
Applying a UML-based Agent Modeling Language to the
Autonomic Computing Domain

Ivan Trencansky Radovan Cervenka Dominic Greenwood
Whitestein Technologies, Paneska 28, SK-811 03 Bratislava, Slovakia

{itr, rce, dgr}@whitestein.com

Abstract
As agent technology practitioners, some time ago we determined to
develop an extension to UML 2.0 that addressed our specific needs,
such as modeling autonomicity, proactivity and role-based behav-
ior. We called this extension the Agent Modeling Language (AML)
and have recently published the metamodel and specification for
public use. In a recent project, we realized that AML could also
be applied to the domain of autonomic computing and so decided
to publish some of our findings in this paper. AML can be directly
used by designers of autonomous and autonomic computing sys-
tems to visually model their architectures and behaviors. Herein
we provide an overview of the scope, approach taken, the specific
language structure and optional extensibility. The core modeling
constructs of AML are explained using a series of didactic exam-
ples describing the IBM Unity architecture, an well-grounded ex-
emplar of an autonomic system. We thus focus on the features of
AML that differentiate it from UML 2.0 with a specific focus on
those aspects that support the autonomic principles of self-healing
and survivability.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specification—languages, tools; I.2.11 [Arti-
ficial Intelligence]: Distributed Artificial Intelligence—languages
and structures, intelligent agents, multiagent systems

General Terms Languages, Design, Reliability

Keywords Autonomic computing, autonomous system, agent,
multi-agent system, modeling language, agent-oriented software
engineering, AML

1. Introduction
By definition an autonomic system consists of a set of compu-
tational elements that are capable of managing themselves and
thereby the system within which they are embedded, given some
objectives or policies provided by administrators. Drawn from the
biological metaphor of the mammalian autonomic nervous sys-
tem [13], autonomic computing systems are comprised of multiple
interacting and self-governing components, autonomic elements,
that can often themselves contain embedded populations of self-
governing components.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-491-X/06/0010. . . $5.00.

While the implementation of autonomic systems can be achiev-
ed by many means, the control and management aspects of individ-
ual autonomic elements and complete autonomic systems can, and
often are, accomplished by means of software agents. The value
and relevance of agents in this role has been discussed in several
previous works including [30, 13, 25, 1, 14, 15] and will thus be
taken as an assumption for the purposes of this paper.

Our approach is focused on examining the utility of an agent-
oriented modeling language when applied to problems in the auto-
nomic computing domain. Agent-based modeling is a powerful and
flexible means of modeling complex, distributed, interconnected
and interacting systems and as self-* principles can be enacted
through the behaviors of autonomous agents, we expect that a well-
specified modeling language should be intrinsically capable of cap-
turing them both visually and logically.

In this paper we therefore demonstrate the suitability of the
Agent Modeling Language [27, 6], created by the authors as a
comprehensive and versatile extension to UML 2.0 for modeling
agent-based systems. Throughout the course of this paper we will
demonstrate how the core features of AML can be applied in
this respect, although due to space limitations a comprehensive
description of AML abstract syntax, semantics, and notation is not
provided (for details see [5]).

AML is a semi-formal visual modeling language for specify-
ing, modeling and documenting systems that incorporate concepts
drawn from multi-agent systems theory. It is designed to address
the specific qualities offered by multi-agent systems (MAS) that
are difficult, or impossible, to model with more traditional model-
ing languages such as UML 2.0. AML can also be applied to other
domains such as business systems, social systems, robotics, and of
course, autonomic systems. In general, AML can be used whenever
it is suitable or useful to build models that (1) consist of a number
of autonomous, concurrent and/or asynchronous (possibly proac-
tive) entities, (2) comprise entities that are able to observe and/or
interact with their environment, (3) make use of complex interac-
tions and aggregated services, (4) employ social structures, and (5)
capture mental characteristics of systems and/or their parts.

Although not alone in this field (others include Gaia [31],
AALAADIN [11], AOR [29], AUML [2, 16, 17]), INGENIAS
[21], MaSE [9], MAS CommonKADS [12]), MESSAGE [10],
OPM/MAS [24], PASSI [8, 7], Prometheus [20], TAO [23], TRO-
POS [3]) we consider AML to be one of the most advanced and
comprehensive languages available for this purpose1.

From the outset, the development of the language has been
driven by the extant need for a ready-to-use, versatile, and highly
expressive modeling language suitable for development of com-

1 The paper cannot and also does not intend to provide a detailed analysis of
the alternative approaches to model MAS and how they compare to AML.
Such a comparative analysis can be found in [4].

521

mercial software solutions based on multi-agent technologies. In
order to achieve this, AML has been designed to address and sat-
isfy the most significant deficiencies of the currently available MAS
oriented modeling languages, which often are:

• insufficiently documented and/or specified,

• using proprietary and/or non-intuitive modeling constructs,

• aimed at modeling only a limited set of MAS aspects,

• applicable only to a specific theory, application domain, MAS
architecture, or technology,

• mutually incompatible in terms of concepts, metamodel, and
notation, or

• insufficiently supported by Computer-Aided Software Engi-
neering (CASE) tools.

To overcome the above, AML (1) incorporates and unifies the
most significant concepts from the broadest set2 of existing multi-
agent theories, abstract models, modeling languages, and method-
ologies, (2) extending them where necessary to account for aspects
thus far covered insufficiently, inappropriately or not at all, and (3)
assembling the entirety into a consistent framework specified (to
the maximum possible extent) as a conservative extension of UML3

(for details on AML definition see Section 2).
This gives AML the features which distinguish it from the

others as the language which:

• is built on proven technical foundations,

• integrates best practices from agent-oriented software engineer-
ing (AOSE) and object-oriented software engineering (OOSE)
domains,

• is well specified and documented,

• is internally consistent from the conceptual, semantic and syn-
tactic perspectives,

• is versatile and easy to extend,

• is independent of any particular theory, software development
process or implementation environment, and

• is supported by CASE tools.

