
Harnessing Collective Software Development

Luis Artola
Digital Domain

Venice, California, USA
la@luisartola.com

Abstract
Python has become established as the de facto scripting lan-
guage in many industries including the post-production of
visual effects. Its shallow learning curve enables a wider
range of individuals to produce code much more quickly
than before. This often leads to increased code duplication,
competing tools and increased maintenance costs. This talk
presents an attempt to harness all that coding power in a fast-
paced production environment with the intention of increas-
ing code reuse, reducing maintenance costs and improving
the quality of the development process and the code itself.
It describes philosophy, tools, techniques and challenges of
harnessing collective software development in the pursuit of
better software.

Categories and Subject Descriptors D.1.0 [Programming
Techniques]: General; D.2.1 [Software Engineering]: Re-
quirements / Specifications—Methodologies; D.2.2 [Soft-
ware Engineering]: Design Tools and Techniques—Modules
and interfaces; D.2.3 [Software Engineering]: Coding Tools
and Techniques—Top-down programming; D.2.8 [Soft-
ware Engineering]: Metrics—Process metrics; D.2.9 [Soft-
ware Engineering]: Management—Cost estimation; D.2.13
[Software Engineering]: Reusable Software—Reuse models

General Terms Design, Documentation, Experimentation,
Languages, Management, Measurement, Standardization.

Keywords Object-oriented Programming, Procedural Pro-
gramming, Software Development Methologies, Software
Process, Python.

1. Introduction
Collective Software Development takes place in environ-
ments where there are multiple simultaneous projects that
require development of software tools. Each project has its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0942-4/11/10. . . $10.00

own team of developers ready to quickly produce code to
keep up with demaning schedules. The focus of a project is
not the production of software per se, but support software
is essential for the end result.

Each project has very similar needs, but time pressure
tends to inhibit communication and code sharing amongst
developers working on similar tools and scripts. This in-
evitably leads to code duplication and the proliferation of
competing similar tools at the end of a few projects. The
cost of maintenance and training increases as well. And, the
amount of code that is eventually thrown away can be sub-
stantial.

Collective development is not the same as collaborative
development. The former is normally done by a group that
is not working in concert. The latter implies some level of
communication and sharing.

The production of visual effects is a perfect example of
such environments with an additional twist. Python is widely
used in the industry to create supporting software and ex-
tend applications. Its ease of use enables people with lit-
tle or no formal education in software engineering to pro-
duce code [4]. This usually results in code that is not easily
reusable or maintainable, and is poorly documented.

This paper describes an approach to:

• Bridge the gap from collective to collaborative.
• Add structure to an otherwise disorganized develop-

ment [6].
• Facilitate capturing and communicating knowledge across

time and developers [3].
• Increase code reuse.

2. Methodology
2.1 Traditional scripting
Let’s illustrate concepts and approach using an example.

The script in Figure 1 shows what a developer would
typically write using only Python to solve a specific problem
in production. The code performs a series of steps for taking
some digital elements, validating, exporting different file
formats, registering files in production tracking systems and
cleaning up.

99

def publish():

elements = getSelectedElements()

validate()

paths = getFilePaths()

exportAnimation(elements, paths)

exportGeometry(elements, paths)

exportBoundingBoxes(elements, paths)

exportThumbnails(elements, paths)

registerFiles(paths)

cleanUp()

Figure 1. publish.py: A traditional Python script.

There is nothing fundamentally wrong with this ap-
proach. But, the reality is that code is never written in a
way that lends itself for easy reuse, especially not under
time pressure. It is normally a highly cohesive mix of user
interface, business logic and data transformation that is not
easily modularized. This matters because at the same time
a specific department in the production pipeline needs tasks
like this to be coded and automated, there are people in other
departments with similar needs.

2.2 Dividing and organizing code
This can be improved by following some basic principles to
add structure and policies to the code:

1. Programs are static descriptions of what needs to hap-
pen, instead of actual code that only programmers can
read and understand.

2. Every step in that program is an individual module
that performs one and only one well defined operation,
instead of a function in a larger piece of code [5].

