
A Tag-Based Approach for the Design and Composition of

Information Processing Applications

Eric Bouillet, Mark Feblowitz, Zhen Liu, Anand Ranganathan, Anton Riabov

IBM Research

{ericbou,mfeb,zhenl,arangana,riabov}@us.ibm.com

Abstract

In the realm of component-based software systems, pursuers

of the holy grail of automated application composition face

many significant challenges. In this paper we argue that,

while the general problem of automated composition in re-

sponse to high-level goal statements is indeed very difficult

to solve, we can realize composition in a restricted context,

supporting varying degrees of manual to automated assem-

bly for specific types of applications. We propose a novel

paradigm for composition in flow-based information pro-

cessing systems, where application design and component

development are facilitated by the pervasive use of faceted,

tag-based descriptions – of processing goals, of component

capabilities, and of structural patterns of families of appli-

cation. The facets and tags represent different dimensions of

both data and processing, where each facet is modeled as a

finite set of tags that are defined in a controlled folksonomy.

All data flowing through the system, as well as the func-

tional capabilities of components are described using tags.

A customized AI planner is used to automatically build an

application, in the form of a flow of components, given a

high-level goal specification in the form of a set of tags. End-

users use an automatically populated faceted search and nav-

igation mechanism to construct these high-level goals. We

also propose a novel software engineering methodology to

design and develop a set of reusable, well-described compo-

nents that can be assembled into a variety of applications.

With examples from a case study in the Financial Services

domain, we demonstrate that composition using a faceted,

tag-based application design is not only possible, but also

extremely useful in helping end-users create situational ap-

plications from a wide variety of available components.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

Categories and Subject Descriptors H4.0 [INFORMA-

TION SYSTEMS APPLICATIONS]: General

General Terms Algorithms, Design, Experimentation

Keywords Composition, Programmable Web, Tag Cloud,

Automated Application Assembly, Tag-based Component

Description, Component Reuse, Faceted Navigation

1. Introduction

Composing software applications from components has long

been a topic of interest and research. Notions of operator

composition were established well before the introduction

of pipes into UNIX in 1972 [26]. This theme has resur-

faced recently, in the form of web service composition tech-

niques [14] and in hosted data mashup systems such as Ya-

hoo PipesTM[1] and IBM R©DAMIA [3]. Each applies recent

advances in service descriptions, graphical editing, etc., to

the problem of composing applications from components,

with the goals of enabling automated composition or simpli-

fying manual composition.

Yet many of the familiar challenges in architecting and

engineering component-based applications remain: the need

to partition application code into scalable and/or reusable

components, the need to provide sufficient descriptive con-

tent such that some agent - human or automated - can com-

pose applications from these components, etc. Advances

in object-oriented computing [2] support the definition of

abstract component interfaces. But composing applications

from software components requires more descriptive con-

tent than can typically be gleaned from components’ inter-

face declarations. For component selection [29] and for ap-

plication composition [12], additional knowledge is needed

- of the components’ functional capabilities, of constraints

on each component’s applicability for a particular task, of

the rules of assembly with other components, etc. The key

challenge remains: finding a practical means of expressing,

formally or informally, just the right amount of information

at the right level of detail and/or abstraction to convey to

the application assembler the information that can assist in

composition of the best component assemblies for a given

task.

585

Even with the needed descriptive content, simply describ-

ing components does not ensure their broad applicability

across more than a few component assemblies, or their ap-

propriate use in a given assembly. The process of architect-

ing and composing component-based applications requires

attention not just to individual components, but requires a

broader perspective on the evolving collection of compo-

nents, which range from domain-specific to widely reusable

components, and to the various applications that will incor-

porate these components. In other words, there must be a

careful design and engineering process to come up with a

set of reusable components that can be combined together

into a large number of different flows.

In this paper we present a new methodology that we de-

veloped for facilitating the design and composition of flow-

based information processing applications. Flow-based ap-

plications [16] are component assemblies arranged in a di-

rected acyclic graph (flow) of black-box components con-

nected by data flow links (Figure 1). Systems like Yahoo

Pipes and IBM DAMIA support the creation of data mashups

as flow-based applications. Stream processing systems (like

System S [9]) also support flow-based applications that

continuously process streaming data. Acyclic workflows in

service-oriented systems can also be viewed as flow-based

applications, where services exchange messages amongst

one another either directly or through a coordinator service

(like a BPEL workflow).

At the core of our approach is a novel tag model where

domain-specific tags, organized into facets, are used to de-

scribe 1) end-user information processing goals, 2) compo-

nent functional processing and data semantics, and 3) appli-

cation requirements and structural constraints. The promi-

nent role that tags and tag-based descriptions play in all

three areas establishes a strong visible thread from users’

information needs to dynamically assembled flow-based ap-

plications. Our application design methodology makes use

of the tag-based model to capture application requirements

and subsequently identify requirements for individual com-

ponents. Our composition approach makes use of the tags

to decide whether certain components can be composed to-

gether into a flow.

To support flow composition, we have developed tools

that can process component descriptions and can aid in the

process of composing the applications. The composition

process can be manual, completely automated or assisted. In

manual composition, an end-user (or developer) constructs

the flow by connecting compatible components using an in-

teractive editor. In completely automated composition, the

end-user can specify a processing goal, which gets compiled

into a flow. Assisted composition allows users to come up

with a flow by interweaving automatic flow generation and

manual editing. While our previous work, embodied in a tool

called MARIO (Mashup Automation with Runtime Orches-

tration and Invocation) [25], focuses on automating mashup

composition and user interface generation, our methodology

is suitable for any kind of composition approach.

The key contribution of this paper is a tag-based applica-

tion design methodology that facilitates the composition of

customized flows that satisfy end-user goals. The aim of the

application design methodology is to come up with a set of

reusable, well-described components that can be combined

together into a wide variety of flows. We describe the need

for specifying composition constraints (Section 2), introduce

the terminology (Section 3), describe the software engineer-

ing process (Section 4), formally describe the models (Sec-

tions 5 and 6), and finally, compare our approach with related

work (Section 7).

2. Motivation - The Role of Composition

Constraints in Situational Applications

The emergence of data mashups offers renewed promise in

the oft-revisited field of component-based application as-

sembly. Yahoo Pipes, IBM DAMIA, etc., offer graphical

tools to compose applications from web-based data sources

and from a fixed set of components. These systems aim

to address the need for situational applications, end-user

driven computing that Cherbakov [6] describes as “applica-

tions built to address a particular situation, problem, or chal-

lenge.” Situational applications are “usually built by casual

programmers using short, iterative development life cycles,”

are updated frequently as needs evolve, and are often aban-

doned in favor of new solutions.

Assembling situational applications from components be-

comes easier with tools that assist in the assembly of com-

patible components into functioning compositions. In prac-

tice, though, even with tool support, the large number of

available components and the high complexity of composi-

tion constraints make manual assembly a daunting task.

In existing systems, component composition constraints

are commonly specified by publishing component interfaces,

and by strict typing of input and output parameters. In flow-

based applications this approach translates to strict typing of

the data that is ingested into and produced by each compo-

nent. However, practical implementations of the strict typing

approach can suffer from either under- or over-specification.

Under-specification occurs when the data type does not suf-

ficiently capture the semantics, and therefore the constraint

is not restrictive enough. For example, a component that in-

puts an integer can be connected to a variety of inputs that

are integers, such as temperature, humidity, etc., while the

component may expect the integer to represent the age of

a person. Over-specification occurs, e.g., when one defines

a type that is too narrowly scoped, inadvertently precluding

legitimate uses of the component. These problems clarify the

need for another mechanism of expressing composition con-

straints in addition to strict typing. Designing such a mecha-

nism in a way that is flexible and easy to use is a significant

586

Contour Map
View of

Weighted

Average

Time Series

Presentation
Views for

Time Series

Weather

Metrics

Weighted
Average for

Weather

Metrics

Join of

Weather Station

Metadata to

Weather Data

Join of

Weather Station

Metadata to

Weather Data

Weather

Station

Metadata

Current

Forecast

Current

Forecast

NOAA GFS

Forecast Data

NOAA Eta

Forecast Data

Parse

Temperature,

Dewpoint

Forecasts

Parse

Temperature,

Dewpoint

Forecasts

Filter
Weather

Stations by

Geopolitical

Location

State of Iowa

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Contour Map
View of

Weighted

Average

Time Series

Presentation
Views for

Time Series

Weather

Metrics

Presentation
Views for

Time Series

Weather

Metrics

Weighted
Average for

Weather

Metrics

Weighted
Average for

Weather

Metrics

Join of

Weather Station

Metadata to

Weather Data

Join of

Weather Station

Metadata to

Weather Data

Join of

Weather Station

Metadata to

Weather Data

Join of

Weather Station

Metadata to

Weather Data

Join of

Weather Station

Metadata to

Weather Data

Weather

Station

Metadata

Weather

Station

Metadata

Current

Forecast

Current

Forecast

NOAA GFS

Forecast Data

NOAA GFS

Forecast Data

NOAA GFS

Forecast Data

NOAA Eta

Forecast Data

NOAA Eta

Forecast Data

NOAA Eta

Forecast Data

Parse

Temperature,

Dewpoint

Forecasts

Parse

Temperature,

Dewpoint

Forecasts

Parse

Temperature,

Dewpoint

Forecasts

Parse

Temperature,

Dewpoint

Forecasts

Parse

Temperature,

Dewpoint

Forecasts

Parse

Temperature,

Dewpoint

Forecasts

Filter
Weather

Stations by

Geopolitical

Location

Filter
Weather

Stations by

Geopolitical

Location

State of Iowa

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Figure 1. Flow example for the “RelativeHumidity IA WeightedAverage GFS Eta” goal

challenge. We address this by using tags, as we explain in

following sections.

