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1. INTRODUCTION
Generic programming is an increasingly important paradigm

for the development of software libraries. David Musser and
Alexander Stepanov developed the methodology of generic
programming in the late 1980’s [6] and applied it to the
construction of sequence and graph algorithms in Scheme,
Ada, and C. In the early 1990’s they shifted focus to C++

and took advantage of templates to construct the Standard
Template Library [12] (STL). The STL soon became part
of the C++ Standard, which brought generic programming
into the mainstream. Since then, generic programming has
been successfully applied in the construction of libraries for
numerous problem domains [1, 2, 4, 5, 8, 9, 11,13,14].

Many programming languages have some support generic
programming and some languages are in the process of adding
support. In [3] we compared the support for generic pro-
gramming in the following languages: C++, Java (with the
generics extension), Generic C#, Haskell, Standard ML, and
Eiffel. Since then we have extended the study to include
O’Caml and Cecil. During the study we identified the follow-
ing properties of languages as important in the construction
of generic libraries such as the STL and the Boost Graph
Library (BGL) [9].

Multiple constraints Can several constraints be applied
to a type parameter of generic function?
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Associated type access How easy is it to access types as-
sociated with a type parameter, such as the element
type of a container, from within a generic function?

Constraints on associated types Is it possible to place
constraints on an associated type as part of an inter-
face definition?

Retroactive conformance Can a class be made to con-
form to an interface without changing its definition?

Separate type checking Is the body of a generic function
type checked independently of any call to the function,
and are calls to the function type checked with respect
to the function’s signature and not with respect to the
body of the function?

Separate compilation Can a generic function be compiled
(to an object file or byte code) independently of any
call to the function?

Implicit instantiation Are the type arguments of a generic
function deduced from the types of the arguments, or
must the caller explicitly instantiate the function?

Type aliases Does the language provide the equivalent of
typedef?

Scalable syntax Does the amount of text required to com-
pose layers of generic components grow linearly (or
worse) with the number of components?

We implemented a non-trivial subset of the BGL in each
of the languages and evaluated the languages according to
that experience. While several languages performed quite
well, no single language had all of the properties we were
looking for. C++ is very good in expressiveness and con-
venience but provides neither separate type checking nor
separate compilation for function templates. Even worse,
there are loop-holes in the name lookup rules that defeat
the modularity provided by namespaces. Standard ML, on
the other hand, provides separate type checking and sepa-
rate compilation for generic components implemented with
Functors. However, functors must be explicitly instantiated,
which is inconvenient for users of generic libraries. Haskell’s
type classes provide separate compilation and type checking,
and also provide the convenience of implicit instantiation.
However, Haskell suffers from some modularity problems:
situations can arise where a user may not be able to use two
independently developed libraries due to clashing instance

declarations. We detail these problems in [10].
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Generic programming is concerned with the construction
of libraries of reusable software components and is inherently
about programming “in the large.” Thus, the construction
and use of generic libraries is difficult when the host lan-
guage fails to provide sufficient modularity.

2. GOAL STATEMENT
The purpose of this research is to design a programming

language, named G, that improves on the state of the art in
language support for generic programming. In particular,
the focus will be on improving modularity.

A language for generic programming must provide mod-
ularity while at the same time allowing for flexible and rich
interfaces. There is significant tension between these two
goals, and finding a language design that satisfies both is
non-trivial. This research will produce answers to the fol-
lowing questions:

1. Constraints on type parameters are best organized ac-
cording to abstractions in the problem domain. How
should the constraint language be formulated to faith-
fully and naturally describe abstractions?

2. What role do the constraints play in the type system of
the language? How can separate type checking be ac-
complished while at the same time allowing for caller-
provided functionality to be accessed by a generic func-
tion. Can the generic function ask for, and the caller
provide, functionality in a way that maintains modu-
larity but that does not make generic functions much
less convenient to call than non-generic functions?

3. How can separate compilation be achieved for generic
functions, and even more challenging, for generic func-
tion that dispatch to alternate algorithms based on
properties of the input types? What compilation tech-
niques are necessary to provide efficient run-time exe-
cution of generic functions?

3. APPROACH AND EVALUATION
This research will produce a formal definition of G, in-

cluding a definition of the type system and a single-step
operational semantics. The formalization will be per-
formed in the Isabelle/Isar proof system [7]. We selected
this proof checker because it is industrial strength, the in-
put proof language is human readable, and proof mainte-
nance and refactoring is easier than in many other proof sys-
tems. We will prove that the operational semantics respects
the static semantics. In addition, we will prove context-
independence for modules (the meaning of a function does
not depend on the context from where it was called, except
for its arguments) and that modules may be freely composed
(name clashes, etc. will not occur).

This research will produce a compiler that translates
from G to C++. The compiler will allow us to answer ques-
tions about separate compilation and efficiency of generic
functions. We will prototype several generic libraries in
G, including a subset of the STL and the BGL, which will
provide the experience needed to evaluate the usability of
the language with respect to constructing generic libraries.
Because the BGL uses the STL, we will also be able to eval-
uate the use of generic libraries in G.
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