Fine-Grained Test Case Prioritization for Integration
Testing of Delta-Oriented Software Product Lines

Remo Lachmann! Sascha Lity!

Mustafa Al-Hajjaji?

1

Franz Fiirchtegott! ~ Ina Schaefer

ITechnische Universitit Braunschweig, 2University of Magdeburg, Germany

{r.lachmann, s.lity, f.fuerchtegott, i.schaefer}@tu-bs.de, m.alhajjaji@iti.cs.uni-magdeburg.de

Abstract

Software product line (SPL) testing is a challenging task,
due to the huge number of variants sharing common func-
tionalities to be taken into account for efficient testing. By
adopting the concept of regression testing, incremental SPL
testing strategies exploit the reuse potential of test artifacts
between subsequent variants under test. In previous work,
we proposed delta-oriented test case prioritization for incre-
mental SPL integration testing, where differences between
architecture test model variants allow for reasoning about the
execution order of reusable test cases. However, the priori-
tization left two issues open: (1) changes to component be-
havior are ignored, influencing component interactions and,
(2) the weighting and ordering of similar test cases result
in an unintended clustering of test cases. In this paper, we
extend the test case prioritization technique by (1) incorpo-
rating changes to component behavior allowing for a more
fine-grained analysis and (2) defining a dissimilarity mea-
sure to avoid clustered test case orders. We prototyped our
test case prioritization technique and evaluated its applica-
bility and effectiveness by means of a case study from the
automotive domain showing positive results.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

Keywords Delta-Oriented Software Product Lines, Test
Case Prioritization, Model-Based Integration Testing

1. Introduction

Software product lines (SPL) facilitate to capture individual
customer demands for products by introducing variability
to software development in large scales [26]. An SPL com-
prises a family of similar software systems sharing common

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FOSD’16, October 30, 2016, Amsterdam, Netherlands
© 2016 ACM. 978-1-4503-4647-4/16/10...$15.00
http://dx.doi.org/10.1145/3001867.3001868

and variable features, i.e., customer visible system function-
ality. Due to valid feature combinations, the number of po-
tential variants increases exponentially [26] making their ef-
ficient testing a very challenging task [10]. Hence, SPL test-
ing techniques require to exploit the commonality between
variants to reduce the inherent testing redundancy.

As testing is limited by budget and time, test effort has to
be reduced. Testing product lines from product to product,
i.e., incrementally, reduces testing effort and adopts concepts
of regression testing [35] for SPL testing. The commonality
and variability between variants is exploited to reduce re-
dundant testing [11]. In previous work, we proposed an in-
cremental SPL integration testing strategy for fest case pri-
oritization (TCP). It is based on delta modeling [6], allowing
for the reuse and incremental adaptation of test sets. Deltas
describe transformations between product variants, allow-
ing for a focus of newly introduced changes in the current
product variant under test. Based on changes (i.e., deltas)
between variant-specific architecture test models, we com-
puted priorities for the ranking of reusable test cases. In con-
text of this and previous work, test cases describe communi-
cations between components based on exchanged signals.

However, the existing TCP left two crucial issues open.
First, it ignores changes to component behavior. Compo-
nents may not change between variants on the architecture
level, but on their behavioral level and may influence the
inter-component communication. To this end, we extend our
approach to take information about changes on component
behavior level into account. Second, the previous technique
does not consider the similarity between test cases. Accord-
ingly, always selecting the next highest weighted test case
in the ordering may lead to an unintended clustering of test
cases based on similar weights for similar test cases. To this
end, we introduce a dissimilarity-based TCP, which is com-
binable with the delta-oriented TCP.

We contribute the following:

e A fine-grained analysis of changed components based
on behavioral changes and their impact. We incorporate
changes to component behavior, e.g., obtained from the
already applied component testing [19, 20], to allow for
a fine-grained test case prioritization.

e A dissimilarity measure to avoid a clustering of the prior-
itized test cases for SPL integration testing. The smaller
the number of identical signals exchanged in test cases,
the more dissimilar they are.

e An evaluation of our technique in terms of TCP quality.
We compare it to a random ordering and our previous
TCP technique [16].

2. Foundations

Delta-Oriented Software Product Lines. Delta model-
ing [6] is a transformational variability modeling technique
for model-driven SPL development. For all variants Pspy, =
{Dcores D1, -, pn} of an SPL, their variant-specific model
myp, is defined by its differences to a designated core model
myp,,,. of a core variant p.,.. Those differences specified
by means of transformations, called delfas, are additions/ re-
movals of model elements used to transform the core model
into the particular variant-specific model. Each delta ¢ cap-
tures either an addition or a removal of an element e. For
every variant p; € Pgpy, a predefined set of deltas A;}f c
Ag’}; ;. exists for an automated generation of the correspond-
ing model by applying each § € AM consecutively in a pre-
defined order. By A%}, , we refer to the set of all valid deltas
of the current SPL and model domain M. The concept of
delta modeling allows for the derivation of differences be-
tween arbitrary variants, e.g., architectures, encapsulated in
model regression deltas A;}f p; S AQ/}D ;, by taking their delta
sets A{,‘i” and A{,\;‘ into account. We refer to prior work, for
the derivation of model regression deltas [19, 20].