When composition constraints are well specified, it can

be possible to compose applications automatically for user-

specified composition goals, using constraints to guarantee

application correctness. MARIO, an example of such a sys-

tem, is capable of practical, real-time automatic composition

for flow-based applications. In MARIO, users specify com-

position goals using tags. The set of tags available for user

selection depends on the set of components and composition

constraints. Only the tags that correspond to supported goals

are presented to the end user, limiting the choices to those

applications satisfying all constraints. MARIO also ranks

alternative compositions that satisfy the specified goals,

presents the best match to the user, and provides a clustered

view of alternatives.

Fully automatic composition has many benefits, includ-

ing automatic adaptation to changes in the set of available

components and significant simplification for the end user.

In some cases, however, the composition constraints may

not be specified precisely enough to achieve full automation.

In these cases, an approach that combines manual and auto-

matic decisions can still take advantage of the constraints to

assist the end user.

3. Overview: The Pervasive Use of Tags

To respond to users urgent needs for an expanding variety of

situational applications, our work focuses on ways to support

the composition of components into flow-based applications,

as depicted in Figure 1.

Our approach to composing these applications relies on

the use of faceted, tag-based descriptions. We use tags, asso-

ciated with organizing facets, to describe

• the processing goals for an application

• the application’s data

• the application’s components

• the structure of families of related applications

Processing in flow-based applications is performed by

a graph of interconnected components, each transforming

input data to output data. At a syntactic (code) level, the

compatibility of each component is typically defined and

constrained using types declared in component interfaces

and used in, e.g., method invocations. But combining these

components into functioning assemblies requires more than

syntactic compatibility - it also requires knowledge of the

component’s semantics, not typically available at the type

level. For the latter, we rely on tag-based component descrip-

tions. Each component’s inputs and outputs are described by

(likely different) sets of tags.

The flow depicted in Figure 1 might have been assembled

for a commodities broker, who is concerned with risks asso-

ciated with commodity prices for, say, corn. She identifies

weather as a natural hazard, potentially posing an invest-

ment risk (or opportunity). Figure 2 shows some examples

of facets relevant to this domain (Forecast Metrics, Geopoliti-

cal Regions, etc.) as well as some examples of tags belonging

to these facets (RelativeHumidity, BostonMetro, etc).

These facets and tags play a central role in the specifica-

tion of users’ processing goals, in the description of compo-

nents, and in the assembly of components into flow-based

applications. In addition, they can be used in pattern tem-

587

plates that guide in the process of architecting, engineering,

and testing flow-based applications.

3.1 Tag-Based Goals

Any given flow-based application can be thought of as

achieving some processing goal, typically the production

of some kind of information needed by the user. In typical

information systems, users express their information goals

as queries against some data store. Some query processor

takes that query, interprets embedded operations – possibly

optimizing to improve access – and then executes the query.

Our approach is centered around the users’ expression of a

goal to be achieved by some composed flow. Goals require

neither the identification of the information source(s) nor

the description of the means of retrieving and processing the

data. Thus, if the user wants an estimate of the size and speed

of a hurricane, she would express that and only that. How

the result is determined – whether using a flow that draws

the answer from some web service or using a flow with com-

ponents that examine satellite imagery – would depend on

which components were available and tagged as delivering

this information, and which flow is determined “best” (by

some measure of “best”).

While most users find it challenging to craft some for-

mal description of their information needs, many are quite

comfortable with faceted navigation. Look at any web-based

shopping experience and you’ll see some form of faceted

navigation of tags that quickly leads a potential customer

from a vague notion of “shoes to browse” to the style, size,

and color of “the shoes I gotta have.” The same mechanism

can be used by an information analyst who seeks information

to inform some important decision. Thus, users formulate

their processing goals as simple collections of tags, possibly

accumulated with the help of a faceted browsing interface.

For example, a commodities broker might want to watch

for projected extremes in relative humidity that might indi-

cate a drought, indicating an opportunity to trade corn fu-

tures. She would express this as the goal RelativeHumidity,

IA, WeightedAverage, GFS, Eta, ContourMapView, which rep-

resents a request for a flow that delivers the relative humidity

forecast for the state of Iowa, based on the weighted aver-

age of the forecasts as projected by two weather models,

NOAA’s GFS and Eta forecast models, respectively [17],

presented on a contour map. She has requested the weighted

average of two different predictions, based on two forecast

models, perhaps to arrive at a more precise prediction.

This goal forms the basis for composing the flow in Fig-

ure 1 (any flow satisfying this goal must contain these tags,

according to the composition model described in section 5).

This particular flow takes in raw data values from differ-

ent sources and processes them to produce the desired result

data.

In the case of automated composition, a goal-driven user

interaction paradigm shields the end-user from the com-

plexities of manually composing appropriate flows. Using

Figure 2. Example of faceted navigation menu and user-

selected, tag-based goal

tag-based goals is appealing in its simplicity; even non-

programmers can easily construct goal by selecting a set of

tags.

One effect of using tag based goals is the potential am-

biguity in interpreting a set of tags. The same set of tags

can be interpreted in different ways by different users. We

tackle this problem, in part, through a user-interface that

shows (and speaks) a natural language interpretation of the

goal from the set of tags, so as to provide feedback to the

end-user on how the system interprets the goal. In addition,

the interface generates a natural language description of the

composed flow so that the user can get an idea of the process-

ing performed to generate the results, as well as the specific

properties of the results.

Figure 2 shows one of our faceted navigation inter-

faces that guides the user in formulating a goal. Navigating

through a faceted collection of tags, our commodities broker

clicks on any of the unexpanded facets (depicted on the left)

to reveal a cloud of tags organized under that facet (depicted

on the right).1

1 Note that some tags are larger, indicating that they are relevant to a larger

number of user-specifiable goals.

588

These tags appear in the faceted tag cloud because they

are associated with information that can be produced by at

least one flow built from a library of tag-described compo-

nents. That is, some flow is capable of producing RelativeHu-

midity, another is capable of producing a WeightedAverage,

etc. The fact that all of the tags in the aforementioned goal

are jointly selectable is because at least one flow can be as-

sembled producing information satisfying this collection of

tags. In this case, the flow depicted in Figure 1 was selected

by MARIO as the best assembly of known components to

satisfy the user-specified goal.

As the comodities broker selects the tags – in any order

– the selected tags are added to the goal. As with faceted

catalog navigation, selection of these tags successively re-

fines the goal. Asking merely for RelativeHumidity results in

the assembly of a large number of deployable flows, each of

which would produce relative humidity values, using various

models, for various forecast timeframes, etc., in the same

way asking for running shoes would display pages upon

pages of shoes in all available sizes, colors,. . . . The key for

the user is to navigate to the desired refined goal, preferably

with a minimum of clicks; the key for application architects

and component designers is to craft the components, their

descriptive tags, and the organizing facets, such that users

can quickly pick the tags needed for their specific process-

ing needs, resulting in one or more processing graphs that

fulfills those needs.

The result of deploying and running this flow might look

like the marker map in upper right panel of Figure 3.

3.2 Tags for Component Description

Briefly, component descriptions are black-box functional de-

scriptions, using tags to identify each component’s applica-

bility to some task(s). We use taxonomically arranged tags to

describe a component’s input data requirements, output data

capabilities, and, in some cases, configuration parameters.

Using this information, flows can be assembled to achieve

some tag-described processing goals, connecting a collec-

tion of components by associating the tags describing some

components’ outputs to tags describing other components’

inputs. Matching can be either a direct match (Temperature

= Temperature) or a taxonomic match (Temperature satisfies

WeatherMetric), since the latter is a “parent tag” of the for-

mer - see figure 4(c).

Both domain-specific analytic components (e.g., weather

or financial models) and generic components (averages or

comparisons of time series data), can be assembled into

multiple flows, each representing alternative means of ad-

dressing a particular processing goal. MARIO performs this

assembly automatically, using a planner, presenting multi-

ple alternative component assemblies for a given processing

goal.

Figure 4 shows the tagging and assembly of a subset of

the components in the Figure 1 flow, with a simplified sub-

set of the the components’ tags: 4(a) shows the components

and their tagging, 4(b) shows the assembly of the compo-

nents into a subflow, and 4(c) shows a fragment of the tag

taxonomy.