3. Data is separated from logic and is planned, well-
defined and predictable.

A program becomes a tree of connected modules that
transform data [4, 5]. We refer to this as the workflow ap-
proach.

Figure 2. Workflow: A tree of connected modules

Figure 2 represents an alternative structure functionally
equivalent to the script in Figure 1. The diagram shows the
following elements:

Workflow Static description of connected actions.
The entire tree.

Process Sequence of actions in a workflow.
Each branch or subtree.

Action A discrete operation on application-specific data.
Each node.

<?xml version="1.0"?>

<workflow>

<process name="main">

<action module="GenerateElements"/>

<action module="Validate"/>

<process name="ExportAnimation">

<action module="GetFilePaths"/>

<action module="ExportAnimation"/>

<action module="RegisterFiles"/>

</process>

<process name="ExportGeometry">

<action module="GetFilePaths"/>

<action module="ExportGeometry"/>

<action module="RegisterFiles"/>

</process>

<process name="ExportBoundingBoxes">

<action module="GetFilePaths"/>

<action module="ExportBoundingBoxes"/>

<action module="RegisterFiles"/>

</process>

<process name="ExportThumbnails">

<action module="GetFilePaths"/>

<action module="ExportThumbnails"/>

<action module="RegisterFiles"/>

</process>

</process>

</workflow>

Figure 3. Publish.xml: Workflow equivalent of publish.py

class ExportAnimation(Action):

def run(self, data):

for element in data[’elements’]:

export animation from element

return data

Figure 4. ExportAnimation.py: Python module containing
an action.

The workflow in Figure 2 is implemented with the fol-
lowing files:

• Workflow: An XML file that describes the operations to
be performed (Figure 3.)

Publish.xml

100

• Actions: A Python module per operation that contains a
single Action class. (Figure 4 shows an example action.)

GenerateElements.py

Validate.py

GetFilePaths.py

ExportAnimation.py

ExportGeometry.py

ExportBoundingBoxes.py

ExportThumbnails.py

RegisterFiles.py

The actual separation of the initial Python script into mul-
tiple files can appear as overhead at first glance. However,
the code that was originally written as functions inside a
monolithic script is now packaged individually in smaller
modules. The main function was replaced by an XML de-
scription. In terms of lines of code, the overhead is not sig-
nificant [6]. And, the many benefits that will be explained
shortly more than compensate for the added structure.

Even at this early stage, Figure 3 shows evidence of how
smaller modules have now better chances of being reused.
For example, the GetFilePaths and RegisterFiles ac-
tions are reused four times in the same workflow. And, since
it is a standalone module with a very simple and well-defined
interface, it has a higher probability of being reused in other
workflows.

2.3 Static descriptions and XML
Having a workflow be a static description encoded in XML
was somewhat controversial at the beginning. However, it
provides many advantages, let’s elaborate on some of them:

1. A static description is a contract, not only for the devel-
oper and ultimately the programming language, but also
enables other, non-programmers and less techical stake-
holders to get closer to understanding what a particular
workflow in production does.

(a) Horizontal edits (b) Vertical edits

Figure 5. Workflow variations

2. Because the description is expressed in XML, making
changes, adapting or quickly responding to changes in
production due to external factors becomes a configura-
tion problem, not a programming task. Examples include
changes in the back-end, temporary disruption of certain
services, etc. that should not require modifying the code.

This is particularly valuable in fast-paced production en-
vironments where the response time is often times criti-
cal. Figure 5 shows variations of the workflow in Figure 2
to disable certain aspects of the workflow by simply re-
moving select actions or entire processes.

Figure 6. Workflow variations

3. An interesting property discovered after analyzing changes
to workflows over time is that vertical edits normally
translate to disabling the generation or transformation of
certain data that was useful in some projects, but not in
others. Horizontal edits normally translate in disabling or
changing interaction with support systems. See Figure 6

4. Another important benefit of using XML is that the de-
scription of what a program would do becomes a service
for a number of consumers. The primary consumer is of
course the framework that executes the Python code that
is referenced in the XML. But, because actions are very
application-specific, XML enables the ability to gather
statistics, extracting documentation from modules, etc.
without having to actually run a live Python session to
import modules. In the majority of cases an approach like
this would be impractical as many actions would not have
all the application-specific Python modules they need to
even be imported in the first place.