AML supports all of the typical architectural and behavioral
concepts associated with multi-agent systems, including MAS en-
tities, communicative interactions, observations and effecting in-
teractions, behavior abstraction and decomposition, social aspects,
goal-oriented reasoning, services, ontologies, deployment and mo-
bility. As software agents are capable of assuming the task of oper-
ational management and coordination of autonomic elements, it is
therefore a logical assumption that AML can be applied to model
these and, by extension, the broader characteristics of autonomic
systems.

During the course of this paper we introduce many of these
key elements of AML and demonstrate their direct relevance to
modeling aspects of autonomic systems through a series of asso-
ciated models, each addressing an aspect of the IBM Unity archi-
tecture [25]. We have selected this example due to its level of recog-
nition with domain practitioners and as it offers the opportunity to
demonstrate how the application of AML can clarify and enhance
system design. As such, AML offers a means of accurately repre-
senting models of autonomic systems and applications in a visually
and logically consistent manner.

2 A list of sources can be found in a previous paper [27].
3 A conservative extension of UML is a strict extension of UML which
retains the standard UML semantics in unaltered form[28].

As a key component of this, we demonstrate the use of AML
to model how autonomic elements of the Unity architecture col-
laborate to bring about self-healing recovery from policy reposi-
tory failures [25]. A similar approach to the use of software agents
for managing clusters of autonomic computational elements is de-
scribed in Baldassari et al. [1].

The remainder of this paper is structured as follows: Section 2
presents a concise definition of the AML language and the avail-
able extensibility mechanisms. Section 3 explains the relevant fun-
damental AML entities, their features and how they can be used to
model autonomic elements. Sections 4, 5, 6, 7, 8 and 9 then de-
tail an AML approach to modeling various aspects of the selected
exemplar autonomic system.

2. AML language definition
AML is built upon the Unified Modeling Language (UML) 2.0 Su-
perstructure [19], augmenting it with several new modeling con-
cepts appropriate for capturing the typical features of multi-agent
systems (see Fig. 1).

The main advantages of this approach are (1) reuse of the well-
defined, commonly used concepts of UML, (2) reuse of metamodel
extensions and UML profiles for specifying and extending UML-
based languages, and (3) ease of incorporation into existing UML-
based CASE tools.

The abstract syntax, semantics and notation of the language
are defined at the AML Metamodel and Notation level. The AML
Metamodel is further structured into two main packages: AML
Kernel and UML Extension for AML.

UML 2.0 Superstructure

UML 2.0 Profile of AMLUML 1.* Profile of AML

UML 1.* Profiles

Extending AML

UML 2.0 Profiles

Extending AML

AML Metamodel AML
NotationAML KernelUML Extension for AML

UML Language

AML Metamodel
and Notation

AML Profiles

A
M
L

AML Profile Extensions

Figure 1. Levels of AML definition.

The AML Kernel is a conservative4 extension of UML 2.0,
comprising specification of all the AML modeling elements. It is
logically structured into several packages, each of which contains
specification of modeling elements dedicated for modeling specific
aspect of MAS.

The UML Extension for AML package adds some meta-prop-
erties and structural constraints to the standard UML elements.
It is thus a non-conservative extension of UML, and therefore an
optional part of the language. However, the extensions contained
within are simple and can be easily implemented in most existing
UML-based CASE tools.

Upon the AML Metamodel and Notation two UML profiles of
AML are specified: UML 1.* Profile for AML (based on UML 1.*)
and UML 2.0 Profile for AML (based on UML 2.0). The primary
objective of these profiles is to enable implementation of AML into
existing UML 1.* and UML 2.0 based CASE tools, respectively.

2.1 Extensibility of AML

AML is designed to encompass a broad set of relevant theories
and modeling approaches, it being essentially impossible to cover

4 A conservative extension of UML is an extension of UML which retains
the standard UML semantics in unaltered form [28].

522

all inclusively. In those cases where AML is insufficient, several
mechanisms can be used to extend or customize it as required:

Metamodel extension offers first-class extensibility (as defined
by MOF [18]) of the AML metamodel and notation.

AML profile extension offers the possibility to adapt AML for
a given domain, platform or development method by means of
UML Profiles, without the need to modify the underlying AML
Metamodel and Notation.

Concrete model extension allows to employ alternative MAS
modeling approaches as complementary specifications to the AML
model.

3. AML modeling of autonomic elements
In general, entities are objects that can exist independently of oth-
ers. In order to maximize reuse and comprehensibility of the meta-
model AML defines several auxiliary abstract metamodeling con-
cepts called semi-entities and their types. Semi-entity types are spe-
cialized UML classes used to specify coherent set of features, log-
ically grouped according to particular aspects of MASs. They are
used to specify features of other types of modeling elements.

3.1 AML semi-entities

AML defines the following semi-entities:
Behaviored semi-entities represent elements which can own ca-

pabilities, observe and/or effect their environment by means of per-
ceptors and effectors, provide and use services, and can be decom-
posed into behavior fragments.

Socialized semi-entities represent elements which can form so-
cieties, can participate in social relationships and can own social
properties.

Mental semi-entities represent elements which can be character-
ized in terms of their mental attitudes, e.g. which information they
believe in, what are their objectives, needs, motivations, desires,
what goal(s) they are committed to, when and how a particular goal
is to be achieved, which plan to execute, etc.

3.2 AML fundamental entities

The fundamental entities that compose MASs are: agents, resources,
and environments. AML therefore defines three modeling concepts,
which can be used to model the above mentioned fundamental en-
tities at both type and instance levels:

Agent type is used to specify the type of agents, i.e. self con-
tained entities that are capable of interactions, observations and au-
tonomous behavior within their environment.

Resource type is used to model the type of resources within the
system, i.e. physical or informational entities with which the main
concern is their availability (in terms of its quantity, access rights,
conditions of usage/consumption, etc.).

Environment type is used to model the type of a system’s inner
environment5, i.e. the logical or physical surroundings of entities
which provide conditions under which the entities exist and func-
tion.

