
Development of Automatically Verifiable
Systems using Data Representation Synthesis

Bryce Cronkite-Ratcliff
Department of Computer Science, Stanford University

brycecr@stanford.edu

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification- Formal Methods, Reliability

Keywords automatic verification; data representation synthesis;
container reasoning

1. Problem and Motivation
One of the greatest challenges in formal verification has been au-
tomatically reasoning about pointer data structures, where issues
of aliasing - that multiple symbolic names may refer to the same
memory location - and indirection greatly complicate automated
reasoning [9]. This problem has impeded the development of more
effective automatic formal analysis tools for general code, and an
approach for automatically reasoning about such structures has
proved elusive.

While the analysis of general pointer data structures remains
difficult, more progress has been made on the related problem of
analyzing containers, a restricted class of data structures that per-
mit insertion, query, removal, and iteration operations. These struc-
tures are encountered in numerous heavily used libraries, including
the C++ STL and Java Collections Framework. In particular, work
by Dillig et al. has provided a general theory for automatic reason-
ing about containers, and the authors have implemented this work
into a functional cross-platform automatic verifier called Compass
[2]. Thus, if we can change the way software is written such that
containers are used instead of pointer data structures, we can take
advantage of Compass precise reasoning about containers to auto-
matically verify the resulting code.

One approach to building code without pointer data structures
is Data Representation Synthesis (DRS) [4]. In DRS, the program-
mer provides a high-level description of the data as mathematical
relations, where this specification does not commit to any particular
implementation. Then, a compiler selects a particular data structure
implementation for the specified relation. The choice of data struc-
ture implementation is now under compiler control. As a result, the
correctness of data structure operations is now by construction.

In this work, we show that DRS encapsulates arbitrary data han-
dling in an interface that supports operations that can be expressed
in terms of operations on containers. Thus, we can use the precise

http://dx.doi.org/10.1145/2508075.2514874

reasoning techniques for containers already mentioned to perform
automatic verification of systems built on structures generated by
Data Representation Synthesis.

Thus, the use of Data Representation Synthesis and techniques
for precise automatic reasoning about containers can provide auto-
matically verifiable complete systems that are performant and rela-
tively simple to build and maintain.

2. Background and Related Work
This work is based on the union of Precise Container Reasoning
and Data Representation Synthesis techniques already mentioned,
so some further elaboration of these techniques is warranted.

2.1 Precise Container Reasoning
Containers are a class of abstract data structures that allow elements
to be inserted, retrieved, removed, or iterated over. A wide range
of familiar data structures including maps, vectors, lists, sets,
stacks, and deques are containers. Because container interfaces are
widely used in standard libraries such as the C++ STL, automatic
analysis of container client programs can be decoupled from the
potentially more tedious task of verifying the particular container
implementation; one implementation analysis can serve for all the
clients of the container [2].

Recent work by Dillig, Dillig, & Aiken developed a technique
for precise automatic static analysis of container-manipulating pro-
grams, which we will refer to as Precise Container Reasoning
(PCR) [2]. PCR differs from previous approaches to container anal-
ysis in that it separates containers into position-dependent con-
tainers (such as stacks, vectors, and lists) and value-dependent
containers (such as maps and sets), and provides a constraint-
based means to reason about key-value and position-value rela-
tionships for value-dependent and position-dependent containers,
respectively. In tests conducted by the authors, PCR found all
container usage errors detected by a technique that did not con-
sider these key-value and position-value relationships and produced
many fewer false positives, to the point where false positives never
outnumbered actual errors and usually accounted for far fewer
warnings.

Compass is an analysis application that implements PCR to
allow for automatic analysis of container-manipulating programs
[2]. Compass currently supports analysis of C++.

2.2 Data Representation Synthesis
Data Representation Synthesis (DRS) is a technique developed re-
cently by Hawkins and colleagues to provide a means of decoupling
the data structure interface from the data structure implementation
[4]. In DRS, the programmer provides a relational specification and
decomposition. The relational specification is a description of the
data to represent, how each piece of data relates to others (for ex-

109

ample, which attributes act as relational keys), and which relational
operations should be supported. The decomposition provides a de-
scription of how the data structure should be implemented as a
combination of existing data structure primitives. Thus, the pro-
grammer defines the interface to their data structure via a relational
specification, and this definition is entirely separate from the defi-
nition of the backing decomposition.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.



DRS has been implemented by Hawkins in the form of RelC.
RelC takes as input relational specifications and decompositions
written in a simple ML-like language and generates data structures
in C++ or Java that implement the requested relational specification
using the supplied decomposition.

DRS has an advantage in the development of verifiable pro-
grams: because DRS is capable of generating high-performance en-
capsulated data structures that can represent arbitrary relations, the
need use hand-coded pointer data structures is reduced or elimi-
nated. In particular we can use existing techniques for precise rea-
soning about containers to reason about DRS-generated relations.

2.3 Related Work
Several other projects have sought to verify microkernel code. In
particular, NICTAs seL4 was the first operating system kernel to be
completely formally verified [8]. seL4 was custom-built for the ver-
ification project and verification was performed by automatically
verifying that the kernel code faithfully implemented a manually
written formal specification for the kernel behavior. seL4 built on
work on the EROS kernel, and a small number of other verified op-
erating systems exist in both academic and industrial sectors. The
VFiasco project is perhaps most similar to the work presented here
in that it attempts to verify Fiasco [5]. However, VFiasco focuses in
particular on proving properties such as whether the internal page-
fault handler terminates for all page faults or whether the memory
allocator works correctly (in our work we focus on demonstrating
memory safety).

