
�������������	
���
�	��	���
��	��
�����������������
����
������	�������
�����
���������������������
��

�
����������	
��
���
�
�
	������������	�����

��
����

�����������������	��������

�
��������	
����

�
�
	������������	�������
����

���	
������������	��������

�
���������
	����

���� !�

"��#���

�������
��������$��

�
%�
��������
�

�
�
	������������	�����

��
����

�����
���������	��������

ABSTRACT
Aspect-Oriented (AO) frameworks improve a framework-centered
development process by providing appropriate means for handling
crosscutting concerns. However, the instantiation process of AO
frameworks remains complex and error-prone. We propose a
modeling and transformation approach with tool support to assist
the instantiation of AO frameworks.

Categories and Subject Descriptors: D.2.2
[Software Engineering]: Design Tools and Techniques -
Computer-aided software engineering (CASE)

General Terms: Design, Languages, Verification.

Keywords: Aspect-oriented frameworks, aspect modeling
languages, model transformation, application frameworks.

1. INTRODUCTION
Application frameworks have been widely used as valuable tools
to produce families of applications at a lower cost and higher
quality. In fact, frameworks have been successful in representing
the common and variable features of software products, thus
becoming a key component in software product lines [1].
However, the traditional object-oriented approach still fails to
support a clean separation of concerns commonly found in
application frameworks (crosscutting concerns). As a result,
aspect-oriented (AO) frameworks [2] are moving to the
mainstream by taking advantage of new mechanisms (e.g.,
aspects) to properly handle crosscutting concerns. The
combination of aspects and application frameworks is really
promising and is already demanding approaches to facilitate the
instantiation process of AO Frameworks. This paper summarizes
our research work towards the specification of an approach to
assist the instantiation process of aspect-oriented frameworks. The
approach relies on UML [10] extensions to represent the AO
framework design model and on transformations to produce
application instances. A Case tool to support automation is also
described. In the following sections we discuss aspect-oriented
frameworks, our approach to framework instantiation and a case
study we developed to evaluate our ideas.

2. ASPECT-ORIENTED FRAMEWORKS
An AO framework contains a set of classes and aspects that play
together to decompose architectural elements into a more

manageable set of modules. Aspects support a better separation of
concerns that are normally spread throughout the design and
source code in object-oriented architectures. A good example of
crosscutting concerns are design patterns [3] which, in fact, are
very likely to be found in a framework architecture. For instance,
in the Observer design pattern the objects playing the roles
Observer and Subject may also play other roles in the framework
architecture. The use of aspects allows framework developers to
proper separate object roles into distinct modules improving
encapsulation and avoiding tangled code. A previous research
work [5] has already proposed an aspect-based implementation of
the 23 GoF design patterns [3] using the AspectJ programming
language [6]. While in object-oriented frameworks hotspots are
represented by abstract classes and methods, AO frameworks
benefit from other abstractions to represent variability including
aspects and pointcuts. Thus, during the instantiation process of
AO frameworks, application developers have to provide concrete
implementations for all the abstract aspects and pointcuts
specified. For example, with the Observer design pattern,
application developers have to specify the execution points
(represented by pointcuts in AspectJ) in which Subjects will notify
Observers about changes in their internal state.

3. OUR APPROACH
Our approach to aspect-oriented framework instantiation consists
of a modeling language based on UML extensions, a process
language for model transformation, and a Case tool (see Figure 1).
Modeling Language- In our approach we propose a modeling
language named AF-UML that represents an effort to take
advantage of current UML extensions proposals for aspects (e.g.,
aSideUML [9]) and frameworks (e.g., UML-FI [8]). In UML
extensions for aspects framework developers can model pointucts,
advices, and aspects appropriately, but there is normally no
support for describing hotspots (e.g., abstract pointcuts). In
contrast, current UML extensions for frameworks do not tackle
aspects and its related concepts but are adequate in modeling
variability. Our modeling language aims at providing adequate
means to describe AO framework models, i.e., aspects and its
related-concepts as well as variability. Moreover, we also plan to
address model serialization issues, in particular, we aim at making
AF-UML models compliant with the OMG XMI (XML Metadata
Interchange) [7] format.
Transformation- The core of our approach relies on model
transformations. In particular, we propose a process language
named AF-RDL (Aspect-oriented Framework-Reuse Definition
Language) that takes as input a framework model (e.g., aspect
diagram) and based on inputs from application developers

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

94

generates application instances models. The process language is
based on the cookbook approach to framework documentation [4]
and uses concepts such as design patterns and instantiation
commands to increase the level of abstraction during the
instantiation process. As well, AF-RDL uses the notion of recipes
to encapsulate inter-related instantiation tasks. Framework
developers use AF-RDL commands to specify the instantiation
steps required to produce valid application instances. Subsequent,
application developers run AF-RDL scripts that are provided in
order to generate application instances. During the instantiation
process, not only abstract classes and methods are extended but
also abstract aspects, aspect methods and pointcuts.