The input to the Relative Humidity Calculator component

is tagged with Temperature and Dewpoint, indicating that, in

order to calculate a relative humidity value, both metrics are

needed. The output is tagged with RelativeHumidity, indicat-

ing that the component produces a RelativeHumidity output,

for consumption by some “down-flow” component. So, the

Relative Humidity Calculator component can be assembled

with some up-flow component if that up-flow component has

at least one output tagged as producing at least Temperature

and Dewpoint.

The Weighted Average for Two Weather Metrics compo-

nent has two inputs, each described with a WeatherModel tag

and a ?WeatherMetric variable. It also has a single output

described with a WeightedAverage tag and a ?WeatherMetric

variable. As depicted in 4(c), the ?WeatherMetric variable is

of type WeatherMetric and thus can be replaced by the tag

Temperature, Dewpoint, or RelativeHumidity. Note that the

variable also establishes the constraint that the ?WeatherMet-

ric variable on the two inputs and the one output must be re-

placed with the same tag – in this case, the RelativeHumidity

tag. (For a more formal treatment, see section 5.)

In assembling the flow in Figure 1 these two components

can be assembled into the three-component sub-flow in 4(b),

to produce the weighted average of relative humidity pre-

dictions across the GFS and Eta models 1) because the Rel-

ativeHumidity output of each Relative Humidity Calculator

instance satisfies the ?WeatherMetric constraint on each of

the inputs of the Weighted Average for Two Weather Met-

rics component, and 2) because the GFS and Eta tags, prop-

agated from somewhere up-flow, satisfy the WeatherModel

constraint on each input.

The propagation occurs because some up-flow compo-

nents (specifically, the NOAA GFS Forecast Data and the

NOAA Eta Forecast Data components) introduced those tags

and declared them as sticky tags (of type StickyTag). By do-

ing this, these WeatherModel tags are automatically propa-

gated from the point of introduction down the flow to the

right-most components’ outputs. Similarly, the Temperature

and Dewpoint tags are propagated from each of the “Parse

Temperature, Dewpoint Forecasts” components.

This is one of a family of propagation mechanisms that

are key to allowing general-purpose components, such as

the generic Relative Humidity Calculator, to be inserted into

a specific flow, without requiring any modification to the

generic component’s description (in spite of the fact that the

tag is needed down-flow). So, for example, we do not need to

create a special-purpose Relative Humidity Calculator that

includes a WeatherModel tag on its input and output descrip-

589

47 alternatives…47 alternatives…

Figure 3. MARIO UI: Goal Composition (ul), Facets & Tags (ll), Assembled Flow (lr), and Processing Results (ur)

tions, just because the Weighted Average component requires

a WeatherModel input. Sticky tag propagation handles that. 2

The tags depicted here are descriptive of the information

flowing between components. Tags can also indicate the

state of processing of some piece of data. The tags can mean

anything the description author desires, but must be applied

with caution, since each tag influences flow assembly. So, a

carelessly placed tag can lead to potentially many incorrectly

assembled flows, or to the non-assembly of otherwise correct

flows.

There is a direct link here between the users’ collective

processing needs and the architects’ design of the associ-

ated application. The same tags are navigated by the user in

formulating a processing goal and also to describe the com-

ponents’ functional capabilities. Thus, there is a necessary

and productive interaction between the users’ application re-

quirements and the application architects’ designs. Simply

2 However, the programming model – or the deployment infrastructure –

must support the pass-through of such data.

put, this tag-centric approach forces the components’ design

to be aligned with users’ information requirements.

3.3 Tooling for Application Composition

So far, we have shown a glimpse of faceted navigation of

tags (Figure 2), a hand-drawn example of an automatically

generated flow (Figure 1) and, in the introduction, a brief

mention of “mash-up visualizations of the flows’ outputs.”

Each of these elements has been implemented in MARIO,

one example of a system that supports the composition and

deployment of flow-based applications.

This tooling provides support for a spectrum of compo-

sition modes covering manual, partially automated (mixed

initiative) and fully automated composition. The formally

specified composition constraints, expressed in tag-based

descriptions enable automated assembly, can guide partially

automated assembly, and can help eliminate mistakes in

manual and partially automated composition, depending on

the quality of component descriptions and the level of end

user’s understanding of individual component capabilities.

590

Relative

Humidity

Calculator

Temperature
Dewpoint RelativeHumidity

Weighted

Average for

Two Weather

Metrics

?WeatherMetric
WeatherModel

?WeatherMetric
WeatherModel

WeightedAverage
?WeatherMetric

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Temperature
Dewpoint RelativeHumidity

Weighted

Average for

Two Weather

Metrics

Weighted

Average for

Two Weather

Metrics

?WeatherMetric
WeatherModel

?WeatherMetric
WeatherModel

WeightedAverage
?WeatherMetric

(a) Tagged individual components

Relative

Humidity

Calculator

RelativeHumidity

Weighted

Average for

Weather

Metrics

Relative

Humidity

Calculator

RelativeHumidity

WeightedAverage

GFS
Temperature
Dewpoint

Eta
Temperature
Dewpoint

Eta
Temperature
Dewpoint

GFS
Temperature
Dewpoint

RelativeHumidity
GFS
Eta
Temperature
Dewpoint

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

RelativeHumidity

Weighted

Average for

Weather

Metrics

Weighted

Average for

Weather

Metrics

Relative

Humidity

Calculator

Relative

Humidity

Calculator

Relative

Humidity

Calculator

RelativeHumidity

WeightedAverage

GFS
Temperature
Dewpoint

Eta
Temperature
Dewpoint

Eta
Temperature
Dewpoint

GFS
Temperature
Dewpoint

RelativeHumidity
GFS
Eta
Temperature
Dewpoint

(b) Assembled flow

?WeatherMetric WeatherMetric

RelativeHumidityTemperature

Dewpoint

WeatherModel

Eta GFS

?WeatherMetric WeatherMetric

RelativeHumidityTemperature

Dewpoint

WeatherModel

Eta GFS

(c) Tag taxonomy fragment, with variable type declaration

Figure 4. Assembling a flow using tagged components

Figure 5 depicts an architecture that supports a combina-

tion of automated flow generation (left side) and manual and

mixed initiative flow composition (right side).

Flow
Composer

Tag-based
Component
Descriptions

Flow
Editor

Component
Catalog

Flow Execution Runtime

flow flow

Goal
Formulation

UI

Flow desc.,
tag cloudGoal

flow

Editor
UI

flow

Flow
Composer

Tag-based
Component
Descriptions

Flow
Editor

Component
Catalog

Flow Execution Runtime

flow flow

Goal
Formulation

UI

Flow desc.,
tag cloudGoal

flow

Editor
UI

flow

Figure 5. Flow composition and deployment architecture

3.3.1 Automated Composition

In the fully automated mode, flows are created and deployed

automatically. The end user of the generated flow does not

need to understand the functionality of individual compo-

nents. His central focus is on expressing processing goals,

using tags drawn from familiar vocabularies.

For automated composition, the Flow Composer consults

a repository of tag-based component descriptions and gener-

ates a set of all possible flows. The Flow Composer also gen-

erates a faceted tag cloud containing any tag that describes

any component in the set of generated flows. The tag cloud is

sent to the Goal Formulation UI, which presents to the user

a means of navigating the facets and tags needed to spec-

ify a processing goal (figures 2 and 3 present two views of

one such UI). With each subsequent tag selection, the goal

is expanded. The Flow Composer generates a new, smaller

set of flows narrowing the scope to those flows that produce

the tags in the expanded goal and regenerates the tag cloud

accordingly.

In a partially automated composition scenario, the appli-

cation flow can be partially assembled automatically based

on specified goals, and later manually changed by the user

before deployment and execution. This approach requires

end users to have a better understanding of component func-

tionality, but can tolerate less precise component descrip-

tions from developers.

The Goal Formulation UI also displays the the “best”

flow for the given goal (Figure 3) as determined by the

Flow Composer, selected based on a combination of result

quality and resource consumption metrics. When the user

has selected the tags expressing her processing goal and

is satisfied with the generated flow, she can push a button

and the generated flow is deployed to, and run in, the Flow

Execution Runtime.

Note, in Figure 3, that the Flow Composer has produced

47 alternative flows. Including the flow displayed, there are

48 possible flows for the goal “IA, RelativeHumidity, Weighte-

dAverage, Eta, GFS.” This is because the goal is general

enough that there are many possible ways of achieving it.

The user can explore these possible flows by selecting ad-

ditional tags from the displayed tag cloud. For example, the

user can select additional Geopolitical Region tags to indi-

cate she wants the results for multiple US States. The user

591

Figure 6. Alternative plans for selected goal tags

can also select additional forecast metrics, like HeatIndex,

for calculation and display. 3 The goals and the ranks for

some of the alternative flows are shown in Figure 6. In this

case, the ranks are obtained based on a cost metric, where

every component is associated with a cost, and the cost of

an application is the sum of the costs of the individual com-

ponents. Our composer can support other definitions of the

cost metric as well [24].