In AML, all the aforementioned entity types are specialized
UML classes, and thus can utilize all the features defined for UML
classes, i.e. can be instantiated, can own structural and behavioral
features, behaviors, can be structured into parts and ports, partic-
ipate in interactions, can participate in various kinds of relation-
ships (e.g. associations, generalizations, dependencies), etc. The
instances of the entity types (called entities) can be modeled by
means of UML instance specifications classified according to the
corresponding types.

5 Inner environment is that part of an entity’s environment that is contained
within the boundaries of the system.

Furthermore, all the AML fundamental entity types inherit fea-
tures of behaviored semi-entities, and in addition to these, agent and
environment types are also socialized and mental semi-entities.

3.3 Modeling autonomic elements

Fundamental patterns of modeling the core architectural concepts
of autonomic systems are shown in Fig. 2. The figure identifies
three possible means of modeling an autonomic element with AML,
drawn from the basic architecture of an autonomic element defined
in [13]. Fig. 2(a) shows the basic model of an agent type represent-
ing an autonomic element where it is not necessary to explicitly
identify an associated managed entity. Fig. 2(b) shows the case of
an agent type acting as an autonomic manager, managing zero or
more managed entities represented by AML resource types. The
autonomic element in this instance is represented as an AML en-
vironment type6. Fig. 2(c) is similar to the previous case with the
exception that the managed element is represented by an AML en-
tity role type (see Section 4.3), which indicates that the role of
the managed element can be played by zero or more entities. By
extension this implies that the role can also be played by another
autonomic element or other organization of autonomic elements,
allowing composite hierarchies of embedded elements to be mod-
eled. Finally, Fig. 2(d) is an alternative notation of Fig. 2(c) with
identical semantics.

Autonomic Element

:Autonomic
 Manager [1]

Autonomic Element

:Manages :Managed
 Element [*]

(a)

(b)

(c)

Autonomic Element

:Managed
 Element [*]

:Manages:Autonomic
 Manager [1]

(d)

Autonomic Element

Manages
am me

aeae

Autonomic Manager Managed Element

*1
1 *

{am.ae = me.ae}

Figure 2. Modeling autonomic elements.

4. Modeling social aspects
As with MASs, autonomic systems are commonly perceived as
systems comprised of a number of autonomous entities, situated in
a common environment, and interacting with each other in order
that the desired functionality and properties of the systems can
emerge. These properties are not always derivable or representable
solely on the basis of properties and capabilities of individual
entities, but are usually given also by their mutual relationships,
interactions, coordination mechanisms, social attitudes, etc. Such
aspects are in MAS theory commonly referred to as social aspects.

From this perspective the following aspects of MAS are com-
monly considered in models (for details see [6]):

• Social structure concerning mainly with the identification of
societies which can evolve within the system, specification of
their properties, structure, identification of comprised roles,

6 Specialized AML environment types called organization unit types can be
used instead as explained later in Section 4.

523

individual entities that can participate in such societies, what
roles they can play, their mutual relationships, etc.

• Social behavior covering such phenomena as (1) social dynam-
ics (i.e. temporal relationships and causality of social events
such as the formation and abolition of societies, the entrance
and withdrawal of an entity to or from a society, acquisition,
disposal and change of a role played by an entity, modification
of properties of a society or its members, etc.), (2) norms (i.e.
rules or standards of behavior shared by members of a society),
(3) social interactions (i.e. how individuals and/or societies in-
teract with others in order to exchange information, coordinate
their activities, etc.), and (4) social activities of individual en-
tities and societies (e.g. how they change their attitudes, roles
they play, social relationships), etc.

• Social attitudes addressing the individual and/or common ten-
dencies (usually expressed in terms of motivations, policies,
goals, intentions, beliefs, commitments, etc.) to anything of a
social value.

In this section the focus is on modeling the social structure of
multi-agent systems. Our evidence is that the same concepts can be
used to model architectural features of autonomic systems. AML
modeling constructs which can be used to model social behavior
and social attitudes are outlined in the subsequent sections.

To accommodate the special needs of modeling social structure,
AML utilizes the concepts of: organization units, social relation-
ships, entity roles, and role properties.

4.1 Organization units

Organization unit types are specialized environment types, and thus
inherit features of behaviored, socialized and mental semi-entity
types. They are used to specify the type of societies that can evolve
within the system from both external and internal perspectives.

From an external perspective, organization units represent co-
herent autonomous entities, which can be characterized in terms of
their mental and social attitudes, can perform behavior, participate
in different kinds of (social) relationships, can observe and interact
with their environment, offer and use services, play roles, etc. Their
properties and behavior are both (1) emergent properties and behav-
ior of all their constituents, their mutual relationships, observations
and interactions, and (2) the features and behavior of organization
units themselves.

For modeling organization units from external perspectives, in
addition to features defined for UML classes (structural and be-
havioral features, owned behaviors, relationships, etc.), also all the
features of behaviored, socialized, and mental semi-entities can be
utilized.

From an internal perspective, organization units are types of
environment that specify the social arrangements of entities in
terms of structures, interactions, roles, constraints, norms, etc.

For this purpose organization unit types usually utilize the pos-
sibilities inherited from UML structured classifier, and model their
internal structure by contained parts and connectors, in combina-
tion with entity role types used as types of the parts.

An example of an organization unit used to model the Unity
clustering of policy repositories in the context of self-healing be-
havior, as described in [25], is shown in Fig. 4 and elaborated in
Sect. 5. Another example, Fig. 3, utilizes an organization unit to
model a Unity autonomic element application environment (for de-
tailed description of the example see Sect. 4.3).

4.2 Social relationships

Social relationship is a particular type of connection between social
entities related to or having dealings with one another. For model-
ing such relationships, AML defines a special type of UML prop-

erty, called social property. The social property can be used either
in the form of an owned social attribute, or as the end of a social
association, and can specify its social role kind7.

