is operationa. on SUN 3/GOs. The user can 
construct models, define new objects, and query mod- 
els graphically. Our immediate applications are in 
computer systems performance modeling and our first 
domains were chosen to support this area’s queueing 
network models and Markov chain analysis. In the 
queueing network domain, we have incorporated sev- 
eral exact and approximate analytic solvers. In addi- 
tion, animated simulation is available. The Markov 
chain domain uses Prolog’s backtra.cking to generate 
a set of reachable states of the model and the state 
transition rate matrix. Several numeric solvers for 
Markov chains are present. A specia,lized reliabil- 
ity analysis domain for modeling repaira.ble computer 
systems is operational on top of the Markov cha.in 

domain. Each domain was built in a very short time 
frame (2 to 3 man-weeks). 

4.1 The Architecture of Tangram 

Figure 4 shows the basic components of the Tangram 
modeling system. Rectangular boxes are software 
components and ovals are classes and object instances 
inside the Object-Oriented Prolog language. 

In the Graphical Front-End, models are represented 
by a collection of icons (graphical representations of 
objects) and lines (relationships among icons) with 
attributes (graphical instance variables) attached to 
them as in Figure 1. Models are constructed with a 
MacDraw3-like user interface (all figures in this pa- 

3MacDraw is a trademark of Apple Computer Inc. 

per are generated with this front-end tool), with ob- 
ject orientation extensions, entirely implemented in 
C running in the X Window System4. The graph- 
ics interface also supports model hierarchies in which 
sub-models may be represented by icons and used in 
higher level models. 

In our prototype implementation, after the graph- 
ical representation of the model is specified, com- 
mands in 0-OP to create the objects are generated 
by a translator and batched together to be sent to 
the object system. In the future, the front-end will 
be implemented in 0-OP; instantiation at the front- 
end will cause immediate instantiation in the object 
system. 

4.2 Sample Interaction 

We again use the car-wash example to illustrate the 
features of the Tangram prototype. When the user se- 
lects solve from the pull-down menu after composing 
the model shown in Figure 1, the translator gener- 
ates the corresponding model and associated objects 
(Figure 6) in the object system. The model is sent 
the avg-wait query. 

The class of all models in the car-wash domain con- 
tains a query method which is inherited by this model 
instance. The query method invokes the car-wash 
domain expert system. From the constituents of the 
model and the query posed, the domain expert system 
generates 0-OP code as shown in Figure 5 to create a 
queueing model and sends it a list of queries. Figure 
6 shows part of the object hierarchy after the queue- 
ing model is created. Ovals represent classes and 
boxes are object instances with instance variables. 
The small tabs on top of the objects depict, object 
IDS; internally generated IDS are showu with single 
quotes. Each new-object message in Figure 5 causes 
an insta.nce of the specified class to be created. The 
first argument of new-object is bound to the object ID 
of the newly created instance and the second argu- 
ment specifies a list of initial instance variables. The 
add-center message registers a list of queue objects 
with the model object, and add-routing specifies a list 
of routes between queues with associated branching 
probabilities. Finally, the query(Queries,Results) mes- 
sage causes Ml to solve itself, answering the queries 
specified in the first argument. 

MI inherits the query method from the class of all 
queueing models in the queueing network domain. 
The method invokes the queueing domain expert sys 
tern which deduces that this model can be solved 

4X Window System is a trademark of the Massachusetts 
Institute of Technology. 
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queueing-model send new-object(M1, 0). 
source send new-object(SrcObj, [distr(poisson), rate(O.3)]). 
ms send new-object(MsObj, [meanzervice_time(l),num5ervers(2)]). 

fifo send new-object(FifoObj, [meanxervice_time(l5)]). 
sink send new-object(SinkObj, 0). 

Ml send add-center([SrcObj,MsObj,FifoObj,SinkObj]). 
Ml send add-routing([route(SrcObj,MsObj,l.O), route(MsObj,FifoObj,O.l), 

route(MsObj,SinkObj,0.9), route(FifoObj,SinkObj,l.O)). 
Ml send query([avg-wait(MsObj),avg-wait(FifoObj)], Results). 

Results = [1.023, 27.2731 

directly using numerical solvers. Each solver imple- 
ments a query(Model,Queries,Results) method which 

binds Results to the list of numerical values of the an- 
swers to Queries for Model. The domain expert sys- 
tem tries to semantically bind the query message sent 
to the Ml with the query methods of the numerical 
solvers in the domain. 

To accomplish this, the domain expert system asks 
each element of the domain’s list of candidate solvers 
(implemented as the collection object “q-solvers” in 
Figure 6) to estimate the complexity of answering the 
query. The solver with the smallest complexity mea- 
sure is selected and its query method is semantically 
bound to the query message sent to Ml. The selected 
solver is sent the message query(Ml,Queries,Results) 
which will bind Results to a list containing the aver- 

age waiting time for the car wash a.nd the car wa.x 
facilities. 

If the queueing model is more complicated and can 
not be solved directly with numerical solvers, more 
sophisticated techniques such as decomposition can 
be invoked to solve the model. Once the queueing 
model has solved itself, the car-wash domain expert 
system uses the results to compute the answer to the 

original query and updates the display in the front- 
end. 

5 Conclusions 

We began with the goal of creating a modeling system 
which could accommodate a variety of analytic and 
simulation modeling techniques and would be easily 
extensible with respect to both integrating new solu- 
tion techniques and tailoring the system to special- 
ized applications. In support of these goals we devel- 
oped a design philosophy that combines features from 
both the object-oriented and the logic programming 
paradigms. We introduced the notion of ‘&smart mod- 
els” which allows us to think of models which are not 
rnerely passive but rather can respond to high level 
queries to solve themselves, suggest solution meth- 
ods, et.c. This is accomplished by creating models in 
a “modeling domain” from which a model instance 
inherits knowledge of how to solve itself, etc. 

A prototype of the system exists and is being used. 
It currently features modeling domains for queueing 
networks and Markov chains. Several specialized do- 

Figure 5: Sa.mple 0-OP Code 
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Figure 6: Part of Object Hierarchy Containing A Queueing Model 

mains (e.g. reliability models) have been built, on t,he 
basic system. We have found it very easy to add new 
solution modules to existing domains, create new do- 
mains, or specializing existing domains. In the near 
future we expect the system to expand quickly. We 
will be adding domains for analysis of distributed 
algorithms, load balancing, etc. We also expect a 
quickly expanding set of users from outside the im- 
plementation group. The expanding user base and 
range of applications will test our goals of providing 
a sufficiently flexible and powerful system satisfying 
diverse needs. While this remains to be verified, our 
experience thus far has been quite positive. 
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