Also note that the composer has included Current (mean-

ing current as opposed to historical data), NOAA, Dewpoint,

and Temperature in the “Current request and its interpreta-

tion.” These are the remaining tags that describe the auto-

matically selected first-choice flow but that were not explic-

itly requested by the user. In this case, the goal is just what

the user wanted, and a few clicks less than might have been

needed. If, however, the user instead wanted to results based

on historical data, she could explicitly select, e.g., TwoDays-

Back (overriding the composer-selected value of “Current”),

and the generated flow would reflect that request.

3.3.2 Manual and Assisted Composition

Manual and mixed initiative composition modes come into

play when a user wants or needs to manually compose or

alter a flow. This might arise for the application architect,

when she is experimenting with new components or flows or

needs to alter existing flows to reflect new application needs,

or when a known composition is required but somehow is

not supported in the tags.

In such cases the flow composition is defined using the

Editor UI, either from scratch or as a derivation of a gener-

3 This might sound complicated, but the faceted navigation mechanism

simplifies the user experience to something much like the shoe shopper

experiences when looking at various sizes or styles of shoes.

ated flow. In the partially automated composition scenario,

the application’s components can be partially assembled au-

tomatically, based on specified goals, and manually changed

by the user before deployment and execution. This approach

can tolerate less precise component descriptions, but re-

quires the end user to understand component functionality,

something not required in the fully automated case.

4. Overview of Software Engineering

Methodology

The main purpose of our software engineering methodology

is to build a library of reusable components that can be as-

sembled into different applications. As introduced by Prieto-

Dı́az [19], faceted descriptions can be used to aid in the clas-

sification and retrieval of components. For purposes of au-

tomated assembly, retrieved components must be designed

to be assembled in a variety of contexts and assembled only

with those other components that are syntactically and se-

mantically compatible. This places burden on the application

architect to both design reusable (sub)assemblies and to ap-

propriately constrain the component descriptions to prevent

undesirable assemblies. In the absence of a comprehensive

formal model and provably correct assemblies, testing is a

necessity, as are any other techniques that improve the qual-

ity and reliability of component (sub)assemblies.

We propose an overall software engineering process that

is specifically tailored to the needs of flow-based application

composition. Figure 7 shows the stages in our software en-

gineering process. Our process can be roughly described as

spiral-like refinement, starting with requirements and iterat-

ing over the development and testing of application assem-

blies composed from both reusable components and newly

592

developed components. Finally, the set of all components

is made available to end-users for composition into diverse

flows. In addition, user interfaces (such as the the one shown

in figures 2 and 3) that facilitate the composition of flows by

end-users are generated.

The development and composition processes include a

combination of top-down and bottom-up elements. The top-

down elements provide structure to the design and devel-

opment processes, and guarantee that certain compositions

can be achieved from the set of developed components.

The bottom-up elements enable reuse of both individual and

composite components in different contexts, and also allow

for the serendipitous assembly of new flows in response to

new end-user requests or other runtime requirements.

The interplay between the top-down development lifecy-

cle and the bottom-up composition approach is crucial in

our methodology. As a result of the top-down development,

certain components are developed and associated with tag-

based descriptions. These components are guaranteed to be

composable into certain flows that meet the end-user require-

ments. However, when an end-user submits a goal to the sys-

tem, it constructs satisfying flows, in a bottom-up manner,

using the tag-based descriptions of the components. These

flows include those that were designed by the application ar-

chitects during the top-down lifecyle. In addition, it may also

come up with new flows that were not explicitly designed.

This dynamic bottom-up composition also potentially allows

the assembly of flows for goals that were not part of the ini-

tial end-user requirements.

Requirements

Application & Component Modeling

Component Development

Unit Testing

Integration Testing

Deployment (with automatic

user interface generation)

Bottom Up

Reuse of

Existing

Components

and Sub-

Flows

Bottom Up

Generation of

Different Flows

and

Compilation of

new queries

Spiral

Refinement

Requirements

Application & Component Modeling

Component Development

Unit Testing

Integration Testing

Deployment (with automatic

user interface generation)

Bottom Up

Reuse of

Existing

Components

and Sub-

Flows

Bottom Up

Generation of

Different Flows

and

Compilation of

new queries

Spiral

Refinement

Figure 7. Software Engineering Process for Automated

Composition

We shall now provide an overview of the different stages

in our software engineering process. Our process starts with

the description of functional requirements from end-users. In

information processing systems, the functional requirements

describe the kinds of data the end-user desires. In our ap-

proach, these functional requirements are expressed as pat-

terns of goals that the user would like to submit. Note that

this paper focuses on functional requirements and not non-

functional requirements like security, performance and cost.

The functional requirements are taken by an application

architect who comes up with a high-level design of the over-

all application(s) and of individual components. The archi-

tect first constructs one or more application templates that

satisfy the requirements. An application template is a high-

level description of the flow structure and is modeled as a

graph of abstract sub-flows, where each abstract sub-flow

performs a certain segment of the overall required informa-

tion processing. Each abstract sub-flow in turn consists of a

graph of component classes, where a component class is an

equivalence class of components that share similar proper-

ties and are substitutable in certain contexts. The modular

and substitutable nature of components are critical in mak-

ing composition possible. In addition, the decomposition of

the application into abstract sub-flows allows reuse of not

just components, but also entire sub-flows.

The application architect can reuse existing components

(and component classes) in designing the application. In

some cases, however, new components may need to be de-

veloped, or existing components modified, to satisfy new

end-user requirements. The new components may either be

part of an existing component class, or may belong to en-

tirely new component classes. The architect defines the se-

mantic requirements of the component in terms of tags de-

scribing the input and output data. In addition, the architect

defines the syntactic interfaces of the component so as to en-

able its interaction with other components in the application.

These semantic and syntactic component requirements get

passed to a developer, who develops the component. Also, as

shown in the figure, the process of application template con-

struction and refinement, component requirements and com-

ponent developed is typically iterative involving both the ap-

plication architect and the developer.

Once the component is developed, it goes through unit

tests as defined by the application architect and/or the de-

veloper. Integration testing is a crucial part of the process,

especially for automated composition. There are two levels

at which integration tests are performed - at the goal com-

pilation level, where the tag-based semantic composability

of different components is checked; and at the deployment

level, where the runtime interactions of different compo-

nents is checked. At both levels, an integration test is per-

formed by selecting sample goals that belong to the goal

pattern. Each sample goal is tested by submitting it to the

flow composer, checking to see if the set of flows gener-

ated includes at least one that is prescribed by the application

template, deploying a sample of the flows generated on the

underlying platform, and verifying the end-results generated

by the flow.

The final step is deployment of any new or modified com-

ponents in the backend platform(s). The deployment results

in two changes to the system. First, the end-user interface is

593

modified, automatically, to enable users to express the new

kinds of goals (as described in the requirements). This may

result in new tags or combinations of tags that can be se-

lected from the tag cloud in Figure 2. Second, the new com-

ponents can be included in flows. These flows are not just

the ones defined in the application templates, but potentially

new flows that may be created based on the semantic defini-

tions of the new set of components.

Although the methodology as presented has a top down

emphasis, it does support the bottom-up construction of

flows. First, in the application template construction stage,

it is possible to reuse existing components or sub-flows in

defining the template. Second, after deployment, our compo-

sition approach is not constrained by the pre-defined appli-

cation templates. Instead, our flow composer can construct

new flows to satisfy user goals using the available com-

ponents. The flow composer uses a planning approach; for

each goal, it composes a plan by using the input and output

descriptions of individual components. The flow composer

is not aware of the application templates; instead it creates

flows anew from the goal specification. This allows for the

spontaneous generation of new flows from existing compo-

nents that were not necessarily designed by the application

architect.

One of the key features of our system is the end-user in-

terface, which presents with a tag cloud from which they can

select one or more tags to express their processing goals. The

tag cloud is automatically generated, based on an analysis of

the valid flows that can be generated for the given set of com-

ponents. In other words, the tag cloud includes all those tags

that appear in at least one valid flow, assembled from pre-

viously developed and tagged components, thus presenting

users with the ability to dynamically assemble flows respon-

sive to their current processing requirements. This tag-based

end-user interface, together with the automatic goal compi-

lation, make it relatively easy for any users (in particular,

non-programmers) to construct queries, deploy situational

applications, and obtain the desired information.

The roles involved in the creation and use of our flow-

based assemblies are the usual: Requirements Engineers,

End-Users, Application Architects, Developers, Unit and In-

tegration Testers. A few tasks differ, though. Users, Require-

ments Engineers, and Application Architects are concerned

with modeling the various facets, tags, and taxonomies that

convey the users’ perspective on relevant vocabularies and

processing results. Application Architects are concerned

with partitioning application functionality based on various

blends of reusability and scalability, taking into considera-

tion the various semantic contexts in which the components

and sub-assemblies must function.