2.4 Overriding code
Dividing code in workflows and actions is a hybrid of two
programming approaches. Workflows are akin to procedural
programming albeit at a higher level. Actions are still coded
using object-oriented programming. One of the benefits of
object-oriented programming is the ability to specialize code
and override specific functionality to adapt to the needs
of a specific project. Normally, this is accomplished using
inheritance. And this is still true for individual actions at
the implementation level. The question is how to provide a
similar mechanism at the modular level used in the worklfow
specification.

There is a simple solution. Use the file system to provide
different locations where workflows and actions can be in-
stalled. Locations have precedence. When executing a work-
flow, actions are searched in those locations starting from the
one that is closer to the user environment. To explain how
this is determined, let’s look at locations first. There can be
four locations on disk for installing workflows and actions:

101

1. framework

2. shared

3. project

4. user

While it is possible to add an arbitrary number of levels,
more than four are not practical in real world use. These
levels provide automatic overriding for both workflows and
actions. The framework that executes workflows reads the
XML and locates actions based on the user environment. The
user level is closer to the user, framework is farther way.

The level to use can be part of the environment, where
the tools indicate what is the closest level for that particular
execution.

This setup has some interesting properties:
The closer actions and workflows get to the framework

level, the more stable they are. But, also the harder it is to
make changes because they affect many other workflows.

Likewise, the closer they get to the user level, the less
stable they are. However, the easier it is to make changes
and do faster prototyping.

Figure 7. Overriding actions selectively

These levels can be visualized in Figure 7. Because ac-
tions and workflows can live at any given level, looking
at a workflow definition is like looking through a series of
translucent windows. A workflow is a projection of actions
from different overriding levels.

Overriding is possible at a very granular level. This flex-
ibility makes it also possible to quickly debug and diagnose
problems at specific points in the process. For example, there
are situations where a given workflow installed at the project
level is failing in a particular action. A developer would sim-
ply copy that action to the user level and make changes, set
breakpoints, etc. for easier troubleshooting.

2.5 Executing workflows
Traditional Python scripts control their internal data struc-
tures and can be executed directly from a command in-
terpreter. Workflows on the other hand need a supporting
framework for execution. The framework can be very nimble
though, at the bare minimum it simply parses the XML file,

locates and imports Python modules representing each indi-
vidual action, and executes them one at a time sequentially
passing data from one to another.

Actions are free to modify, append and destroy the data
that is flowing through as needed. Action is the base class
for all actions and has an extremely simplified interface. The
only thing required is a method with the following signature:
def run(self, data).

Leveraging the highly-dynamic nature of Python when it
comes to data types, data can be anything and can be trans-
formed [4] as it flows down from action to action. Defining
data structures that are simple to understand is one of the
most challenging aspects of writing reusable actions. In our
experience, all the workflows used a plain dictionary.

The following is a contrived example but representative
of real use. Error checking and obvious import statements
are intentionally omitted to illustrate how data flows down-
stream and is used and transformed by each action in turn.

<?xml version="1.0"?>

<workflow>

<process name="main">

<action module="GetElements"/>

<action module="CreateDirectories"/>

<action module="WriteContents"/>

</process>

</workflow>

Figure 8. example.wam

class GetElements(Action):

def run(self, data):

data[’elements’] = [

dict(name=’house’),

dict(name=’car’),

dict(name=’trees’),

]

return data

Figure 9. GetElements.py

def CreateDirectories(Action):

def run(self, data):

for element in data[’elements’]:

directory = ’/elements/’ + element.name

element[’directory’] = directory

os.mkdir(directory)

return data

Figure 10. CreateDirectories.py

102

class WriteContents(Action):

def run(self, data):

for element in data[’elements’]:

file_name = \

element.directory + ’/contents.txt’

output = open(file_name, ’w’)

output.write(element.name)

output.close()

return data

Figure 11. WriteContents.py

The workflow in Figure 8 illustrates how three actions
work in concert to create files on disk. The GetElements

action listed in Figure 9 gets executed first and seeds the
data dictionary with three elements represented by simple
dictionaries containing their names. In a real world scenario,
an action like this would pull data from a database of some
sort, e.g. an asset management or production tracking sys-
tem.