We adapted delta modeling in prior work to architecture
models [20] as well as behavioral models, i.e., state ma-
chines [19]. An architecture defines the structure of a system
by specifying the computational entities, i.e., components,
and their explicit communication dependencies by means of
connectors. Thus, an architecture model arc = (C, Con, 1)
comprises a finite set of components C' = {c1,...,¢n}, a
finite set Con = {conq,..., con;} of connectors, and a fi-
nite set IT = {my, ..., 7} of signals transmitted via con-
nectors, allowing for component interaction. A connector
con = m._, specifies an unidirectional interaction between
its source component ¢ sending the signal 7 and its target
component ¢’ receiving 7. Thus, for each component ¢ € C,
we are able to derive the set of incoming connectors I. and
the set of outgoing connectors O. comprising all connec-
tors, where c is the target or source component. The sets of
incoming and outgoing connectors define a components in-
terface. For the specification of variable architecture models,
we require a core architecture arcy, . and a set of archi-
tecture deltas AGKE to allow for the generation of variant-
specific architecture models arcp,. A corresponding archi-
tecture delta § € AZKC captures either an addition or a re-
moval of components/connectors.

EXAMPLE 1. Consider the sample architecture model arcp,
in Fig. 1 used as core. By applying the set of architecture

arcy, .
P
AARC — fadd dy .z, ¢

AAPC ={add gz, x,add A,
add gzy % add eaz}
AA‘RC ={rem dy_,z,add A

P12) d
add es—,z,add fz_4}

Figure 2. Concept of Delta-Oriented State Machines

deltas A;;‘lRC, arcy, is transformed into arcy,. To step from
arcy, to arcy,, we derive and apply the architecture model

: ARC
regression delta A} -

In contrast to architecture models, behavioral models,
such as state machines, are used to specify the behavior of
components, i.e., defining the reaction on incoming signals
with corresponding outgoing signals. A state machine sm =
(S,T, E) comprises a finite set of states S = {s1,...,,}
representing execution states of the component and a finite
set of transitions T' = {t1,...,t,} defining the transfer be-
tween states based on events from the finite set of events
E ={ey,...,e,}. Thesetof events E = E; U Ep U E; is
divided into distinct sets of input events Er, of output events
FEo and internal events E.. We assume identical names
of signals and events to specify the mapping between in-
put/output signals and events. Internal events are solely used
and visible within a state machine to allow for behavior.
To enable the transfer between states, transitions are trig-
gered based on input, whereas each transition may gener-
ate outputs as reaction. The syntax for transition labels is
t:e;/{eo,...}, where e; € Er u E, describes the triggering
event of transition ¢ in addition to a set of output events e,
sent by the transition. For the specification of variable state
machines, we require a core state machine sm,,,,, and a set
of state machine deltas ASH? to allow for the generatlon of
variant-specific state machines sm,, . A corresponding state
machine delta § € ASA} captures either an addition or a
removal of states or transitions.

EXAMPLE 2. In Fig. 2, the effect of the transformation of
arcy, to arcy, for component X from Ex. I is shown. On
the architecture model level, X has no interface changes,
but on its behavioral level, we transform its state machine

by applying the state machine regression delta Afﬁ;‘,z.

Incremental SPL Integration Testing. State machines
and architecture models can be used as test model specifica-
tions for model-based component [32] and integration test-
ing [5]. For SPLs, we applied their delta-oriented versions
for incremental component and integration testing in prior
work [19, 20]. In this paper, we solely focus on SPL integra-
tion testing. However, we incorporate the information about
delta transformations on component state machines.

For incremental SPL integration testing [20], we use
delta-oriented architecture models to specify variant-specific
test models arc,, for each p; € Pgpy. To guide the test
process of variants, we apply structural coverage criteria,
e.g., all-component or all-connector coverage, to derive a
set of fest requirements to be covered by a set of variant-
specific test cases TC),, = {tci1,...,tc,} < TC called
test set. By 7C, we refer to the set of all test cases for an
SPL under test. A test case tc defines an interaction scenario
between components of a corresponding architecture test
model. Similar to prior work [16, 20], we use Message Se-
quence Charts (MSC) [13] as test cases. An MSC captures a
communication scenario within the architecture. Each MSC
comprises a set of components C;. < C' and connectors
Coni. < Con for the specification of component interac-
tions, where s(c;, ¢;j) € I, < II defines the set of signals
exchanged between components c;, ¢; € Ctc.

The incremental testing workflow is defined as fol-
lows [20]: We test p., first by applying standard model-
based integration testing [5]. The remaining variants p; €
Pgp; are tested based on their predecessors, where we ex-
ploit the reuse potential of test artifacts. We adopt the con-
cept of delta modeling [6] to define regression deltas for the
set of test artifacts, e.g., architectural test models. By step-
ping from variant p;_; to the subsequent p; under test, we
use the derived regression deltas to adapt the variant-specific
test artifacts. A crucial part of the adaptation is the decision
whether previously executed test cases tc; € TCp,, , can be
reused for p; and if they have to be re-executed to validate
that changes have no unintended influences on already tested
behavior. Therefore, we categorize test sets 1'C',, similar to
regression testing [35] into sets of new, reusable, and obso-
lete test cases. New test cases are defined for a variant to test
its new untested functionality. Reusable test cases have been
executed on previous variants and are also valid for current
variant p;. Obsolete test cases are not valid and removed
from the test set, but are stored for subsequent testing steps.
To identify the category of a given test case, the components
and connectors required by the test case are analyzed. If at
least one component or connector is no longer present in the
test case, it is obsolete for the current variant. Otherwise, the

Figure 3. Sample Integration MSC Test Case

test case is reusable. From the set of reusable test cases, we
can either select certain test cases to be re-executed [20] or
prioritize test cases for re-execution [16]. Testing steps are
repeated until all selected variants are tested.