The Fig. 4 shows that Resource Arbiter is superordinate
(indicated by the filled triangles at the social association ends)
to Cluster, Cluster Element and Sentinel (indicated by the
hollow triangles at the social association ends), that Sentinel is
superordinate to Cluster Element, and that Cluster Elements
are peers to each other (indicated by the half-filled triangles placed
at both ends of the social association).

4.3 Roles and role properties

Roles are used to define a normative behavioral repertoire of en-
tities, and thus provide the basic building blocks of MAS soci-
eties. For modeling roles, AML provides entity role type, a special-
ized behaviored, socialized and mental semi-entity type. Entity role
types are used to model abstractions of coherent sets of features,
capabilities, behaviors, observations, relationships, participation in
interactions, and services offered or required by entities participat-
ing in a particular context. Each entity role type should be realized
by a specific implementation possessed by an entity that can play
that entity role type. An instance of an entity role type is called
entity role and exists only while some behavioral entity plays it.

For modeling the ability of an entity to play an entity role
type, AML provides role properties. Role property is a specialized
UML property, used to specify that an instance of its owner (i.e. a
behavioral entity) can play one or several roles of a particular entity
role type. The role property can be used either in the form of a role
attribute or as the end of a play association.

One entity can at each time play several entity roles. These
entity roles can be of the same as well as of different types. The
multiplicity defined for a role property constrains the number of
entity roles of given type the particular entity can play concurrently.
Additional constraints which govern the playing of entity roles can
be specified by UML constraints.

To allow explicit manipulation of entity roles in UML activities
and state machines, AML defines a set of actions for entity role
creation and disposal, particularly the create role and dispose role
actions.

(a) (b)

:Application
 Manager [1]

Application Environment

Manages :Server
 Allocation [*]

:Router
 Allocation [*]

Manages

Server

Managed Element

Router
Allocation

Server
Allocation

0..1 0..1

Router

Figure 3. Application Environment specification.

An example in Fig. 3(a) demonstrates the application of the pat-
tern from Fig. 2(c) to model a Unity element. The Unity applica-
tion environment, as described in [25], is modeled as an organi-
zation unit Application Environment consisting of one auto-
nomic manager (modeled by an agent of type Application Man-
ager) and two types of managed elements (modeled by entity role
types Server Allocation and Router Allocation. The pos-
sibility of an allocation of a Server autonomic element (mod-
eled as an AML environment) to an application environment is

7 AML predefines peer, subordinate and superordinate social role kinds, but
this set can be extended as required.

524

modeled by the play association between the Server and Serv-
er Allocation in Fig. 3(b). Similarly the Router and Router
Allocation are modeled.

5. Modeling Unity self-healing architecture
As described in [25] the purpose of a self-healing system is to pro-
vide reliability and data integrity in systems that may be subject to
failure. In Unity this is approached by organizing policy reposito-
ries into clusters within which they replicate their state consisting
of policies and subscriptions. This guarantees that all of the state
data of a failed policy repository is retained by the surviving cluster
members. By reassigning the state data temporarily to a surviving
member, the system will continue to operate without interruption.

Fig. 4 describes the architecture features of the Unity self-heal-
ing mechanism. In the example, the cluster is modeled as organi-
zation unit type Cluster comprising a set of Cluster Element
entity role types which can be played by Policy Repositories.
The ability of a policy repository to play a Cluster Element en-
tity role type is expressed by the play association. This indirection
allows (1) abstraction of the behavioral and structural features of
the policy repositories that are common to the role of being a cluster
member, (2) possible reuse of this clustering pattern for elements
other than policy repositories, and (3) to model the dynamics of
participating in a cluster (i.e. to make use of create and dispose role
actions).

In operation, when a resource arbiter (modeled by agent type
Resource Arbiter) deploys a policy repository it is supplied
with its intended role (modeled by the Policy Provider entity
role type), identifier of the cluster that it should join, and other
necessary information. As the policy repository initializes, it uses
the registry to contact already registered members of the cluster
and thus join the cluster. Whenever one of the policy repositories
receives changes to its policy set or subscriptions, the changes are
communicated throughout the remainder of the cluster.

The resource arbiter also contracts a sentinel (modeled by the
Sentinel agent type) to monitor the policy repository (expressed
by a perceives dependency). If this sentinel determines that a
policy repository has failed, it notifies the resource arbiter which
in turn will select one of the live policy repositories to take over
the role of the failed repository and notify all cluster members of
the reassignment. Then the resource arbiter examines the available
hosts and selects one on which to deploy a replacement policy
repository. Deployment is made via the OSContainer (modeled by
OSContainer agent type) on the target host. Upon initialization,
the new policy repository joins the cluster, retrieves a copy of the
current cluster policies and subscriptions and takes over the role of
the failed repository.

The model further expresses that the Resource Arbiter is a
superordinate of all other autonomic elements shown by the super-
sub social relationships. Also shown is the Policy Provider role
which abstracts the structural behavior features of a policy provider
concerning the provision of the Policy Subscription service.
This service allows other autonomic elements of the system to sub-
scribe and be notified of policy changes managed by the policy
provider.

6. Modeling interactions
To support modeling of interactions AML provides a number of
UML extensions, which can be logically subdivided into: (1) generic
extensions to UML interactions, (2) speech act based extensions to
UML interactions, (3) observations and effecting interactions, and
(4) services.

Cluster

Cluster Element

0..1clusterElement

Resource Arbiter

Sentinel

Policy RepositoryOSContainer

Policy Subscriber

Policy Provider

*

1

*

*

1 *

1

*

<<create>> policy

Provider

*

Policy Subscription

Figure 4. Cluster structure.

6.1 Generic extensions to UML interactions

Generic extensions to UML interactions provide means to model:
(1) interactions between groups of entities (multi-message and multi-
lifeline), (2) dynamic change of object’s attributes to express chang-
es in internal structure of organization units, social relationships, or
played entity roles, etc., induced by interactions (attribute change),
(3) modeling of messages and signals not explicitly associated with
the invocation of corresponding methods and receptions (decoupled
message), (4) mechanisms for modification of interaction roles of
entities (not necessarily entity roles) induced by interactions (sub-
set and join dependencies), and (5) modeling the actions of dispatch
and reception of decoupled messages in activities (send and decou-
pled message actions, and associated triggers).