5. Formal Model of Tags, Goals and

Components

The basic unit of describing requirements, components and

goals is a tag (or a keyword). The notion of a “tag” is sim-

ilar to various collaborative tagging applications (or folk-

sonomies) that have arisen in Web 2.0 (such as del.icio.us

and Flickr) where users annotate various kinds of resources

(like bookmarks and images) with tags. These tags are then

used to aid search and retrieval of resources. A key aspect

of the tagging model is that it is relatively simple, in com-

parison to more expressive models such as those based on

Semantic Web ontologies and other formal logics. Hence,

the use of tags offers a lower barrier to entry, for both end-

users and developers, to use tags to describe resources. In

our case, the resources are various types of data artifacts,

like data streams, files, messages, etc.

There is, however, an important difference between our

tagging model and other collaborative tagging applications

in Web 2.0. For purposes of composition, we need greater

control on the evolution of the set of available tags and on

the way tags are assigned to various kinds of data and to

components. While most other folksonomies allow free and

arbitrary tagging of resources by users, tagging in our system

requires more careful consideration since the assignment of

tags has ramifications on the composability of components.

5.1 Tag Hierarchies

Let T = {t1, t2, . . . , tk} be the set of tags in our system. In

most social tagging applications, the set of tags, T , is com-

pletely unstructured, i.e. there is no relation between indi-

vidual tags. Introducing a hierarchy structure in T , however,

enhances the expressivity by allowing additional tags to be

inferred for resources, and also aids end-users in navigating

a large number of tags.

A tag hierarchy (or taxonomy), H , is a directed acyclic

graph (DAG) where the vertices are the tags, and the edges

represent “sub-tag” relationships. It is defined as H =
(T, S), where T is the set of tags and S ⊆ T × T is the

set of sub-tag relationships.

A sub-tag has an associative semantics, where if x is a

sub-tag of y, then x is commonly associated with y by the

community of users. In other words, if a resource is tagged

with x, then it would be semantically appropriate for it to be

tagged with y. In this paper, we use the symbol ≺ to repre-

sent sub-tag relationships. For example, NewYorkTimes ≺
Newspaper, which implies that any resource tagged with

NewYorkTimes may also be tagged with Newspaper. In our

methodology, we assume that the tag hierarchy is defined by

application architects and component developers.

Formally, a tag t1 ∈ T is a sub-tag of t2 ∈ T , denoted

t1 ≺ t2, if all resources annotated by t1 can also be anno-

tated by t2. The sub-tag relation is transitive, i.e. if t1 ≺ t2
and t2 ≺ t3 implies t1 ≺ t3 for ∀t1, t2, t3 ∈ T. For nota-

594

tional convenience, we will further assume that each tag is a

sub-tag of itself, i.e. ∀t ∈ T, t ≺ t.

5.2 Data Model

In our approach, tags are used to describe data artifacts. A

data artifact may be a data stream, a table in a database, a

file, an RSS feed, a web page, a message exchanged between

services, etc. The tags may describe both the syntax and the

semantics of the data artifacts.

Each data artifact, a is characterized by a set of tags

d(a) ⊆ T . For example, consider a component that pulls

in weather forecast data from an FTP server maintained by

NOAA (National Oceanographic and Atmospheric Admin-

istration). The current weather forecast obtained from one

such model called Eta is available as an ASCII file on the

FTP server. This data artifact, a1, may be described by the

tags Eta, NOAA, Text, 3DayForecast, ASCII, Current, Tem-

perature} . These tags provide syntactic and semantic infor-

mation about the data.

Data artifacts need not only be the raw data from vari-

ous sources, but may also be processed data. For example,

if the ASCII file was processed by a flow of components

to calculate the average temperature of New York City over

the three day period, then the resulting data artifact, a2, may

be described by the tags Eta, NOAA, Average, 3DayPeriod,

NewYorkCity, Temperature}. Depending on the kind of flow

and the runtime environment, the result data may be made

available in a variety of forms, e.g. as a SOAP message in

a web service environment, an RSS feed in a mashup envi-

ronment, or a single streamed tuple in a stream processing

environment.

5.3 End-User Goal Model

End-user goals describe the semantics of the desired data

artifacts. A goal, q ⊆ T , selects a subset R.q of a resource

set R = {r} such that each resource in the selected subset

has all the tags in q or subtags thereof. Formally,

R.q = {r ∈ R|∀t ∈ q ∃t′ ∈ d(r) such that t′ ≺ t}.

For example, the goal {MOS, Average, NewYorkCity} will

match the data artifact, a2 described in Section 5.2, making

use of the sub-tag relationship Eta ≺ MOS (Figure 4). MOS,

which stands for Model Output Statistics, refers to a general

class of weather forecast models, which includes Eta.

The explicit matches of a goal are data artifacts that

satisfy the goal requirements. Implicitly, however, the results

of a goal are not just the data artifacts but the flows that

produce the desired artifacts. Goal satisfaction, thus, can be

viewed as a search in the space of all possible flows that

can be constructed from a given set of data sources and

processing components.

Note that while the goal, by definition, selects all match-

ing data artifacts (and flows), the end-user does not have to

be presented with all matching resources, because there may

be too many. Also, any algorithm that searches for satisfy-

ing flows need not actually come up with all possible flows

because there may be too many of them, and it may be inef-

ficient to search for all of them. It may instead try to come

up with a ranked list of top flows based on some ranking

function.

5.4 Facets

Facets represent dimensions for characterizing resources

(data artifacts). Let F = {fi} be the set of facets in our

system. Each facet is modeled as a set of tags, i.e. fi ⊆ T . In

some facet classification systems, facets are mutually exclu-

sive. That is, two facets share no common elements. In our

approach, though, tags may be shared across facets.

Facets play an important role in identifying sets of sim-

ilar tags that can be grouped together and used to describe

abstract flows or components. They also help in organizing

the potentially large number of tags in the user interface and

thus aid the user in locating desired tags.

5.5 Component Model

Our model uses the tags from the taxonomy to associate

semantic information with the input and output data arti-

facts of components. This semantic information is comple-

mentary to the syntactic (or structural) information that may

be provided in the interface description of the component

(for example, in a WSDL document). Both the semantic and

syntactic information may be used together for purposes of

checking composability of components.

One of the key features of our model if that it captures the

notion of semantic propagation, i.e. the semantic description

of the output data artifacts of a component depend on the se-

mantics of the input data artifacts. Our model includes two

mechanisms to describe how semantic properties are prop-

agated from the input to the output data artifacts. The first

is through the use of common variables in the inputs and

the outputs. Whatever value (tag) the variable is bound to in

the input is the same value it is bound to in the output. The

second is through the use of sticky tags. These are specially

designated tags that are directly copied to the output from

the input description; even if they do not explicitly appear in

the output description. In our model, “stickiness” is a uni-

versal property of the tag, i.e. it is not specific to a certain

component. Typically sticky tags are those that refer to se-

mantics of the sources (like NOAA) and hence can logically

be associated with all raw and derived data produced from

this source. Figure 4 shows examples of components as well

as the propagation of semantic information from inputs to

outputs in a flow of components.

A variable, v, is a member of the set V where V is

infinite and disjoint from T . A variable is represented with a

preceding “?” . Each variable is associated with one or more

types (which are also tags). Let τ : V → T be a function

that maps a variable in a component description to a set of

types. A variable, v can be bound to a tag, t if the tag is a

595

sub-tag of all the types of the variable, i.e.

canbind(v, t) iff ∀x ∈ τ(v), t ≺ x

An input data constraint of an component (or operator),

o, denoted by Io describes the required properties of input

data artifacts to a component. It is in the form of a set of tags

and variables, i.e. Io ⊆ (T ∪ V).
An output data description of a component, o, denoted

by Oo describes the properties of an output data artifact

produced by a component. It is in the form of a set of tags

and variables, i.e. Oo ⊆ (T ∪ V).
Let C be the set of all components in the system. A

component, o ∈ C, is defined as the pair ({Io}, {Oo}) where

1. {Io} is a set of zero or more input message constraints

2. {Oo} is a set of one or more output message constraints

3. The set of variables in the output set, {Oo}, is a subset

of the set of variables in the input set, {Io}. This con-

straint ensures that no free variables exist in the output

description.

Our model also includes other information such as bind-

ing (i.e. how exactly to instantiate or invoke a component)

and other documentation on the component. The actual bind-

ing model depends on the underlying deployment platform.

We shall not cover this aspect in this paper.

We note that the folksonomy-based model is less ex-

pressive than Semantic Web Service models like OWL-S

and WSMO, which can capture richer semantic information

about the input and output data, using assertions in descrip-

tion logic, horn logic or other kinds of logics. Our model, for

instance, cannot capture relationships between tags. How-

ever, based on our experiences, our model can still capture

sufficient constraints for use in automated composition. In

addition, our model has a lower barrier for entry since it is

easier to annotate components using just a set of keywords

rather than using assertions in a logical formalism. This will

hopefully prompt more developers and end-users to anno-

tate components and reap the immediate benefits of discov-

ery and composition. Once these developers and end-users

see the value in annotating components, they can then move

on to more expressive models if the need arises.