EXAMPLE 3. Consider core arcy, in Fig. 1. We apply all-
connector coverage, which requires the coverage of the three
contained connectors. Test case tci shown in Fig. 3 covers
all three connectors and is reusable for testing p1 and po.

SPL Integration Test Case Prioritization. In regression
testing, various techniques exist to reduce the overall testing
effort by applying prioritization, selection and/or minimiza-
tion to test cases [35]. While the selection and minimization
of test cases aim to reduce the size of test sets to be executed
by deriving a representative subset of all test cases, prioriti-
zation allocates a priority value to each test case. This value
allows to order test cases such that the most important test
cases W.I.t. given criteria, e.g., potential fault detection capa-
bility, are executed first. Based on TCP, the testing process
can stop at any time according to available resources, ensur-
ing the most important test cases have been executed.

In prior work [16], we proposed TCP for incremental in-
tegration testing of delta-oriented SPLs. The technique takes
the commonalities and differences between subsequent vari-
ants under test based on their architecture regression deltas
into account. A test case gets a higher priority the more
its respective interaction scenario covers changed elements.
For priority computation, we determine the changes applied
for the very first time when stepping to subsequent vari-
ants. Focusing on never before tested changes reduces the re-
dundancy between testing different product variants. Those
changes are captured in the set of changed incoming con-
nectors IC. < I. and the set of changed outgoing connec-
tors OC. < O, for a component ¢ € C,, of variant p and
represent changes to the component interface derivable from
applied deltas. We use both sets for the computation of com-
ponent weights as follows.

|10,

j0C.| |MPD,|
P T

w() = o 7 IR

+5

We use a, 5,7 as weighting factors to control the impact
on each part of the function, where o + 8 + v = 1 holds.
These factors can be adjusted by the tester. We normalize the

changed incoming and outgoing connectors by the size of all
incoming (/) and outgoing connectors (O,.) of the compo-
nent, respectively. By MPD ., we refer to changes denoted
by multi product deltas (MPD) [16]. These types of deltas
occur when we compare different product variants at once.
They describe changes, which are induced by the combina-
tion of deltas, which have already been tested in isolation,
but never in their current combination. In particular, the in-
terface of a component ¢ has never been tested in its cur-
rent configuration before, even though all related deltas have
been covered by tests in previous product variants. We nor-
malize MPD values by the number of product variants the
component has occurred in all product variants under test
thus far, denoted by P..

For TCP, we incorporate the component weights of a
product variant in two different ways. First, we defined a
component-based prioritization

n
. Zj:l w(c;)
prio(tc) = =—=———|
n
where ¢; € Cy. and n = |Cy| holds, i.e., we sum all weights
of components contained in a test case to be prioritized. The
component-based prioritization focuses only on the compo-
nents covered by a test case. Second, we defined a signal-
based prioritization

=1 21 5(cj,cr) - (w(ej) +w(er))
=1 2k S(cj,cx) ’

where n is the number of signals a test case comprises, i.e.,
component weights are multiplied by the number of covered
signals between components.

We identified two open issues for the previous TCP: Be-
havioral changes are not incorporated and similar test cases
result in clusters in the ordering.

pm’osig(tc) =

3. Extended Prioritization Concept

The fine-grained TCP for integration testing is based on the
analysis of structural and behavioral deltas. We also intro-
duce a dissimilarity-based approach to accelerate coverage
of important system parts. To successfully apply the priori-
tization, test cases have to be defined for all product variants
under test. Test case design or generation is not in the scope
of this paper. For example, they could be manually defined
or derived from the test models. To prioritize test cases for
product variants, a set of variants has to be selected and or-
dered a priori. We do not focus on how to select product vari-
ants, but assume that they are available, e.g., using existing
product selection techniques [15, 24].

The overall TCP process is shown in Fig. 4. It is defined
for its application on delta-oriented SPLs. However, if an ex-
plicit delta information between variants is not available, we
require to extract this information about differences from the
SPL, e.g., by applying model differencing techniques [25].

(Compute First Applied Regression Deltas)
' /

s s - - (T T T T N
Compute Compute Signal Weights | Structural !
Behavioral | !

Component [) Comque j (lComput‘e j | Component :
| Weights g Direct Weigths Indirect Weigths ! N _YVflgh_ts__)
v l L] T
Delta-oriented Compute
Weight
Unordered 9 Component- or Prioritized

Signal-based
Dissimilarity- Test Case
Measurement Priorities

Figure 4. Fine-Grained Test Case Prioritization

Test Cases Test Cases

3.1 Behavioral Component Weights

For integration testing, changes between components are es-
sential to decide what to retest between variants. However,
we did not incorporate internal changes on behavioral level
in prior TCP techniques. In this work, we analyze the dif-
ferences between state machines of an architecture model
arcy, for product variant p; to derive a behavioral compo-
nent weight. A state machine represents the corresponding
behavior of a component. Typically, the analysis begins with
the first product variant when stepping from the core prod-
uct to the next. The analysis is part of the incremental testing
process for all product variants Pspy, under test.

Similar to the existing structure-based TCP (cf. Sec. 2),
we focus on deltas A,cy S Ag% never been applied be-
fore in prior tested variants Picseq S Pgpr for the com-
putation of a behavioral component weight. For state ma-
chines, we refine the occurring changes within a component
¢; into changed transitions CT., < T, and changed states
CS., < S, as these influence the behavior of c;. In partic-
ular, a change is only considered for the component weight
of the current product variant, if it occurs for the first time
in the regression delta AM of the current variant p; to
all prior tested variants Pjesteq, 1.€., the corresponding delta
operations have never been applied before [16]. These new
regression deltas represent functionality that occurs for the
first time in a product variant under test and, thus, is not cov-
ered in Pje41eq. The more of these new changes are detected
for a component, the more it should be tested, as the be-
havior of the component and, thus, the communication with
other components might have changed unwillingly.