Multi-message is a specialized UML message which is used
to model a particular communication between (unlike UML mes-
sage) multiple participants, i.e. multiple senders and/or multiple re-
ceivers.

Multi-lifeline is a specialized UML lifeline, used to represent
(unlike UML lifeline) multiple participants in interactions.

Decoupled message is a specialized multi-message used to mod-
el the asynchronous dispatch and reception of a message payload
without (unlike UML message) explicit specification of the behav-
ior invoked on the side of the receiver. The decision of which be-
havior should be invoked when the decoupled message is received
is up to the receiver, which allows it to preserve its autonomy in
processing messages.

Attribute change is a specialized UML interaction fragment used
to model the change of attribute values (state) of interacting enti-
ties induced by the interaction. Attribute change thus enables the
expression of addition, removal, or modification of attribute val-
ues, and also to express the added attribute values by sub-lifelines.
The most likely utilization of attribute change is in modeling the
dynamic change of entity roles played by behavioral entities repre-
sented by lifelines in interactions, and the modeling of entity inter-
actions with respect to the played entity roles (i.e. each sub-lifeline
representing a played entity role can be used to model interaction
of its player with respect to this entity role).

Subset is a specialized UML dependency between event occur-
rences owned by two distinct (superset and subset) lifelines used
to specify that since the event occurrence on the superset lifeline,
some of the instances it represents (specified by the corresponding
selector) are also represented by another, the subset lifeline.

Similarly, the join dependency is also a specialized UML depen-
dency between two event occurrences on lifelines (subset and union
ones), used to specify that a subset of instances, which have been
until the subset event occurrence represented by the subset lifeline,
is after the union event occurrence represented by the union lifeline.
Thus the union lifeline after the union event occurrence, represents
the union of the instances it has been representing before, and the
instances specified by the join dependency. Send decoupled mes-
sage action is a specialized UML send object action used to model
the action of dispatching a decoupled message, and accept decou-
pled message action is a specialized UML accept event action used

525

to model reception of a decoupled message action that meets the
conditions specified by the associated decoupled message trigger.

The model in Fig. 5 shows the interaction of Unity autonomic
elements during the creation and initialization of the policy reposi-
tory and the process of it joining a cluster (as described in Section 5.

Initially the Resource Arbiter sends a createPolicyRep-
ository message to the OSContainer to create a new Policy
Repository. Once created a creationConfirmation message
is returned to the Resource Arbiter. The new Policy Repos-
itory then registers itself with the Registry and starts to play
the role of clusterElement. After this two parallel courses of
interaction take place. In the first, the Resource Arbiter sends
a monitor message to the Sentinel requesting it to monitor the
newly created Policy Repository. In the second, the Policy
Repository requests the Registry for the list of existing cluster
members in order to announce to each of them that it has joined the
cluster and has started to play the role of policyProvider.

par

createPolicyRepository(roleSpec, clusterID, registryAddress)

register(self)

:Sentinel

new:Policy
Repository

:Registry
clusterMembers

:Policy Repository [*]
:OS

Container
:Resource

Arbiter

monitor(new)

clusterElement

policyProvider

creationConfirmation

findExistingClusterMembers(clusterID)

inform(clusterMembers)

joinAnnouncement

stateInfo(policies, subscriptions)

Figure 5. Deployment of a policy repository.

6.2 Speech act specific extensions to UML interactions

Speech act specific extensions to UML interactions comprise mod-
eling of speech-acts (communication message), speech act based
interactions (communicative interactions), patterns of interactions
(interaction protocols), and modeling the actions of dispatch and
reception of speech-act based messages in activities (send and ac-
cept communicative message actions, and associated triggers).

Communication message is a specialized decoupled message
used to model communicative acts of speech act based communica-
tion within communicative interactions (a specialized UML inter-
action) with the possibility of explicit specification of the message
performative and payload. Both the communication message and
communicative interaction can also specify the agent communica-
tion and content languages, ontology and payload encoding used.

Interaction protocol is a parametrized communicative interac-
tion template used to model reusable templates of communicative
interactions.

6.3 Observations and effecting interactions

AML provides several mechanisms for modeling observations and
effecting interactions in order to (1) allow modeling of the ability of
an entity to observe and/or to bring about an effect on others (per-
ceptors and effectors), (2) specify what observation and effecting
interactions the entity is capable of (perceptor and effector types
and perceiving and effecting acts), (3) specify what entities can ob-
serve and/or effect others (perceives and effects dependencies), and

(4) explicitly model the actions of observations and effecting inter-
actions in activities (percept and effect actions).

Observations are modeled in AML as the ability of an entity
to perceive the state of (or to receive a signal from) an observed
object by means of perceptors, which are specialized UML ports.
Perceptor types are used to specify (by means of owned perceiving
acts) the observations an owner of a perceptor of that type can
make.

Perceiving acts are specialized UML operations which can be
owned by perceptor types and thus used to specify what perceptions
their owners, or perceptors of a given type, can perform.

The specification of which entities can observe others, is mod-
eled by a perceives dependency. For modeling behavioral aspects
of observations, AML provides a specialized percept action. This
is demonstrated in Fig. 4 where the perceives dependency is used
to model that a Sentinel observes Policy Repositories.

Different aspects of effecting interactions are modeled analo-
gously, by means of effectors, effector types, effecting acts, effects
dependencies, and effect actions.

6.4 Services

The AML support for modeling services comprises (1) the means to
specify the functionality of a service and the way in which a service
can be accessed (service specification and service protocol), (2)
the means to specify which entities provide/use services (service
provision, service usage, and serviced property), and (if applicable)
by what means (serviced port).

A service is a coherent block of functionality provided by a be-
haviored semi-entity, called service provider, that can be accessed
by other behaviored semi-entities (which can be either external or
internal parts of the service provider), called service clients.