The data returned by this action is then passed on to
the CreateDirectories action listed in Figure 10. This
action demonstrates how to use data coming into the action
and modifying it for further use downstream. It uses the
name key of each element in the elements list to build a
directory path on disk. The directory is created and added as
a directory key to each element dictionary.

The data is once more passed along to the third action
listed in Figure 11, WriteContents. This action iterates
over the elements using their name and directory keys
to write a simple text file on disk for each element.

The beauty of separating data and logic this way is
that other workflows can easily reuse, for example, the
CreateDirectories action. The only thing there is to
know about that action is that it requires a dictionary-like
object to be passed in as the data argument. It also expects
data[’elements’] to be a list of dictionary-like objects
that provide access to a name key. Therefore, there exist
implicit connections between modules based on the assump-
tions they make on each other [5].

This methodogy does not enforce any specific data struc-
ture to be used in actions. However, the simpler and better
documented the data structures and the data that each indi-
vidual action requires, the easier it would be to reuse them.

3. Metrics, Analysis and Benefits
3.1 Enabling collaboration
This methodology was used in multiple ocassions to scope
out a particular problem to solve in production, devise a plan
of attack, arrange and connect all the pieces of function-
ality that would need to be executed, divide the work and
have multiple developers simultaneously code portions of

the workflow much faster and with less interdependencies
than traditional scripting.

Besides making better use of coding resources simultane-
ously, it also improves collaboration amongst developers in
sucession over time. This is possible because workflows are
modular by definition, every developer new to a workflow
can contribute more easily because actions are very targeted.

To illustrate this point, a great practical example in our
experience was the creation of a workflow to automate the
preparation, packaging and delivery of digital assets and re-
lated data to outsourcing vendors. From a high level perspec-
tive, the problem required coding in the following domains:

• Filtering and coverting elements to make sure that no
proprietary elements found their way outside the facility.
This required a developer with intimate knowledge of the
mayor artistic applications and tools used in production.

• Extracting SQL records from various back-end systems
in a way that could be easily processed on another
database cluster. This required a developer with database
experience.

• Packaging, transferring and bookkeeping in various pro-
duction tracking systems. This required a developer with
knowledge of file system, online file distribution and pro-
duction tracking systems.

It is easier to find three different developers with experi-
ence in one of these areas each than it is to find a single de-
veloper that masters them all. This is where enforcing mod-
ularity and separation of data from logic really stands out.
In this particular case, the workflow was planned to be di-
vided in three sections. Each developer added the necessary
actions to the section they owned. This happened incremen-
tally with no impact to other actions in the workflow.

The only thing that developers needed to agree on be-
forehand was the type and contents of the data that needed
to flow from one action to another. In this example the data
was decided to be a plain dictionary with the following keys:

• elements: A list of instances of an Element class
that had well-known attributes to identify a digital asset
tracked in our asset management systems. The absolute
minimal was the unique ID.

• source: Name of the facility originating the package.
• destination: Name of the facility receiving the pack-

age.
• location: Full-path to the directory where all the ac-

tions in the workflow were to write relevant data related
to the list of elements.

Besides having better utilization of coding resources and
their expertise, it facilitated incremental development and
more agile development and test iterations.

After this was implemented, the volume of data that was
processed by this workflow grew very rapidly and perfor-

103

mance started to suffer. Profiling this code to gather tim-
ing statistics and narrowing down the bottleneck was a very
straightforward approach if not trivial thanks to its modular
implementation.

More importantly, with performance data in hand, it was
possible to bring programmers and non-programmers alike
to the table in the same room to analyze it in the context of
the workflow description. It was discovered that packaging
all the files from disk was the action that took the longest de-
pending on the number of elements to process. The solution
was to simply remove that one action from the workflow and
creating a new workflow with just that one action to execute
as a secondary step. This proved that fixing problems and ad-
pating to unforseen issues can be solved as a configuration
change, not a programming task.