Our work differs from the approaches in these systems in that
we focus on demonstrating the feasibility of building a system
suitable for automatic verification of memory safety instead of
building an operating system with verified higher-order properties
for use in critical embedded applications.

Automatic software verification is an active field of research in
programming systems and many promising approaches are under
study. Type Qualifiers present one approach, where qualifiers in-
ferred or programmer-supplied carry information about expected
program behavior and potential security risks [3]. Type Qualifiers
have been applied to verify pointer safety in operating system code;
one study by Johnson and Wagner used Type Qualifiers to find
pointer bugs in Linux kernel code [6].

Recent research in path-sensitive data-flow analysis has ex-
tended the scope of programs that can be analyzed with data-flow
techniques greatly, and has promising applications in automatic
compiler optimizations and formal verification [1].

Work by Kim and colleagues has focused on verification of spe-
cific pointer-based data structures, particularly linked data struc-
tures [7]. This work indicates the possibility of reasoning about
pointer data structures without porting code, but it is not fully auto-
matic and does not come with the advantages besides verifiability
- in modularty, implementation independence, and potentially per-
formance - of developing with relations.

These and similar automatic verification techniques vary from
our approach in that they do not reason about containers and thus
are not able to separate interface from implementation in analysis.
It should be mentioned that we see our approach as complementary
to those mentioned above to verify code that is not container-
manipulating or to verify container implementations.

3. Approach
Our primary motivation for this work is to demonstrate the auto-
matic verifiability of code using DRS-generated structures. To a
first approximation, a relation can be seen as a container of the
tuples in the relation, where queries on the attributes serve as the
indices into the relation. Thus, if we can express the relational op-
erations as operations on containers, we can use the automatic ap-
proach to verifying code that manipulates containers implemented
in Compass.

Briefly, we model a relation R as a trie where each non-leaf
node at level l is a container mapping an particular value of an
attribute al in the relation to a set of partial tuples that correspond
to the attributes ai , l ≤ i ≤ SR where SR is the size of the
attribute schema of R. Each leaf node is simply a terminal node
that indicates the presence of a particular tuple formed by traversing
edges from the root of the trie.

With a mechanism for reasoning about relations as containers,
we developed a system to demonstrate the efficacy of this approach.

In particular, we removed all the core pointer data structures
from the Fiasco.OC microkernel and replaced them with RelC-
generated relations. We then benchmarked the result to demonstrate
good performance – we see an average performance loss relative to
the original kernel of about 4%. Finally, we are currently working
with Compass to determine if we can automatically verify security
properties of the resulting code.

This work, to our knowledge, represents the first attempt at a
validated approach for automatically verifying non-trivial safety
properties of complex computer systems that use arbitrary data
relationships.

4. Results
We set out to develop a significant proof of concept for the veri-
fication of software systems developed using Data Representation
Synthesis. We were able to port core structures of the Fiasco mi-
crokernel to structures compiled by Data Representation Synthesis,
verify performance, and are currently applying precise container
reasoning techniques to determine the verifiabiliy of the code.

We hope this work will be evidence of the effectiveness of
developing arbitrary systems with Data Representation Synthesis.
Without increasing code complexity or decreasing performance,
the use of relations could create automatically verifiable container-
manipulating code where analysis-confounding pointer data struc-
ture code once stood.

Acknowledgments
Thank you to Alex Aiken, Peter Hawkins, Tom & Isil Dillig, and
Mooly Sagiv for guidance and support.

References
[1] I. Dillig, T. Dillig, and A. Aiken. Sound, Complete and Scalable Path-

sensitive Analysis. PLDI, 43(6):270–280, 2008.

[2] I. Dillig, T. Dillig, and A. Aiken. Precise Reasoning for Programs Using
Containers. PLDI, 46(1):187–200, 2011.

[3] J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type Qualifiers.
PLDI, 34(5):192–203, 1999.

[4] P. Hawkins, A. Aiken, K. Fisher, and M. Rinard. Data Representation
Synthesis. PLDI, 47(6):38–49, 2011. ISSN 03621340.

[5] M. Hohmuth, H. Tews, and S. G. Stephens. Applying Source-code
Verification to a Microkernel The VFiasco Project. ACM SIGOPS
European Workshop: Beyond the PC, 2002.

[6] R. Johnson and D. Wagner. Finding User/Kernel Pointer Bugs with
Type Inference. USENIX Security Symposium, pages 119–134, 2004.

110

[7] D. Kim and M. C. Rinard. Verification of Semantic Commutativity
Conditions and Inverse Operations on Linked Data Structures. PLDI,
pages 528–541, 2011.

[8] G. Klein, K. Elphinstone, G. Heiser, and K. Engelhardt. seL4 : Formal
Verification of an OS Kernel. ACM SIGOPS Symposium on Operating
Systems Principles, 97(1):207–220, 2009.

[9] K. Zee, V. Kuncak, and M. Rinard. Full Functional Verification of
Linked Data Structures. PLDI, 43(6):349, May 2008.