As a general design principle and in the interest of mod-

ularity, it is preferable to design components where the tags

on each component’s inputs and outputs are associated with

a small number of facets. The presence of tags from a larger

number of facets is a likely indicator that the component is

performing multiple operations crossing multiple domains,

and is thus a candidate for further partitioning.

5.5.1 Modeling Component Parameters

Many components can be instantiated or configured with

parameter values that influence the way they behave. For

example, a parameter to a contour map view visualization

component used for visualizing the temperature ranges is the

number of contours, which is a measure of the granularity of

the result visualization. We model component parameters as

input constraints. The value of the parameter can be obtained

in two ways - from an end user or from another component

that provides a single value to this component.

5.5.2 Composition Constraints

An important part of composing flows in information pro-

cessing systems is determining whether a data artifact, pro-

duced by some component, can be given as input to another

component. There are two main kinds of constraints we con-

sider: semantic and syntactic. The semantic constraints can

be expressed using the tag-based model. The syntactic con-

straints depend on the actual deployment platform, and are

related to the actual datatypes required and produced by var-

ious components. These syntactic constraints can also, in

some cases, be described using tags. For example, we can

use tags to represent an XML schema or a Java interface

name.

The semantics of a data artifact, a, can be described

by the set of tags, d(a). We define that d(a) matches an

input constraint, Io (denoted by d(a) ⊑ Io), with a variable

substitution function, θ : V → T , iff

1. For each tag in Io, there exists a sub-tag that appears in

d(a). Formally, ∀y ∈ (Io ∩ T), (∃x ∈ d(a), x ≺ y).

2. For each variable in Io, there exists a tag in d(a) to

which the variable can be bound. Formally, ∀y ∈ (Io ∩
V), (∃x ∈ d(a), canbind(y, x)). Also, that mapping

θ(y) = x is created.

If a component has n inputs, then a set of data artifacts

{d(a1,), . . . d(an)} match the input constraints {I1

o , . . . In
o }

if d(ai) ⊑ Ii
o, i = 1 . . . n with a common variable substitu-

tion function.

5.5.3 Output Generation

When a component’s input requirements are satisfied, the

component generates new output data artifacts. The seman-

tics of an output data artifact can be described based on the

semantics of the corresponding output data description, Oo,

after substituting any variables that appear in the description

based on the substitution function, θ and after propagating

any sticky tags from any of the inputs to the output.

Let S ⊆ T be the set of all sticky tags. Let di(a), i =
1 . . . n, be the n input data artifacts to the component. Let

θ be the common variable substitution function used for

matching the input data artifacts to the input requirements of

the component. The semantics of an output data artifact, b,

corresponding to the output description, Oo of a component,

can be described by the set of tags, d(b), where

d(b) = {t : t ∈ Oo ∩ T} ∪ {θ(v) : v ∈ Oo ∩ V }
∪{t : t ∈ (∪n

i=1
di(a)) ∩ S}

This means that the output data artifact can be described

by all tags that appear in the output description of the compo-

nent, all tags that are obtained after substituting the variables

596

(based on the matches at the input side), and all sticky tags

that appear in the input data artifacts.

5.6 Overall Application Model

Applications are modeled as flows of components that

jointly process information to produce desired end-results. A

flow is a graph G(V,E) where G is a DAG (Directed Acyclic

Graph). Each vertex v ∈ V is a component instance. Each

edge (u, v) represents a logical flow of data artifacts from

u to v. The data artifact corresponding to each edge, (u, v),
can be described by a set of tags, d((u, v)). This model of

applications translates easily to various flow models, includ-

ing BPEL, flows in stream processing systems and in data

mashups.

5.6.1 Goal Driven Composition

The problem of goal-driven composition can now be simply

defined as the problem of constructing a flow that produces

a data artifact satisfying the goal. Given a composition prob-

lem P(T,C, g), where:

• T is a tag hierarchy,
• C is a set of components,
• g is a composition goal, g ⊆ T ,

the solution set is defined as follows:

The set of solutions S(T,C, g) to the goal-driven compo-

sition problem P(T,C, g) is the set of all valid applications,

G, such that ∀G(V,E) ∈ G,

• The data artifact corresponding to at least one edge in E

must satisfy the goal, i.e. E.g 6= ∅
• for all component instances in V , at least one data arti-

fact produced by this instance serves as input to another

component instance, or satisfies the goal.

The second condition in the definition above helps eliminate

from consideration inefficient compositions that have dead-

end component instances producing unused objects.

5.6.2 Composition Ranking

Before the set of compositions S(T,C, g) can be presented

to the user, the compositions must be ranked, with those

most likely to satisfy user’s intent appearing first in the list.

The ranking is based on a heuristic metric reflecting compo-

sition quality. Each component c ∈ C is assigned a fixed cost

cost(c). Cost of a component instance in a composition is

equal to the cost of the corresponding component.

Rank, rank(G), of a composition, G(V,E) ∈ G, is the

sum of the costs of components instances, i.e.

rank(G) =
∑

ci∈V

cost(ci).

By default, for all components, cost(c) = 1. Hence, the

best compositions are the smallest ones. During configura-

tion of the system, the number can be left equal to the de-

fault, or configured for some components to reflect compo-

nent quality.

The composition problem can be solved using manual,

automated or assisted approaches. We shall briefly describe

our planning-based automated composition approach in this

paper, in Section 6.3.

6. Tag-based Software Engineering and

Composition

The pervasive use of tags and facets to describe the artifacts

produced during various parts of the software engineering

lifecycle is key in establishing the connection from end-

user requirements to developed components and compos-

able flows. We now describe, formally, how tags and facets

are used in the specification of requirements, of application

templates and component classes. Finally, the tag-based de-

scriptions of the components are used by a planner to sup-

port automatic composition of flows in response to tag-based

end-user goals.

6.1 Multi-faceted Requirements Specification

In our software engineering methodology, end-users can

specify requirements for the kinds of information they would

like to obtain. These requirements are used by the applica-

tion architects in designing the components and the overall

applications.

In any large scale information processing system, many

kinds of information must be processed in a variety of ways.

Hence, requirements are not specified in terms of actual

goals but as whole classes of goals, that are described by

goal patterns.

A goal pattern is described as a set of tags and facets.

Each facet is associated with a cardinality constraint. The

cardinality constraint specifies how many tags in the facet

should be part of the goal.

We first define the set of cardinality constraints, CC, as

the set of all ranges of positive integers. Then a goal pattern,

QP = {(x, c)|x ∈ F, c ∈ CC} ∪ {t|t ∈ T} . A goal pattern

requirement means that end-users are interested in all data

artifacts that can be described by a combination of tags that

are drawn from the facets in the goal pattern, according to

the cardinality constraints.

An example of a goal pattern is Source[≥ 1],

WeatherForecastModel[≥ 2], MultipleModelAnalysis[1],

BasicWeatherMetric[≥ 1], Visualization[1].

This represents the class of all data artifacts that can be

described by one or more tags that belong to the Source facet,

2 or more tags that belong to the WeatherForecastModel facet,

one tag belonging to the MultipleModelAnalysis facet, and one

tag belonging to the Visualization facet.

An important point to note is that the goal pattern can

refer to a large number of possible goals. So, for example, if

there are 5 tags in the Source facet, 50 tags in the Model facet,

5 in MultipleModelAnalysis and 10 in Visualization, there are

up to 25 × 250 × 5 × 10 possible kinds of data that may be

producible by the information processing system. Hence, the

597

goal pattern helps in succinctly expressing the combinatorial

number of possible goals that can be submitted to the system.

6.1.1 Application Templates

An application architect takes a requirement, in the form

of a goal pattern, and constructs one or more application

templates that can satisfy all the goals in the goal pattern.

An application template is a high-level description of the

application structure. Each goal instance belonging to the

goal pattern can be satisfied by an application instance that

belongs to the defined application templates. Figure 8 has an

example of an application template. Figure 1 shows one such

instantiation of the subgraph.

The application templates are intended to guide the goal

answering process. It is important to note that the templates

do not capture all solutions. It is possible to assemble a

different flow that uses potentially different components to

satisfy the same goal.

An application template is a directed acyclic graph, where

the vertices are abstract sub-flows and edges represent trans-

fer of data artifacts between components in different sub-

flows. Each abstract sub-flow, itself can be described by a

directed acyclic graph, where the vertices are component

classes and edges represent the transfer of data artifacts be-

tween component classes.

Formally, an application template is defined as a directed

acyclic graph G(V, E , p, λ), where each vertex, v ∈ V is an

abstract sub-flow and each edge e ∈ E represents data flow

between abstract sub-flows. Next, p : g → CC , where g is a

subgraph of G. In other words, p associates each sub-graph

with a parallelism constraint. In the example above, one of

the subgraphs is associated with a constraint that at least 2

instances of the subgraph run in parallel. By default, a sub-

graph is associated with a cardinality of 1.