Service specification is used to specify a service by means
of owned service protocols, i.e. specialized interaction protocols
extended with the ability to specify two mandatory, disjoint and
nonempty sets of (not bound) parameters, particularly: provider and
client template parameters.

The provider template parameters of all contained service pro-
tocols specify the set of the template parameters that must be bound
by the service providers, and the client template parameters of all
contained service protocols specify the set of template parameters
that must be bound by the service clients. Binding of these com-
plementary sets of template parameters specifies the features of
the particular service provision/usage which are dependent on its
providers and clients.

Service provision/usage are specialized dependencies used to
model provision/use of a service by particular entities, together
with the binding of template parameters that are declared to be
bound by service providers/clients. Fig. 4 gives an example of a
Policy Subscription service that is provided by the Policy
Provider entity role type to all Policy Subscribers.

Policy Subscription

sd Subscribe:FIPA-Subscribe-Protocol
 <descriptor -> policy-descriptor>

participant

initiator

sd Unsubscribe:FIPA-Cancel-Meta-Protocol
 <action -> subscribe(policy-descriptor)>

participant

initiator

Figure 6. Example of service specification.

Fig. 6 shows a specification of the Policy Subscription ser-
vice defined as a collection of two service protocols. The Subs-
cribe service protocol is used by autonomic elements to subscribe
to notification of changes to policies maintained by policy providers.

526

It is based on the standard FIPA-Subscribe-Protocol8 [26] and
binds the descriptor parameter (content of the subscribe mes-
sage) to the description of the policy to modification of which the
initiator subscribes (policy-description). The participant
parameter of the FIPA-Subscribe- Protocol is mapped to a
service provider and the initiator parameter to a service client.
Similarly, the Unsubscribe service protocol is based on FIPA-
Cancel-Meta-Protocol and its purpose is to void a subscrip-
tion. Therefore service protocol maps the action (content of the
cancel message) to subscribe(policy-description), i.e. to
the action that is no longer intended.

7. Modeling capabilities and behavior
AML extends the capacity of UML to abstract and decompose be-
havior by another two modeling elements: capability and behavior
fragment.

Capability is an abstract specification of a behavior which al-
lows reasoning about and operations on that specification. Techni-
cally, a capability represents a unification of the common specifi-
cation properties of UML’s behavioral features and behaviors ex-
pressed in terms of their inputs, outputs, pre- and post-conditions.

Behavior fragment is a specialized behaviored semi-entity type
used to model a coherent re-usable fragment of behavior and related
structural and behavioral features. It enables the (possibly recur-
sive) decomposition of a complex behavior into simpler and (pos-
sibly) concurrently executable fragments, as well as the dynamic
modification of an entity’s behavior in run-time. The decomposi-
tion of a behavior of an entity is modeled by owned aggregate at-
tributes of the corresponding behavior fragment type.

Fig. 7(a) shows a decomposition of the application manager (as
shown in [25]) into a structure of behavior fragments (e.g. Demand
Forecaster and Utility Calculator) and local data stores
(e.g. Rt) modeled as properties.

Fig. 7(b) shows the behavior fragment Demand Forecaster
described in terms of its own capabilities (dataSeriesAnalysis
and userBehaviorPatternRecognition).

Application Manager

Demand Forecaster

dataSeriesAnalysis()
userBehaviorPatternRecognition()

:Controller

:Demand Forecaster :Utility Calculator :U(S,D)

:Rt:S(C,R,D):Modeler:Data Aggregator

(a)

(b)

Figure 7. Inside an Application Manager.

Fig. 8 models the policy repository failure recovery scenario
as described in Section 5 by means of an activity diagram. When
a Sentinel observes the failure of a policy repository it sends a
notification message to the Resource Arbiter which then se-
lects an appropriate substitute for the failed repository (Select
substitute action). Then, two courses of activity start in parallel.
In one, the selected substitute takes over the role of the failed policy
repository (Become substitute create role action). In the other,

8 The AML specification of the interaction protocol can be modeled in a
similar way to the specification of the FIPA-Query-Protocol presented in
[5].

the Resource Arbiter first notifies the remaining cluster mem-
bers of the substitution (Notify of substitution send decou-
pled message action) and then selects the host on which to deploy a
replacement policy repository (New PR). The New PR is deployed
and upon initialization, gets the cluster state data from the other
members of the cluster (Get cluster state data action). At
this point the two parallel courses join, the substitution stops (Stop
substitution dispose role action) and the New PR starts to play
the role of policy repository which failed (Replace failed PR
create role action).

Sentinel

Failure notification

Select
substitute

Substitute PRNew PRResource Arbiter

failure

Notify of
substitution

Select
host Get cluster

state data

Failed role spec

Become
substitute

Replace
failed PR

Stop
substitution

Figure 8. Policy repository failure recovery.

8. Modeling MAS deployment and mobility
The means provided by AML to support the modeling of deploy-
ment and mobility comprise: (1) the support for modeling the phys-
ical infrastructure onto which entities are deployed (agent execu-
tion environment), (2) what entities can occur on which nodes of
the physical infrastructure and what is the relationship of deployed
entities to those nodes (hosting property), (3) how entities can get
to a particular node of the physical infrastructure (move and clone
dependencies), and (4) what can cause the entity’s movement or
cloning throughout the physical infrastructure (move and clone ac-
tions).

Agent execution environment type is a specialized UML execu-
tion environment used to model types of execution environments
within which entities can run. While it is a behaviored semi-entity
type, it can explicitly, for example, also specify a set of services
that the deployed entities can use or should provide at run time.

Agent execution environment can also own hosting properties,
which are used to classify the entities which can be hosted by
the owning agent execution environment. The hosting property’s
hosting kind specifies the relation of the referred entity type to its
owning agent execution environment (i.e. either resident or visitor).

Hosting association is a specialized UML association used to
specify hosting property in the form of an association end.