These two types of changes, i.e., state changes CS., and
transition changes C7T'., of a component ¢; are computed
to measure the degree of changes. The result is normalized
by the components complexity, i.e., its number of states S,
and transitions T, . This leads to the behavioral component
weight, defined by the function w, : C — R. The higher
the resulting weight, the more important is a test of this
component. The behavioral component weight for ¢; € C),
is computed as:

w(c)zw
N PN T

The behavioral weight can be combined with the struc-
tural component weights w(c) for a certain product variant
to create a more fine-grained weight computation. This al-
lows to capture both, changes on structural and behavioral
level according to delta transformations. In particular, it en-
ables us to detect changes that only occur within compo-
nents and are invisible on architectural level. To further ad-
just the influences of the behavioral weight, we introduce a
behavioral weighting factor ¢ with 0 < ¢ < 1, such that
a + 4+ v+ ¢ = 1. The other three factors are defined in
Weomp (¢;) (cf. Def. 1). The combined component weight is
computed as follows:

Weomp(¢i) = w(c;) + ¢ - wp(c;)

3.2 Signal Weights

While each component receives a combined weight weomp (¢)
according to the applied structural and behavioral deltas,
the signals exchanged between components might also have
been influenced by delta operations. This is due to the fact,
that events within the state machines of a component can be
identified with signals on architectural level. Thus, changes
to state machine events might influence signals, which might
affect the communication with other components. To this
end, we introduce delta-oriented signal weights, which in-
fluence the test case priority based on the impact of deltas
on behavioral level. Basically, signal weights represent how
much an internal change of a component and its signals
influences the communication by this component on archi-
tectural level. For example, a newly introduced transition
in a state machine representing the internal behavior of a
component might be triggered by an incoming event from
the components interface. We assume that this change to the
signal has an influence on the behavior and might change
the output of reusable test cases compared to previous tested
product variants Pj...q. Hence, we compute the number of
deltas that directly modify an event, which corresponds to a
signal, as direct signal weight.

In case of a behavioral change, it is of interest to iden-
tify any outgoing events, which are influenced by a state
machine adaption of an input event. Our technique uses a
slicing inspired technique [2] to analyze the impact between
incoming and outgoing signals as indirect signal weights.
Both analysis techniques and the resulting weight computa-
tions are described in the following.

Direct Signal Weights. A first applied delta 6 S A,y
influencing a state machine might also influence a signal.
That is, a transition might be added using a signal as incom-
ing or outgoing event, or a transition has been modified or
removed. For each signal 7 € II, which is received or send
by a component ¢ € C,, for product p, we count the num-
ber of transition-related deltas A; < A, that contain an
event e mapped to the signal on product level. The reason for
a product-level analysis is that the incoming signal of one
component is the outgoing signal of another component and

signals can be reused by different components. We do not
compute weights for internal events e € E; as they are only
observable within the component. As our TCP approach fo-
cuses on integration testing, only signals used for commu-
nication are visible within test cases. Hence, internal events
do not have an impact for the TCP, as they are not visible
on test case level. To measure the direct signal weight, we
count the occurrences of a signal m € II in all transition-
related deltas using the function count : II x A — N, i.e,,
we analyze deltas which add or modify (e.g., by adding or re-
moving incoming or outgoing events) transitions in the cur-
rent product variant. In addition, we only focus on deltas
which have never been applied before in the previous prod-
uct variants under test, i.e., A; € A,,.. To normalize these
values, we compute the number of all signals received or
transferred by component ¢;, denoted as 7 (c;). These signals
are derived from the components interface. Based on these
values we compute a direct signal weight for each signal
m € II for a component ¢; € C),;. The direct signal weight
is computed globally for one product variant by the function
Wairect - 11 X Pgpr, — R as follows:

1Co, |
count(my, A
Wirect Tk, Pj) = Z W,Ci € Cp,,mi € I,
= (¢

Indirect Signal Weights. Alongside the direct signal
weights, a change within a state machine may also indi-
rectly influence other signals, which depend on the changed
parts. On architectural level, this could lead to problems in
communication, in case outgoing signals are indirectly influ-
enced. Hence, we compute indirect signal weights to cope
with these potential pitfalls by analyzing the state machine.

To measure the indirect influences for a certain compo-
nent in a product variant, we have to analyze different paths
within the state machine, which start with an influenced el-
ement, e.g., a changed transition trigger. First, we identify
transitions ¢ which have been changed by a delta 6 € A,,¢,,.
Next, the incoming event e; of this transition is checked. If
the event is an input signal of the component, we start to cre-
ate possible paths beginning from this transition. The reason
for this is, that in integration testing, we are interested in in-
put signals influencing output signals on architectural level.
Hence, we want to find those pairs of signals which are con-
tained in the relation influence, < I. x O.. In other words,
we are interesting if the influence of an incoming connec-
tor is indirectly related to an outgoing connector, which is
caused by an influences path within the state machine con-
necting both corresponding interface parts.

To find these indirect influence paths, an event eg.,; sent
by the same transition is stored in a set E;g;1q. Within the
state machine, a sent event is visible in the next computa-
tion step of the system. Therefore, we start to examine for
all states which are reachable via the first transition, what
further transitions could be taken using ese,: as incoming
event. If such a transition is found, the process is repeated,

meaning that all new outgoing events are stored in F.;siteq
and used as incoming events in the following steps.