3.2 Code reuse
One of the motivations for this methodology was code reuse.
After a year of development applying it in various projects
we measured how well it fared. The following table shows
the number of workflows an actions written for various
projects:

Level Workflows Actions
shared 94 216
project 1 340 560
project 2 158 264
project 3 94 127
project 4 108 209

Figure 12. Action reuse pattern

Measuring code reuse required parsing workflows and
gathering statistics about what actions were being reused,
by which workflows and how often. After normalizing and
graphing usage counts, the first intersting discovery was that
every project exhibited exactly the same usage pattern: an
inverse exponetial as illustrated in Figure 12.

Actions reused the most are on the left and reuse count
decreases rapidly as we move on the horizontal axis towards
the right. Further scrutiny revealed some interesting prop-
erties of this usage pattern. Reuse can be divided in three
sections.

The left-most section is a range of high reuse counts. It is
not uncommon to find actions reused over 50 times or even
100 times or more by many different workflows. Actions in
this range are clearly reusable and should be protected and
embraced as the official solution for the particular tasks they
solve.

The middle section contains a range of reuse counts that
is high enough to indicate that they have some value for a
number of workflows, but not high enough to be considered
widely useful for a variety of tasks. Actions in this range
normally turned out to be very specific to a particular domain
in production. One reason could be that the process was only
applicable to a very particular artistic need in a project, not
easily transferrable to others. Another reason was that such
actions were a competing solution to similar other actions
that turned out to be favored by other developers and yielded
higher reuse - this phenomenon resembles natural selection
in software development.

The right-most section is a range of extremely low reuse
counts. Normally, there is a tail of actions that only achieve
a reuse count of 1. The first impression is that such actions
are probably just one-offs that could hardly be reused or
not worth trying to. While that was true in some cases,
another interesting discovering was that actions in this group
turned out to be the one and only way of solving a very
particular problem. These actions were prime candidates for
protection to prevent competing solutions from sprouting to
avoid duplicated efforts and wasted development resources.

Code reuse then is more easily identified with this method-
ology and it is characterized by those actions within the
highest and the lowest reuse count ranges. Considering the
lowest count as reusable becomes less counterintuitive by
understanding that code reuse has two sides:

• Code that is reused many times by developers in other
programs.

• Code that is written once and used many times by dif-
ferent users, as opposed to allowing competing solutions
to appear over time instead of maintaining and extending
the existing solution.

3.3 Code maturity vs. branching
Once the most reusable actions are identified, the challenge
is making sure that they are protected and promoted to a
higher level in the hierarchy of modular overriding. That is,
moving actions vertically from the project level to shared
and ultimately to the framework level. Code maturity can
be measured by the transition of any given action to higher
levels.

Code maturity is a worthy goal, but in practice, as new
projects get started, copy-and-paste is by far the most com-
mon form of code reuse. Rather than having code percolate
to higher levels, it replicates horizontally to the domain of
other projects. Code branching happens on every copy lead-
ing eventually to multiple variations of the same action. Over

104

time, it becomes more difficult to keep track and reconcile
code differences.

There are many reasons why branching is favored over
maturity. It is easier to copy and adapt as needed than it is
to spend the time and effort in cleaning up, generalizing and
promoting existing code to higher levels so that they can be
more widely reused. Time pressure is certainly the number
one cause. Human aspects also play an important role. For
example, the lack of interest in contributing to build good
code legacy. Or, simply avoiding the responsibility inherent
to making sure an action promoted to a higher level not only
works for the new intended uses, but that it does not break
existing workflows depending on it.

While this methodology facilitates code maturity and en-
courages it, it does not prevent code branching. However,
it makes it more manageable. Because workflows can be
parsed, it is easy to further analyze the actions they use and
perform side by side comparisons with similar code from
different projects.

3.4 Breeding grounds
This methodology is particulary suitable for breeding new
ideas in faster code-test-retrofit cycles by leveraging the hi-
erarchical module overriding levels. Complete applications
can be coded in a modular way with a collection of work-
flows and actions. The maturity path normally goes from the
user level to the project level. Once the feature set reaches
a milestone, workflows can be parsed to locate all of the de-
pendent actions and code can be physically carved out or
copied from the different levels into self-contained pack-
ages.