Move is a specialized UML dependency between two hosting
properties used to specify that the entities represented by the source
hosting property can be moved to the instances of the agent exe-
cution environments owning the destination hosting property. The
clone dependency is used similarly.

Move and clone actions are specialized UML add structural fea-
ture actions used to model actions that cause movement or cloning
of an entity from one agent execution environment to another. Both
the actions thus specify: (1) which entity is being moved or cloned,

527

(2) the destination agent execution environment instance where the
entity is being moved or cloned to, and (3) the hosting property
where the moved or cloned entity is being placed.

9. Modeling mental aspects
To model mental attitudes, AML provides: goals, beliefs, plans,
contribution relationships, mental properties and associations, men-
tal constraints, and commit/cancel goal actions.

Goal is a specialized UML class used to model goals, i.e. con-
ditions or states of affairs with which the main concern is their
achievement or maintenance. Goals can thus be used to represent
objectives, needs, motivations, desires, etc.

Belief is a specialized UML class used to model a state of
affairs, proposition or other information relevant to the system and
its mental model.

The attitude of a mental semi-entity to a belief or commitment
to a goal is modeled by the belief or the goal instance being held in
a slot of the corresponding mental property (owned by the mental
semi-entity, or a mental association relating the belief or the goal
to the mental semi-entity).

Plan is a specialized UML activity used to model predefined
plans or fragments of behavior from which the plans can be com-
posed.

Mental constraint is a specialized UML constraint used to spec-
ify properties of owning beliefs, goals and plans which can be used
within the reasoning processes of mental semi-entities. Supported
kinds of mental constraints are pre- and post-conditions, commit
conditions, cancel conditions and invariants.

Contribution is a specialized UML relationship used to model
logical relationships between goals, beliefs, plans and their mental
constraints. The manner in which the specified mental constraint
(e.g. post-condition) of the contributor influences the specified men-
tal constraint kind of the beneficiary (e.g. pre-condition). The de-
gree of the contribution can also be specified.

Responsibility is a specialized UML realization used to model a
relation between belief, goal and plan (called responsibility objects)
and elements (called responsibility subjects) that are obligated to
accomplish (or to contribute to the accomplishment of) those be-
liefs, goals, or plans (e.g. modification of beliefs, achievement or
maintenance of Goals, realization of Plans, etc.).

Actions to model commitments to and de-commitments from
goals within activities are also provided.

Resource Arbiter

++

<<mental>>

Minimize risk of failure

Select best hostSelect best
substitute

Uptime host
selection policy

Strong host
selection policy

++

+0.5 +0.9

<<mental>><<mental>>

{no two elements in
the same cluster should
be hosted on the same
machine AND no two
elements in a cluster
should be instantiated
on machines that have
previously hosted failed
elements in that same
cluster}

++

Figure 9. Example of a mental model.

Fig. 9 shows an example of a snapshot of the mental model of
a Resource Arbiter9. One of the primary goals of the resource
arbiter is to minimize the risk of system failure (modeled by un-
decideable goal Minimize risk of failure). This goal is de-
composed into two sub-goals, both of which are necessary to the

9 In order to better demonstrate the capability of AML to model mental
aspects we have added additional policies to the Unity architecture.

achievement of the composite one (expressed by the necessary con-
tribution relationships between the goals). The first is to select the
best temporary substitute based on longest uptime (Select best
substitute), and the second is to select the best host by achieving
one of two further sub-goals. The first of these sub-goals (Strong
host selection policy) is stronger (as expressed with the con-
tribution relationship) and states that no two elements in the same
cluster should be hosted on the same machine and no two elements
in a cluster should be instantiated on machines that have previ-
ously hosted failed elements in that cluster. This is expressed by
the necessary and sufficient contribution between the shown belief
and the postcondition of the goal. If the above described goal can-
not be achieved a weaker alternative specified by the Uptime host
selection policy is applied.

10. Conclusion
The intention of this paper is to illustrate the effective applica-
tion of the Agent Modeling Language to the modeling of both
agent-specific and standard (non-agent specific) aspects of auto-
nomic systems. This has been achieved through the explanation of
the most significant features of AML in terms of the autonomic ele-
ments embodied in the Unity architecture and how they collaborate
to bring about self-healing recovery from policy repository failures
[25].

AML has already been demonstrated, through commercial ap-
plication [22], to be a powerful means of modeling systems con-
taining autonomous software entities. We have now found, through
this work, that AML is also well suited to the modeling of auto-
nomic systems and can intrinsically model aspects of self-* princi-
ples especially enacted through the behaviors of autonomous agents.
In fact, modeling systems in this manner not only helps to clarify
and simplify the analysis and design aspect of creating agent and
autonomic systems, it also helps to identify where flaws and prob-
lems may lie in less well-formed and/or complex system designs.

The AML specification is quite comprehensive and thus cannot
be presented in its entirety in a paper of this length, nor was that
our intention. Our aim was to demonstrate the utility of AML when
applied to a selected problem in the autonomic computing domain.
We believe that the examples provided give a reasonable flavor of
AML and the set of constructs it offers for modeling applications
embodying and/or exhibiting characteristics of multi-agent systems
and autonomic systems.

References
[1] J. Baldassari, C. Kopec, E. Leshay, W. Truszkowski, and D. Finkel.

Autonomic cluster management system (ACMS): A demonstration
of autonomic principles at work. In Proceedings of Workshop on the
Engineering of Computer-Based Systems, pages 512–518, 2005.

[2] B. Bauer, J. Muller, and J. Odell. Agent UML: A formalism for speci-
fying multiagent interaction. In P. Ciancarini and M. Wooldridge, ed-
itors, Agent-Oriented Software Engineering, pages 91–103. Springer-
Verlag, Berlin, 2001.

[3] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An agent-oriented software development methodology.
Autonomous Agents and Multi-Agent Systems, 2(3):203–236, 2004.

[4] R. Cervenka. Modeling Multi-Agent Systems. PhD thesis, Comenius
University in Bratislava, Faculty of Mathematics, Physics and
Informatics, 2005.