As usual for such slicing related techniques, a stop cri-
terion is necessary [2]. We stop if already traversed ele-
ments are reached again, or if the current transition has a
trigger event € .qyrrent Which matches to an incoming signal
on architectural level, i.e., €.yrrent € E7. In other words, if
an external event is detected in the current path, it breaks
the data flow which has been started by the original ex-
ternal event e¢;. Once no more elements can be traversed
we compute the impact of a signal by using the function
impact : TIx P(Con x Con) — N. It counts all occurrences
of events e, related to the signal 7; in the influence rela-
tion. Hence, all events in E,;4;:eq, Which have been detected
on the traversed transitions, are inspected if they are part of
the outgoing signals of the component, i.e., if there exists
an m € O, for e, € E,isiteq. We normalize these results
over the number of influences. To this end, we introduce the
indirect signal weight function w;,girect : C X II — R as:

Windirect (Ci7 ﬂ-j) =
{ impact(m; ,inﬁuenceci)

if influence,, # &

0 otherwise

linfluence, |

Based on both, direct and indirect signal weights, we are
able to compute a final weight for each signal of a product
variant. As the two different weights effect the priority dif-
ferently, we define two factors A and u to adjust the ratio of
influence. We define the behavior-based signal weight func-
tion ws : C x II — R for a signal 7; considering component
¢; and two factors A + p = 1 as follows:

ws(cia 7Tj> =X Wdirect (cia 77]’) + K- Windirect (Ci7 ﬂ-j)

EXAMPLE 4. Consider the sample state machine in Fig. 2.
For variant po, the direct signal weight of b is 0.5, as it
is used as event by transition ts and tg normalized over
a total of four signals used in the component. In addition,
although signal a has no direct weight, we are able to detect
an indirect weight for a, as there is a new path tg — t3 based
on delta application, i.e., ts is added to the state machine
indirectly influencing a sent by ts.

3.3 Test Case Dissimilarity

In prior work [16] we noticed that a weight-based prioriti-
zation leads to potential redundancy between different test
cases with similar weights. Currently, the potential redun-
dancy is ignored by the weight-based TCP. This results in
clusters of very similar test cases in the prioritization order
as these test cases have very similar weights. A potential re-
sult is a decrease of the fault detection rate as testing might
focus too much on the same parts of the system. Hemmati et
al. [14] report that a dissimilar test case selection for single
system model-based testing detect more faults than a selec-
tion of similar ones. Thus, we argue that the similarity of test
cases should be considered as well for TCP.

We introduce a dissimilarity measurement for test cases
represented as MSCs in terms of their shared signals. We
analyze if a signal occurs in two compared test cases, disre-
garding multiple occurrences to to avoid that the sole repe-
tition of the same signal has a negative impact on the simi-
larity. Two signals are only identical, if they are exchanged
by the same components in both test cases. We refer to the
unique signals of a test case tc as 1I;.. We measure the ap-
pearances of the same signals in the set II;. of each test
case compared to the total number of unique signals used
by both. The dissimilarity of two test cases is defined as Jac-
card distance on a scale between 0 and 1, where 0 indicates
that both test cases use exactly the same signals between the
same components. This leads to a dissimilarity measurement
function dissim : TC x TC — [0, 1] between two test cases,
defined as follows:

_ |Htci ﬂ Hicj |
|Htci U Htcj|

To compare a potentially large set of test cases, we have to
extend the dissimilarity computation. While performing the
TCP, more and more test cases will be prioritized. Hence,
suitable next test cases have to be compared to all already
prioritized ones. By convenience, the function dissim
TC x P(TC) — [0, 1] computes the average value of pair-
wise dissimilarity between one test case and a set of test
cases T'C}, for a product variant as follows:

dissim(tc;, tc;) =1 Jtei,te; € TCY, 0 #

|TC

| dissim(tc;, t
dissim(tc;, TC,) = Dy dissim(tci, ten)

| TGy

,tci ¢ TCp

3.4 Prioritization Formulas

We are able to combine the component-based (CB), signal-
based (SB) and dissimilarity-based (DB) prioritization, which
makes the TCP approach very flexible. In general, the test
case with the highest priority is added to the set of ordered
test cases and removed from the set of unordered test cases.

As described in previous work, a basic prioritization is
based on the weights of components [16]. We refer to this
as component-based regression priority. Compared to the
previously introduced component weights, we are now able
to use the behavioral weight of a component wy(c;) as ex-
plained in Sect. 3.1. This leads to the prioritization function
priosig : TC x Pspr, — R, which uses the component-
weights of components covered by a test cases and measures
how often they are used by the incorporated test case signals.
It is defined as follows:

n
1 Wp(Cj
ame) e,

prio comp (tcl) =

In contrast to the component-based prioritization, we in-
troduce a more sophisticated prioritization technique based
on both, component and signal weights. We argue, that the

signals influence the weight of a test case as well, as a test
case might comprise a lot of components, but only few sig-
nals are exchanged between important components. In addi-
tion, component weights do not consider any form of indi-
rect influences, which is why signal weights have been intro-
duced. We introduce the signal-based prioritization as func-
tion priog;y : TC x Pspr, — R, defined as:

pri Osig (tciv pj) =

Dim=1 2= S(Cm,) (W(cm) + w(cr)) + ws(s(cm, k)
Sim=1 21 S(Cm, ck) 7

where n is the number of signals of a test case.