Finally, λ : V → GP , where GP is the set of all possible

goal patterns. Each abstract sub-flow in the flow is associated

with a goal pattern that describes the kinds of goals that

the sub-flow formed by this sub-flow plus all preceding sub-

flows in the flow can answer. λ is the function that associates

a sub-flow with the goal pattern it produces as output.

6.1.2 Abstract Sub-Flows

An abstract sub-flow is a directed acyclic graph S(VS , ES).
Each vertex v ∈ VS is a component class (defined later).

Each edge (u, v) ∈ ES represents a logical flow of data

artifacts from a component in the class u to a component

in the class v. Each stage can be viewed as a high-level

component with input requirements and output capabilities.

An example of a stage is shown in Figure 9. It consists of

two component classes, the first fetches a file given a URL,

and the second parses a weather forecast file.

Figure 10 shows a concrete instance of the abstract sub-

flow, where the component classes have been instantiated

with specific component instances. In the case of the first

component class, the instantiation occurs through the speci-

Figure 9. Example Abstract Sub-Flow for Weather Forecast

Extraction

fication of a parameter (a specific URL). The second compo-

nent class is instantiated with a specific component, called

MOSParser, that parses MOS forecasts from NOAA to

extract temperature and dew point predictions for various

weather stations in the US.

Figure 10. Example Instantiation of Weather Forecast Ex-

traction Sub-Flow

6.2 Component Class and Component Requirements

Components that perform similar tasks and have similar in-

put constraints can be grouped together into a class. For ex-

ample, all components that take a set of weather forecasts

from various sources and aggregate them in some fashion

(e.g. performing an average, or coming up with a probability

distribution, or finding the minimum or maximum or clus-

tering or detecting outliers) may be grouped together into a

class.

The key intuition behind a component class is that all

the members of a component class are substitutable in a

certain context. That is, in any given flow, a component can

be replaced by another component in the same class without

any syntactic or semantic mismatch. Hence, the definition of

a component class is specific to a certain flow (or a certain

class of flows).

This notion of substitutability of components is critical

in our approach to automated composition. Our composition

approach starts with a high-level application template defi-

nition that is made up of a flow of substitutable components.

Different substitutions of components result in different in-

stances of the templates that can satisfy specific goals.

Let C = {c} be the set of all components in the system.

Then the set of all component classes is C ⊆ 2C . In addition,

a component class, X ∈ C, is specific to a certain position

in a flow, or set of flows. If a ∈ X appears in this position,

then it can be substituted by any b ∈ X .

The inputs and outputs of a component class, X , can be

described by goal patterns that include variables. We define

598

Weather Forecast

Extraction

Weather Station Location

Extraction

Join of Forecast
with Location for

Each Station

Multiple Model
Analysis

Map Based
Visualization

[>=2]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

AllWeatherStationLocationsAllWeatherStationLocations

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

AllWeatherStationLocations

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

AllWeatherStationLocations

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

MapView[1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

MapView[1]

Weather Forecast

Extraction

Weather Station Location

Extraction

Join of Forecast
with Location for

Each Station

Multiple Model
Analysis

Map Based
Visualization

[>=2]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

AllWeatherStationLocationsAllWeatherStationLocations

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

AllWeatherStationLocations

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]

AllWeatherStationLocations

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

MapView[1]

Source[1]
WeatherForecastModel[1]
BasicWeatherMetric[>=1]
AllWeatherStationLocations
MultipleModelAnalysis[1]

MapView[1]

Figure 8. Example of Application Template showing various abstract sub-flows. Each abstract sub-flow is associated with a

parallelism constraint (default is 1), and a goal pattern that it can satisfy.

the set of all variable goal patterns as V QP = {(x, c)|x ∈
F ∪ V, c ∈ CC} ∪ {t|t ∈ T ∪ V }. Then a component class,

X , can be defined as the pair ({IX}, {OX})

1. {IX} is a set of variable goal patterns that describe a class

of input message constraints

2. {OX} is a set of goal patterns that describe a class of

output messages

3. The set of variables in the output set, {OX}, is a subset

of the set of variables in the input set, {IX}. This con-

straint ensures that no free variables exist in the output

description.

We assume that each component belongs to a trivial com-

ponent class, which is a singleton set. Figure 11 shows an

example component class on the left. The input and out-

put descriptions include the variable ?source whose type is

WthrSource. This means that both the input and the output

include the same tag, which is a sub-tag of WthrSource, such

as NOAA.

Figure 11. Example Component Class and Example Component

A component class can also act as a requirement spec-

ification for a new component, or a set of components. A

component requirement is specified according to the model

described in Section 5.5, i.e. in terms of tag-based descrip-

tions of the inputs and outputs. A developer takes this re-

quirement, along with any other requirement provided by

the application architect, and develops the component. Af-

ter unit and integration testing, this new component can be

used in new application flows.

6.3 Planning-based, Bottom-Up, Automatic

Composition

Once new components are developed and tested, they can

be used in new flows. Our system includes an AI planner

that composes flows from the available components given

the goal. The planner plays a crucial role in the serendipitous

assembly of new flows. It is not aware of the flow templates;

hence, it can compose flows that follow the templates and

also possibly new flows, which don’t fall into any of the

explicitly designed templates.

As an example, assume that there is a component de-

veloped in a different context that took weather data and

stored it as tables in a database. Then this component can

potentially replace any of the visualization components de-

veloped as part of the flow template in Figure 8. Hence, a

dynamic user goal such as RelativeHumidity, IA, Weighte-

dAverage, GFS, Eta, DatabaseStorage may be satisfiable even

though it was not part of the original user requirements.

We have described the planning algorithm for solving the

composition problem P(T,C, g), in earlier work [25]. The

algorithm finds a solution with the best possible rank and

generates a weighted list of tags for the tag cloud by analyz-

ing descriptions of output data artifacts produced by alterna-

tive solutions. It can also provide a summary description for

a specified range of alternative solutions.

The algorithm operates on an abstract description of the

composition problem represented in SPPL (Stream Process-

ing Planning Language) that was introduced in [24]. An

SPPL planner performs much better in typical flow composi-

tion problems than the best general AI planners. By making

objects a part of the domain model, SPPL planner avoids un-

necessary grounding and resolves symmetries, reducing the

search space by an exponential factor. The planning algo-

rithm includes a problem analysis and presolve stage, and a

forward search stage. During the presolve stage the search

space is reduced by several techniques that include intelli-

599

gent grounding of variables, elimination of irrelevant com-

ponents based on fast backward search in a relaxed formula-

tion, and grouping symmetrical components where appropri-

ate. The forward search stage composes and ranks candidate

flows starting from sources.

Finding optimal plans is a theoretically hard problem.

In general, there do not exist optimal or constant-factor-

approximation SPPL planners that can guarantee termina-

tion in polynomial time on all tasks. STRIPS planning,

which is a special case of general SPPL planning, is known

to be PSPACE-complete [4].

In practice, however, such composition problems can be

solved automatically much faster than humans can solve

them. In our experiments with an example based on a set

of up to 273 Yahoo Pipes components and feeds, the time

needed for solving the composition problem and generating

the tag cloud for goal refinement was consistently under 5

seconds, and typically under 1 second or less [25].

7. Related Work

Faceted classification, introduced in 1933 by S. R. Ran-

ganathan [22], was applied to software component reuse in

1991 [19], becoming the “industrial state of the art” by 1994

[15].

Subsequent approaches incorporated semantic models to

improve search precision, via goal-based search [32]. Qual-

ity models were added, to enhance goal-driven retrieval with

non-functional applicability criteria [11]. Still, the predomi-

nant focus was on specification and retrieval but not compo-

sition.

Component composition at the code level is addressed

in [23]. More recent work proposes a dynamic hierarchical

component composition [10], which also emphasizes type-

oriented composition models.

Faceted classification, as applied to software require-

ments, was introduced by Opdahl [18]. Goal-directed Re-

quirements Engineering was introduced in the KAOS system

[33].

Web services composition is described in [28], and com-

position using UML is described in [30]. Rule-based service

composition is addressed in [20] and [34]. Semantic service

composition in [5]. A planner for service compositions de-

scribed in [27]. An approach to DL planning for service

composition is described in [21]. Knowledge engineering for

workflow composition, [31], and ontology modeling for web

service composition in [7], also focus on the use of rich se-

mantic descriptions, which pose an extra burden on those de-

scribing components and on those establishing composition

goals.

Other automated software composition work includes the

work by Margaria and Steffen [13], who were able to syn-

thesize sequential orchestrations, expressed in BPEL, given

process constraints defined in linear temporal logic. The key

difference in our approach is that we take a goal-directed

planning approach to the task of composition, where the

goals are expressed using sets of tags. The goal-directed, tag-

based approach makes it easy for end-users to come up with

customized compositions just by selecting one or more tags.