[5] R. Cervenka and I. Trencansky. Agent Modeling Language: Language
specification. Version 0.9. Technical report, Whitestein Technologies,
2004.

[6] R. Cervenka, I. Trencansky, and M. Calisti. Modeling social aspects
of multi-agent systems: The AML approach. In J. Muller and
F. Zambonelli, editors, Agent-Oriented Software Engineering VI:

528

6th International Workshop, AOSE 2005, Lecture Notes in Computer
Science 3950, pages 28–39. Springer-Verlag, February 2006.

[7] M. Cossentino and C. Potts. A CASE tool supported methodology
for the design of multi-agent systems. In Proceedings of the 2002
International Conference on Software Engineering Research and
Practice (SERP02), Las Vegas, NV, USA, 2002.

[8] M. Cossentino, L. Sabatucci, and A. Chella. A possible approach
to the development of robotic multi-agent systems. In IEEE/WIC
Conference on Intelligent Agent Technology (IAT’03), pages 539–
544, Halifax, Canada, 2003.

[9] S. DeLoach, M. Wood, and C. H. Sparkman. Multiagent systems
engineering. International Journal of Software Engineering and
Knowledge Engineering, 11(3):231–258, 2001.

[10] R. Evans, P. Kearny, J. Stark, G. Caire, F. Garijo, J. Gomez-Sanz,
F. Leal, P. Chainho, and P. Massonet. MESSAGE: Methodology
for engineering systems of software agents. Technical Report P907,
EURESCOM, 2001.

[11] J. Ferber and O. Gutknecht. A meta-model for the analysis and design
of organizations in multi-agent systems. In 3rd Int. Conference on
Multi-Agent Systems (ICMAS’98), pages 128–135. IEEE Computer
Society, 1998.

[12] C. Iglesias, M. Garijo, J. Gonzalez, and J. Velasco. Analysis and
design of multiagent systems using MAS-CommonKADS. In
M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents
IV (LNAI Vol. 1365), volume 1365, pages 313–326. Springer-Verlag,
1998.

[13] J. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[14] Z. Li and M. Parashar. Rudder: A rule-based multi-agent infrastruc-
ture for supporting autonomic grid applications. In Proceedings of
ICAC’04, pages 278–279, 2004.

[15] M. Mamei and F. Zambonelli. Self-maintaining overlay data
structures for autonomic distributed computing. In Proceedings
of ICAC’05, pages 376–377, 2005.

[16] J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. In
G. Wagner, Y. Lesperance, and E. Yu, editors, Proceedings of the
Agent-Oriented Information Systems Workshop at the 17th National
conference on Artificial Intelligence, pages 3–17, Austin, Texas, 2000.

[17] J. Odell, H. Parunak, M. Fleischer, and S. Brueckner. Modeling
agents and their environment. In F. Giunchiglia, J. Odell, and
G. Weiss, editors, Agent-Oriented Software Engineering III: Third
International Workshop, AOSE 2002, pages 16–31. Springer-Verlag,
Berlin, 2002.

[18] OMG. Meta Object Facility (MOF) specification. Version 1.4,
formal/2002-04-03, april 2002.

[19] OMG. Unified Modeling Language: Superstructure version 2.0.
ptc/03-08-02, 2003.

[20] L. Padgham and M. Winikoff. Prometheus: A methodology for
developing intelligent agents. In F. Giunchiglia, J. Odell, and
G. Weiss, editors, Agent-Oriented Software Engineering III: Third
International Workshop, AOSE 2002, pages 174–185. Springer-
Verlag, Berlin, 2002.

[21] J. Pavon and J. Gomez-Sanz. Agent oriented software engineering
with INGENIAS. In V. Marik, J. Muller, and M. Pechoucek, editors,
Multi-Agent Systems and Applications III: 3rd International Central
and Eastern European Conference on Multi-Agent Systems CEEMAS
2003, pages 394–403. Springer Verlag, 2003.

[22] G. Rimassa, M. Calisti, and M. Kernland. Living Systems Technology
Suite. Whitestein Series: Software Agent-Based Applications,
Platforms and Development Kits, 2005.

[23] V. Silva, A. Garcia, A. Brandao, C. Chavez, C. Lucena, and
P. Alencar. Taming agents and objects in software engineering.
In A. Garcia, C. Lucena, J. Castro, A. Omicini, and F. Zambonelli,
editors, Software Engineering for Large-Scale Multi-Agent Systems:
Research Issues and Practical Applications, volume LNCS 2603,
pages 1–25. Springer-Verlag, Berlin, 2003.

[24] A. Sturm, D. Dori, and O. Shehory. Single-model method for specify-
ing multi-agent systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems,
pages 121–128. ACM Press, New York, NY, 2003.

[25] G. Tesauro, D. Chess, W. Walsh, R. Das, A. Segal, I. Whalley,
J. Kephart, and S. White. A multi-agent systems approach to
autonomic computing. In Proceedings of AAMAS’04, pages 464–
471, 2004.

[26] The Foundation for Intelligent Physical Agents. FIPA Specifications
Repository. URL: http://www.fipa.org/repository/index.html, 2004.

[27] I. Trencansky and R. Cervenka. Agent Modelling Language
(AML): A comprehensive approach to modelling MAS. Informatica,
29(4):391–400, 2005.

[28] W. Turski and T. Maibaum. The Specification of Computer Programs.
Addison-Wesley, London, 1987.

[29] G. Wagner. The Agent-Object-Relationship metamodel: Towards a
unified view of state and behavior. Information Systems, 28(5):475–
504, 2003.

[30] T. D. Wolf and T. Holvoet. Towards autonomic computing: Agent-
based modelling, dynamical systems analysis, and decentralised
control. In Proceedings of the First Workshop on Autonomic
Computing Principles and Architectures, pages 10–18, 2003.

[31] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: The Gaia methodology. ACM Transactions
on Software Engineering and Methodology, 12(3):317–370, 2003.

529