The prioritization functions are combinable with the in-
troduced dissimilarity-measure (cf. Sec. 3.3). We are able to
compute a final delta priority value for a test case tc; for
a certain variant p; and the set of already ordered test cases
T fj dereq Dased on the component and dissimilarity weight.

The final priority based on both, regression test priority
and dissimilarity-based priority, is described by the function
priority : TC x Pspr, x P(TC). We define the function as:

pm’ority(tci,pj, TC oriered) =
diSSim(tciv Tcordered) + priosig(tci7pj)

4. Evaluation

To show the effectiveness of our fine-grained TCP technique,
we formulate two research questions. We evaluate our ap-
proach based on an automotive case study. We prototyped
and measured the results of our technique compared to the
previous prioritization approach and random testing.

Research Questions. To evaluate the contributions of
this paper, we formulate the following research questions:

RQ1: How do behavioral changes impact the TCP in terms
of change coverage?

RQ2: Regarding the dissimilarity of test cases, a) how does
a combination with delta-oriented techniques influence
the change coverage and b), how does a dissimilarity-
based technique perform in isolation?

Subject System. To evaluate our TCP technique, we use
the Body Comfort System (BCS) case study [17]. The BCS
describes an automotive SPL, including delta-oriented archi-
tectures, delta-oriented state machines and 92 test cases in
form of MSCs. BCS describes a body comfort system of car,
comprising 11,616 product variants. To reduce the testing
complexity, this number has been reduced in previous work
to a total of 17 product variants, using the MoSo-PoLiTe
sampling testing technique [23]. In addition, a core product
(called PO) has been defined as basis for delta modeling of
the SPL [17]. Hence, we perform our evaluation on the solu-
tion space artifacts for these 18 product variants. We do not
focus on a certain order of the variants, but begin with the
core and incrementally test product variants as they occur in
the order generated by the sampling technique.

Implementation. We prototyped our technique as plug-
ins for Eclipse using EMF and XText. This allows for an
automated derivation of product variants based on feature
configurations. Our tool categorizes test cases into new, in-
valid, reusable and retest for each variant, based on their ar-
chitectures.It automatically computes component and signal
weights and prioritizes test cases based on these values.

Methodology. We performed the evaluation using the 18
different product variants described in previous work [17].
92 test cases are prioritized for product variants P1 to P17,
whereas PO is left out as it is the core variant. To assess
the prioritization quality, we use the average percentage
of changes covered (APCC) metric introduced in previous
work [16]. It is based on the average percentage of faults
detected (APFD) metric [30], which measures the failure de-
tection rate of a TCP. In contrast, APCC is applicable when
no failure information is available as it measures the cov-
erage of component interfaces for components which have
been changed compared to all previous product variants, i.e.,
if a component has a priority > 0 its complete interface has
to be retested.

APCC is defined for n test cases and m changed interface
connectors, with the ¢ — th connector being covered by the
test case at position T'epange, as follows [16]:

2ito Tenange, | 1
. == === + -
nm 2n

1

We compare different combinations of our approach, i.e.,
component-based vs. signal-based prioritization, with dis-
similarity testing and without as well as the previously intro-
duced structural component and signal-based approaches. In
addition, we compare our techniques to an unordered and
randomized approach. The unordered approach takes test
cases according to their name, the random approach shuffles
the (reusable) test cases arbitrarily. In particular, we compute
100 random orderings and normalized the results.

Results. We computed a TCP for each product variant
and computed the respective APCC. The results are shown
as bar chart in Fig. 5. Each bar represents results of one
technique in a certain product. The diagram is missing two
product variants, PO and P17. This is due to the fact, that
we do not prioritize test cases for the core, as everything has
to be tested. For P17, we would prioritize test cases, but our
technique did not detect any test cases with priority value
greater than 0, as all deltas have been applied previously. In
addition, we also provide the average APCC values for each
technique over all variants in Tab. 1.

RQ1: As Fig. 5 shows, the addition of the behavioral
component weights has only a slight impact. Compared to
the previously introduced component-based technique (Old
CB with a = 0.5,8 = 0.25,7 = 0.25), we only see
an improvement of the average APCC of 0.03. We tried
different weightings in terms of influences on the overall
priority computation, but the differences in APCC results

MRandom

CB = Component-based, SB = Signal-based, DB = Dissimilarity-based

BUnordered
@mold cB
mcs

09 E1CB with DB
oold sB
|sp

asB

DB Onl

o

.7

APCC Value

P1 P2 P3 P4 3 P6 P7

pg]
Product Variants under Test

P11 P12 P13 P14 P15 P16

Figure 5. APCC Results of the Different Techniques for all Product Variants

Table 1. Overview of average APCC results

Technique

Random | Unordered | Old CB| CB

CB with DB.|0Old SB| SB |SB with DB. |DB Only

Average APCC 0.688 0.595

0.748 10.751

0.81 0.746 10.743 0.808 0.823

are negligible. Hence, we only show the combinations of
¢ = 0.2 for both, component and signal-based prioritization.
In both cases, the configuration of the structural TCP is
similar to previous work, where we argue that input changes
should be more important than output changes and, thus, we
use a configuration of @ = 0.4, 5 = 0.2 and v = 0.2.

A similar observation is made when looking at the addi-
tion of signal weights to the signal-based prioritization (SB).
The figure shows that the original value is similar to the new
value. We measure a decrease of APCC by 0.03. As this is
a very small change, the addition of new signal weights has
no measurable influence on the quality for BCS.

Summarizing, the behavioral weight does influence the
results only slightly. The reason for this lies within the arti-
facts given for BCS, which do not favor a detailed behavioral
analysis. For a more complex case study, we argue that the
fine-grained analysis still will reveal certain situations of in-
terest, i.e., it will outperform the structural analysis when
interfaces are unchanged, but only internal changes occur.