Figure 1: An Overview of Our Approach

Tool Support- A Case tool named xAFIT (XML Aspect-oriented
Framework Instantiation Tool) to support our approach is under
development. The tool transforms a semi-complete AF-UML
aspect diagram (framework design) into a complete aspect
diagram (application design) based on application developers’
inputs. xAFIT provides a runtime environment for AF-RDL
scripts. At the low-level, xAFIT converts AF-RDL high-level
command calls into XQuery [11] user-defined function calls in
order to achieve transformations over the serialized XMI models
(XML format). For instance, the ASPECT_EXTENSION AF-
RDL command is mapped to the xq_aspect_extension function in
XQuery that takes the super-aspect name as a parameter and
returns a valid XML tag that represents the new sub-aspect model
element created.

4. CASE STUDY
We developed an initial case study to evaluate the feasibility of
our approach. The idea was to produce an application instance
through transformations over an AO framework design. We
developed a Drawing Editor framework in AspectJ [6] which
exposed 6 hotspots (CSGDrawingEditor Framework). The
Observer design pattern was used allowing Figure objects
(Subjects) to notify registered Observers about size changes (e.g.,
zoom in/out). The Observer, in our case represented by the
Display class would handle the notifying events by repainting the
drawing in the appropriate canvas window. We used an aspect
version of the Observer design pattern (described in [5]) that
exposes 2 hotspots: i) the Display (Observer) reaction to Figure’s
(Subjects) resizing, realized by an aspect method extension, and
ii) the Figure object’s that should notify the Display about state
changes (e.g., calls to the resize() method of Figure objects),
realized by a pointcut extension. We represented the instantiation
tasks in an AF-RDL script, mapped some AF-RDL commands to
XQuery user-defined functions and performed the corresponding
XQuery transformations. At the end we obtained a serialized
XMI-like model representing our application instance design.

Aspects, poincuts, aspect methods and advices were represented
by specific model elements in AF-UML. The case study showed
that the idea of mapping high-level AF-RDL commands to
XQuery functions is feasible. Indeed, XQuery turned out to be a
powerful language for transformation. Therefore, the combination
of AF-RDL and XQuery was seen as very positive and promising.
The next steps in our research include i) enhancing the AF-UML
expressiveness by defining new models for AO frameworks, ii)
specifying a corresponding XMI-compliant description to all
model elements in AF-UML, iii) mapping all RDL instantiation
commands to related XQuery functions, and iv) developing a tool
to manipulate AF-UML models.

5. CONCLUSION
We propose an approach to facilitate the instantiation process of
aspect-oriented frameworks. The approach includes a modeling
and a process language, and a Case tool. We presented a
preliminary case study we performed to validate our ideas and
pointed out the future directions of our research.

6. ACKNOWLEDGMENTS
This work has been partially supported by the Natural Sciences
and Engineering Research Council (NSERC) and CAPES
(Brazilian Ministry of Education Agency).

7. REFERENCES
[1] SEI-Software Engineering Institute – Software Product

Lines - http://www.sei.cmu.edu/productlines/index.html
[2] Constantinides C., Bader A., Elrad T., Fayad M., and

Netinant P., Designing an Aspect-Oriented Framework in an
Object-Oriented Environment, ACM Computing Surveys,
32(1), 2000.

[3] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[4] Pree W., Pomberger G., Schapert A., Sommerlad P., Active
Guidance of Framework Development, Software-Concepts
and Tools (1995) 16: 94-103, Springer-Verlag.

[5] Hannemann J., Kiczales G. Design pattern implementation in
Java and AspectJ. In Proceedings OOPSLA '02, ACM
SIGPLAN Notices, 2002.

[6] AspectJ Project Official Website - http://eclipse.org/aspectj/
[7] XMI (XML Metadata Interchange). OMG XMI Website

http://www.omg.org/technology/xml/
[8] Oliveira, T. C. Filho, I. M., Lucena, C. J. P. , Alencar, P. S.

C., Cowan, D. D., Software Process Representation and
Analysis for Framework Representation, IEEE Transactions
on Software Engineering, March 2004, Volume 30, Issue 3,
p.145-159.

[9] Chavez, Christina von Flach Garcia. A Model-Driven
Approach to Aspect-Oriented Design. PhD Thesis, Rio de
Janeiro: PUC-Rio, 2004.

[10] Unified Modeling Language. OMG UML Website
http://www.uml.org/

[11] XQuery. W3C XQuery Website
http://www.w3.org/TR/xquery/

AO Framework
Design (AF-UML)

AF-RDL
Scripts

Application
Instance
Design

(AF-UML)

Transformation

xAFIT
Case Tool

Application Developer

95