8. Conclusion

We have described a tag-based application design method-

ology that facilitates the composition of customized flows

to satisfy end-user goals. At the core of our approach is a

novel tag model where domain-specific tags, organized into

various facets, are used to describe 1) end-user information

processing goals, 2) component functional processing and

data semantics, and 3) application requirements and struc-

tural constraints. The prominent role that tags and tag-based

descriptions play in all three areas establishes a strong visi-

ble thread from users’ information needs to dynamically as-

sembled flow-based applications.

We have also described our application design and com-

position methodology that incorporates both top-down and

bottom-up elements in order to come up with a set of com-

ponents that can be composed into a large number of appli-

cations. Some of the advantages of our methodology are :

1. The top-down development lifecyle guarantees that the

components developed can be composed to create appli-

cations that meet the initial end-user requirements.

2. The tag-based descriptions of all components facilitates

their recombination in new ways to create new applica-

tions that satisfy new end-user goals, which may may not

have been part of the initial requirements.

3. The common, yet extensible, facets and tag hierarchies

establish a simple, shared vocabulary that is used archi-

tects, developers and end users

4. End-user requirements are captured in a formal manner.

This enables us to verify that the requirements are actu-

ally satisfied by a set of composable services.

We have undertaken this application design process for

a deployment in the financial services domain. This deploy-

ment included a total of 135 components. The development

and annotation of the services was undertaken by a team of

5 people, with one person serving as a requirements engi-

neer and application architect, 3 component developers and

one supporting the basic architecture. Some of the compo-

nents ran on the Project Zero platform [8], which allows

the deployment of REST-based services and data mashups.

Others were components in IBM’s System S [9], which is

a stream processing system. The flow size ranged from 5

to 150 component instances. Our preliminary experiences

in this deployment have convinced us of the usefulness of

our approach for developing rapidly composable flows from

modular components. Our future work involves studying the

properties and the evolution of the components and flows in

600

this deployment, as well as deploying in different domains,

and on different platforms.

References

[1] Yahoo pipes.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[3] Mehmet Altinel, Paul Brown, Susan Cline, Rajesh Kartha,

Eric Louie, Volker Markl, Louis Mau, Yip-Hing Ng, David

Simmen, and Ashutosh Singh. Damia: a data mashup fabric

for intranet applications. In VLDB ’07: Proceedings of the

33rd international conference on Very large data bases, pages

1370–1373. VLDB Endowment, 2007.

[4] T. Bylander. The computational complexity of propositional

STRIPS planning. Artificial Intelligence, 69(1-2):165–204,

1994.

[5] L Chen, N.R. Shadbolt, C. Goble, F. Tao, S.J. Cox, C. pule-

ston, and P. Smart. Towards a knowledge-based approach to

semantic service composition. In The Second International

Semantic Web Conference (ISWC2003), 2003.

[6] Luba Cherbakov, Andy J. F. Bravery, and Aroop Pandya.

SOA meets situational applications, 2007.

[7] Juntao Cui, Jiamao Liu, Yujin Wu, and Ning Gu. An

ontology modeling method in semantic composition of web

services. In CEC-EAST ’04: Proceedings of the E-Commerce

Technology for Dynamic E-Business, IEEE International

Conference, pages 270–273, Washington, DC, USA, 2004.

IEEE Computer Society.

[8] IBM. Project zero. http://www.projectzero.org/.

[9] Navendu Jain, Lisa Amini, Henrique Andrade, Richard

King, Yoonho Park, Philippe Selo, and Chitra Venkatramani.

Design, implementation, and evaluation of the linear road

bnchmark on the stream processing core. In SIGMOD

’06: Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, pages 431–442, New

York, NY, USA, 2006. ACM.

[10] In-Gyu Kim, Doo-Hwan Bae, and Jang-Eui Hong. A

component composition model providing dynamic, flexible,

and hierarchical composition of components for supporting

software evolution. J. Syst. Softw., 80(11):1797–1816, 2007.

[11] Julio Leite, Yijun Yu, Lin Liu, Eric Yu, and John Mylopoulos.

Quality-based software reuse. Lecture Notes in Computer

Science, 3520:535–550, January 2005.

[12] Zhen Liu, Anand Ranganathan, and Anton Riabov. A

planning approach for message-oriented semantic web

service composition. In AAAI, pages 1389–1394. AAAI

Press, 2007.

[13] Tiziana Margaria and Bernhard Steffen. Ltl guided planning:

Revisiting automatic tool composition in eti. In SEW

’07: Proceedings of the 31st IEEE Software Engineering

Workshop, pages 214–226, Washington, DC, USA, 2007.

IEEE Computer Society.

[14] D. Mennie and B. Pagurek. An architecture to support

dynamic composition of service components. 2000.

[15] Rym Mili, Ali Mili, and Roland T. Mittermeir. Storing and

retrieving software components: A refinement based system.

IEEE Trans. Softw. Eng., 23(7):445–460, 1997.

[16] J. Paul Morrison. Data responsive modular, interleaved task

programming system. IBM Technical Disclosure Bulletin,

13(8):2425–2426, January 1971.

[17] NOAA. Acronyms and abbreviations used by the statistical

modeling branch, 2008.

[18] Andreas L. Opdahl and Guttorm Sindre. Facet models for

problem analysis. In CAiSe ’95: Proceedings of the 7th

International Conference on Advanced Information Systems

Engineering, pages 54–67, London, UK, 1995. Springer-

Verlag.

[19] Rubén Prieto-Dı́az. Implementing faceted classification for

software reuse. Commun. ACM, 34(5):88–97, 1991.

[20] Ken Pu, Vagelis Hristidis, and Nick Koudas. Syntactic rule

based approach to web service composition. In ICDE ’06:

Proceedings of the 22nd International Conference on Data

Engineering, page 31, Washington, DC, USA, 2006. IEEE

Computer Society.

[21] Lirong Qiu, Fen Lin, Changlin Wan, and Zhongzhi Shi.

Semantic web services composition using ai planning of

description logics. In APSCC ’06: Proceedings of the 2006

IEEE Asia-Pacific Conference on Services Computing, pages

340–347, Washington, DC, USA, 2006. IEEE Computer

Society.

[22] S R Ranganathan. Colon Classification. Asia Publishing

House, Bombay, India, 1933.

[23] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau,

and Eric Eide. Knit: Component composition for systems

software. In Proc. of the 4th Operating Systems Design and

Implementation (OSDI), pages 347–360, 2000.

[24] A. Riabov and Z. Liu. Planning for stream processing

systems. In AAAI, 2005.

[25] Anton V. Riabov, Eric Bouillet, Mark D. Feblowitz, Zhen

Liu, and Anand Ranganathan. Wishful search: Interactive

composition of data mashups. In WWW, April 2008.

[26] Dennis Ritchie. The evolution of the unix time-sharing

system. In Proceedings of a Symposium on Language Design

and Programming Methodology, pages 25–36, London, UK,

1980. Springer-Verlag.

[27] Mithun Sheshagiri, Marie desJardins, and Tim Finin. A

Planner for Composing Services Described in DAML-S. In

Proceedings of the AAMAS Workshop on Web Services and

Agent-based Engineering,, June 2003.

[28] Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth,

and Kunal Verma. Framework for semantic web process

composition. Int. J. Electron. Commerce, 9(2):71–106, 2003.

[29] Maxym Sjachyn and Ljerka Beus-Dukic. Semantic compo-

nent selection – SemaCS. In ICCBSS ’06: Proceedings of the

Fifth International Conference on Commercial-off-the-Shelf

(COTS)-Based Software Systems, page 83, Washington, DC,

USA, 2006. IEEE Computer Society.

[30] David Skogan, Roy Gronmo, and Ida Solheim. Web service

601

composition in uml. In EDOC ’04: Proceedings of the

Enterprise Distributed Object Computing Conference, Eighth

IEEE International, pages 47–57, Washington, DC, USA,

2004. IEEE Computer Society.

[31] Renata Slota, Joanna Zieba, Bartosz Kryza, and Jacek

Kitowski. Knowledge evolution supporting automatic

workflow composition. In E-SCIENCE ’06: Proceedings

of the Second IEEE International Conference on e-Science

and Grid Computing, page 37, Washington, DC, USA, 2006.

IEEE Computer Society.

[32] Vijayan Sugumaran and Veda C. Storey. A semantic-based

approach to component retrieval. SIGMIS Database, 34(3):8–

24, 2003.

[33] Axel van Lamsweerde, Anne Dardenne, B. Delcourt, and

F. Dubisy. The kaos project: Knowledge acquisition in

automated specification of software. In Proceedings of

the AAAI Spring Symposium Series, pages 59–62, Stanford

University, Stanford, CA, 1991. American Association for

Artificial Intelligence’.

[34] Jian Yang, Mike P. Papazoglou, Bart Orriëns, and Willem-

Jan van Heuvel. A rule based approach to the service

composition life-cycle. In WISE ’03: Proceedings of the

Fourth International Conference on Web Information Systems

Engineering, page 295, Washington, DC, USA, 2003. IEEE

Computer Society.

602