RQ2: Besides measuring the structural and behav-
ioral prioritization, we examined the influences of the dis-
similarity-based approach (cf. Sec. 3.3) a) in combination
with the delta-oriented prioritization and b) in isolation.
For the combination, we used the same influence factors
for the delta-oriented prioritization as described in RQ1
and combined them with the dissimilarity based technique.
We employed an equal weighting of both, priority given
by delta-oriented prioritization and dissimilarity-based pri-

oritization. Compared to behavioral weights, the addition
of dissimilarity-based prioritization changes the results of
both, component-based and signal-based prioritization, to
the better. In fact, it does increase the average APCC re-
sults by about 0.05 for both techniques, as shown in Tab. 1.
The results in Fig. 5 show that the dissimilarity approach in-
creases the differences compared to the original techniques.
The overall APCC value of 0.8 for both combinations shows
the potential of this technique. As for the reasons behind
this increase, the dissimilarity approach tries to force a fast
coverage of the system. When combined with delta-oriented
techniques, it operates on the test cases classified as to be
retested, i.e., with a priority value > 0. Hence, the focus lies
on the most important parts while increasing the coverage
compared to the original technique. We state that a combina-
tion of delta-oriented testing and dissimilarity based testing
achieves better results than our previous technique.

We also measured the results of a solely dissimilarity-
based prioritization. One important factor is that we did em-
ploy the dissimilarity-based approach on all reusable test
cases for a product variant, i.e., we did not select the retest
test cases as a dissimilarity-based approach has no infor-
mation about changes between products. The APCC results
for each product variant are shown in Fig. 5, denoted by
DB Only. It becomes evident, that the results are mixed
compared to previous techniques. In general, the results are
slightly better (cf. Tab. 1) with an average APCC for BCS
of 0.82. While this is a very good result, the dissimilarity-

based approach took all reusable test cases into account, i.e.,
the test set is larger than for our technique, where we pres-
elect test cases of importance due to changes. This discrep-
ancy becomes evident for certain product variants, e.g., P1.
Here, our techniques only detect one test case as important,
leading to an APCC of 0.5. The dissimilarity-based approach
does not have this information and achieves a worse APCC
for P1 as it examines a larger test set. In case many test
cases are to be retested compared to all reusable test cases,
the dissimilarity-based technique achieves very good results.

Summarizing, the fine-grained TCP technique is able to
execute less test cases while achieving a similar APCC as the
dissimilarity-based TCP. In certain situations a combined ap-
proach outperforms the dissimilarity-based approach signifi-
cantly (e.g., in P12 or P14). Overall, we are able to improve
test effectiveness compared to a random prioritization.

Threats to Validity. The set of test cases defined for
the BCS SPL is a potential threat as they comprise partially
redundant interaction scenarios. The rather small number
of test cases reduces the amount of different orders. How-
ever, the corresponding problem of designing test cases ex-
its in general for model-based testing techniques [5, 32].
We designed our test cases such that we reduced unneces-
sary redundancy and further avoided to specify super test
cases, i.e., test cases which contain more than three com-
ponents and a lot of interactions between them. We used
the APCC metric to compare our novel technique with our
prior work [16]. For a more realistic scenario, fault-based
metrics are desired. However, we make the valid assump-
tion that even small changes lead to faults [9] and, thus, a
high APCC is desirable. APCC measures how fast changes
are covered. That means, while our technique is feasible
to achieve good APCC values it is not necessarily the best
technique as test case clusters might reduce change cover-
ing speed. This rejects the assumption that the metric fits
the technique by design. While the pure dissimilarity-based
approach achieves a higher APCC than the delta-oriented
or combined techniques, it does not take changes into ac-
count, thus, all reusable test cases are prioritized, whereas
our approach first select test cases and then prioritize them.
Finally, future work comprises further evaluations with real-
istic SPLs to consolidate and generalize our positive results.

5. Related Work

SPL Regression testing techniques are mainly applied in the
industrial context [8, 10, 31], for SPL architectures [7, 22],
for sample-based testing [27, 28], and to facilitate incre-
mental SPL testing [3, 4, 18-20, 33, 34]. Uzuncaova et
al. [33] define an incremental refinement of variant-specific
test suites when stepping to the next variant. Baller et al. [3,
4] propose amulti-objective test suite optimization for effi-
cient SPL testing by taking profit constraints for test arti-
facts into account. Varshosaz et al. [34] define delta-oriented
test case generation by exploiting the incremental structure

of delta-oriented test models. Lity et al. [18] present a tech-
nique for retest test case selection based on the application
of incremental slicing for change impact analysis when step-
ping to subsequent variants under test. In contrast to our
work, where test cases are prioritized for retest, the related
techniques consider the creation and optimization of test
suites or the selection of test cases to be retested for an SPL.
In the context of SPL integration testing, Muccini and
van der Hoek [22] discuss challenges and opportunities for
variability-aware integration testing based on the compar-
ison to existing single-system testing techniques. Neto et
al. [7] present a framework for regression testing of SPL
architectures, where retest decision are made based on the
similarity of architecture variants and code. Reis et al. [29]
propose a technique for integration test case generation and
reuse on the basis of variability-aware UML activity dia-
grams specifying interaction scenarios to be tested. Those
techniques introduce test case selection, regression frame-
works or test case generation, but do not perform TCP.
Techniques for SPL TCP are prevalent in the context of
feature configurations [1, 12, 21]. Ensan et al. [12] describe
a feature-based prioritization, where features and important
goals specified by stakeholders are combined to select and
prioritize configurations. Lopez-Herrejon et al. [21] propose
a technique for prioritizing pairwise feature configurations
by applying evolutionary algorithms. Al-Hajjaji et al. [1]
present a similarity-based product prioritization, where the
minimal similarity of feature configurations between tested,
and untested variants are taken into account to select the
next variant to be tested. These prioritization approaches are
applied on feature configuration level, whereas we prioritize
test cases represented as MSCs for each variant under test.