3.5 Abstracting process execution.
A wide variety of domain-specific applications used in pro-
duction come bundled with an embedded Python interpreter
for providing scripting support. Applications for modeling,
texturing, animation, effects, compositing, lighting, etc. It is
very common for tools used in production to have to run
certain portions of code within the context of a very specific
interpreter. For example, the conversion of a geometry file
from one format to another by scripting some commands of
a modeling tool.

The <process/> tag can be extended with an attribute
to indicate what kind of interpreter to use when execut-
ing the actions inside it. The framework can handle all
the technicalities of executing a subprocess within the
context of the given application. For example <process

interpreter="maya"/>1.

4. Tool set.
This methodology can be implemented with a simple frame-
work that imposes minimal overhead, both in code footprint

1 Maya is an application commonly used in the Visual Effects industry for
various departments including modeling and animation.

and execution time. A minimalistic implementation requires
three components:

1. A Python API that provides simple classes that represent
the action tree described in XML.

2. A custom Python module importer that can locate mod-
ules by name using relative paths that can be found pay-
ing attention to the mulitple overriding levels on disk.

3. Optionally, a command-line interface for executing wor-
flows directly from a shell and other utilities.

4.1 Python API

Figure 13. Minimal core components.

Figure 13 shows the minimal core classes required to
represent and execute a tree of connected actions described
in an XML workflow. Workflow, Process and Action

provide an extremely simple interface to execute them by
calling run(data), passing along some data from step to
step and returning the modified data.

Workflow.loadFromFile is a factory method that lo-
cates an XML on disk using the overriding levels on disk,
parses it and constructs a tree of instances of the core classes.
The actual modules that represent each action can be lazily
imported and instantiated.

4.2 Module importer
A custom module importer is required for two main reasons.

The first one is that modules can be overriden using
the various overriding levels described in section 2.4. The
importer would append a relative path to all entries in the
system path and try to locate and import the module.

Second, the nature of Python packages does not allow
overriding subpackages and submodules of a package that
exists in multiple overriding levels. Because folders in the
file system are used broadly to classify actions per subsys-
tem, the custom importer locates modules in different rela-
tive paths.

4.3 Optional command-line interface.
A very simple interface with commands and subcommands
can be optionally written to execute workflows directly from
a shell; copy all modules depending on a worflow, inspect,
etc. The interface looks something like this:

105

• workflow run: Executes a workflow.
• workflow stats: Gathers statistics about action usage,

code reuse, etc.
• workflow diff: Compares two workflows and their ac-

tions side by side.

5. Visualizing code development and
evolution.

Every single module used by workflows is stored in its own
file and tracked individually in a source control system. This
presents very interesting opportunities to have a better in-
sight on various aspects of software development for leaders,
managers and software developers alike.

5.1 Statistics
All the action modules were broadly classified in folders
named after the subsystem or application they were intended
for, e.g. asset management, production tracking, Maya, Hou-
dini2, Nuke3, utilities, etc. The following table shows statis-
tics gathered from the Maya folder:

Metric Value
First checkin 8/25/2009
Last checkin 11/09/2010
Active development time (months) 14.5
Number of files 103
Lines of code (LOC) 15,545
Developers 12
Average LOC per file 150
Average LOC per developer 1,295
Total check-ins 580
Average LOC per check-in 26
Average check-ins per developer 48

An average of 150 lines of code per file turned out to be
very reasonable in practice. This is a good indicator that each
action module for this system is performing one particular
task, as it was intended by design.

Statistics like this can be gathered for all subsystems and
plotted in a regular bar chart for comparison. At a glance,
such simple graphs and statistics can help answer questions
such as: How much effort is really going into extending
or supporting any given subsystem? How much developer
time is involved? Is more than one developer maintaining the
same actions? Are development resources properly utilized?
What is the cost of all this development?

5.2 Dependencies and patterns.
Workflows can also be used to detect and visualize depen-
dencies amongst workflows based on what actions are reused
and how. Figure 14 shows an extremely small sample of

2 Houdini is an application used for various three-dimensional visual ef-
fects.
3 Nuke is a high-end non-linear compositing application.

Figure 14. Module reuse, dependencies and common pat-
terns in complex systems.

workflows and the names of their actions. This is remark-
ably close to the representation of the canonical form of a
complex system [1].

Arrows indicate actions that are reused in other work-
flows. They denote a reuse dependency between otherwise
independent workflows. There are also three types of depen-
dencies worth noting in Figure 14:

1. Simple action reuse. Provides an indication of what
workflows share code without any other specific rela-
tionship.

2. Some times, there is a group of actions that appears in ex-
actly or almost exactly the same sequence in other work-
flows. Cases like this can be refactored to have one work-
flow simply including the definition of another workflow.
As opposed to duplicating the same block of actions from
workflow to workflow.

3. Some actions like RunExternalWorkflow are normally
an indication of some functionality that should be pro-
vided natively by the implementation framework. In this
particular case, by declaring the exeuction of a block of
actions in a detached process execution.

5.3 Code evolution
By inspecting the revision logs of each individual action
module in a workflow, it is possible to visualize code evo-
lution in the XML itself and action modules over time.

Figure 15 shows one of the most recent check-ins for a
particular workflow. In the upper side, there is time slider
that allows to scrub in time from the first check-in to the last.
At the chosen time in the slider, each action is represented
by a white rectangle that has the following information:
its name; a blue progress bar providing a sense as to how
quickly the action is maturing and stabilizing; and, a list of

106

Figure 15. Code evolution time lapse. Later revision.

developers to the right of each action that have performed
some modification to it in a previous check-in.

6. Conclusion
Writing code that is simple to understand, reusable and easy
to maintain is challenging for individuals, let alone for mul-
tiple programmers developing collectively. Time pressure is
the most common reason for cutting corners and producing
code that is more cohesive than modular.

The workflow approach provides simple guidelines to
facilitate writing modular code that separates data from logic
to increase the chance of code reuse. This also adds structure
that make programs self-documenting.

Additional benefits include the ability to monitor code
reuse and patterns at any given time. Highly reusable actions
can be identified, improved and promoted to higher levels
of visibility in the framework. Code maturity can also be
quantified as the amount of code that is promoted to higher
levels. And, compared against the amount of code that is
reused by branching on copy.

It is easy to keep track of the evolution of each individ-
ual module over time by relying on a source control system.
The modification logs and people associated with them for
every single module can be correlated with other actions in
the various workflows to gain interesting insights on devel-
opment, developer behavior and patterns. The possibilities of
data mining are great from a managerial perspective to help
better understand how the development effort and resources
are begin spent in reality.

Acknowledgments
I would like to thank Brandon Ashworth, Chip Collier,
Michael Irani and Mylène Pepe for their contributions to
the implementation of the internal framework that enables
this software development methodology in various areas
of the production pipeline at Digital Domain. Craig Zer-
ouni and Gregory Stoner for their support throughout this
project. Jonathan Gerber and Steve Galle for their support
in adopting these ideas in a major production. Mattias Berg-
bom, John Cooper, Amanda Hampton, Takashi Kuribayashi,
Michael Morehouse, Antony Serenil, Blake Sloan, Geoff
Wedig and many other developers who contributed invalu-
able feedback by using these ideas, methodology and frame-
work to solve a wide variety of real problems in production.
Doug Roble for his advice in preparing this paper. Many
thanks to all of you.

References
[1] Grady Booch. Object-oriented Analysis and Design with

Applications. Addison-Wesley. Second Edition.1994. pp. 14,
42.

[2] Robert Glass. Facts and Fallacies of Software Engineering,
Addison Wesley, 2003, pg 120.

[3] Donald Knuth. ”Literate Programming (1984)” in Literate
Programming. CSLI, 1992, pg. 99.

[4] Barbara Liskov. OOPSLA Keynote: The Power of Abstrac-
tion. Dec 23, 2009 http://www.infoq.com/presentations/liskov-
power-of-abstraction.

[5] D.L. Parnas. Information Distribution Aspects of Design
Methodology. IFIP Congress, 1971.

[6] Bjarne Stroustrup. The C++ Programming Language, Addison
Wesley, 2000, pp. 694, 695.

107