6. Conclusion

In this paper, we proposed two extensions for TCP for incre-
mental SPL integration testing to enhance the testing effec-
tiveness. We defined a fine-grained impact analysis of com-
ponent interfaces by incorporating changes on the input/out-
put behavior specified in component state machines in addi-
tion to the existing architecture analysis. We also presented
a test case dissimilarity measure between message sequence
charts. We evaluated our fine-grained TCP by means of a
case study from the automotive domain showing a gain in
testing effectiveness.

For future work, we plan to investigate the fault detec-
tion capabilities of our approach using different case stud-
ies using the well-known APFD metric [30]. This will al-
low to generalize our findings. We are investigating how to
integrate risk-based testing into SPL test case prioritization
based on architecture changes and their impact. We will de-
sign a TCP framework to make the approach easily adaptable
and extensible. In the long run, the presented weight and pri-
oritization functions could be used as features for a machine
learning or search-based TCP techniques.

Acknowledgments

This work was partially funded by the German Research
Foundation under Priority Program SPP 1593: Design For
Future — Managed Software Evolution.

References

[1] M. Al-Hajjaji, T. Thiim, J. Meinicke, M. Lochau, and
G. Saake. Similarity-based prioritization in software product-
line testing. In SPLC, pages 197-206, 2014.

[2] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and
L. Tratt. State-based Model Slicing: A Survey. CSUR, 45
(4):53:1-53:36, 2013.

[3] H. Baller and M. Lochau. Towards Incremental Test Suite
Optimization for Software Product Lines. In FOSD, pages
30-36. ACM, 2014.

[4] H. Baller, S. Lity, M. Lochau, and I. Schaefer. Multi-objective
test suite optimization for incremental product family testing.
In ICST, pages 303-312, 2014.

[5] A. Bertolino, P. Inverardi, H. Muccini, and A. Rosetti. An
approach to integration testing based on architectural descrip-
tions. In ICECCS, pages 77-84, 1997.

[6] D. Clarke, M. Helvensteijn, and 1. Schaefer. Abstract delta
modeling. In GPCE, pages 13-22, 2010.

[7] P. Da Mota Silveira Neto, I. do Carmo Machado, Y. Caval-
canti, E. de Almeida, V. Garcia, and S. de Lemos Meira. A
Regression Testing Approach for Software Product Lines Ar-
chitectures. In SBCARS, pages 41-50, 2010.

[8] M. Dukaczewski, I. Schaefer, R. Lachmann, and M. Lochau.
Requirements-based delta-oriented spl testing. In PLEASE,
pages 49-52, 2013.

[9] J. A. Duraes and H. S. Madeira. Emulation of software faults:
A field data study and a practical approach. TSE, 32(11):849-
867, 2006.

[10] E. Engstrom. Exploring Regression testing and software prod-
uct line testing - research and state of practice. Lic disserta-
tion, Lund University, May 2010.

[11] E. Engstrom and P. Runeson. Software product line testing -
a systematic mapping study. JIST, 53:2—-13, 2011.

[12] A. Ensan, E. Bagheri, M. Asadi, D. Gasevic, and Y. Biletskiy.
Goal-oriented test case selection and prioritization for product
line feature models. In ITNG, pages 291-298, 2011.

[13] D. Harel and P. S. Thiagarajan. Message sequence charts. In
In UML for Real: Design of Embedded Real-Time Systems,
pages 77-105, 2003.

[14] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable
model-based testing through test case diversity. TOSEM, 22
(1):1-42, 2013.

[15] M. F. Johansen, @. Haugen, and F. Fleurey. An algorithm for
generating t-wise covering arrays from large feature models.
In SPLC, pages 46-55, 2012.

[16] R. Lachmann, S. Lity, S. Lischke, S. Beddig, S. Schulze,
and I. Schaefer. Delta-oriented test case prioritization for
integration testing of software product lines. In SPLC, pages
81-90, 2015.

10

[17] S. Lity, R. Lachmann, M. Lochau, and I. Schaefer. Delta-
oriented software product line test models - the body comfort
system case study. Technical report, TU Braunschweig, 2013.

[18] S. Lity, T. Morbach, T. Thiim, and I. Schaefer. Applying In-
cremental Model Slicing to Product-Line Regression Testing.
In ICSR, 2016.

[19] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity. Incremen-
tal Model-based Testing of Delta-oriented Software Product
Lines. In TAP, pages 67-82, 2012.

[20] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, and U. Goltz.
Delta-oriented model-based integration testing of large-scale
systems. JSS, 91:63-84, 2014.

[21] R. E. Lopez-Herrejon, J. Javier Ferrer, F. Chicano, E. N.
Haslinger, A. Egyed, and E. Alba. A parallel evolutionary
algorithm for prioritized pairwise testing of software product
lines. In GECCO, pages 1255-1262, 2014.

[22] H. Muccini and A. van der Hoek. Towards Testing Product
Line Architectures. ENTCS, 82(6):99 — 109, 2003.

[23] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pairwise
feature-interaction testing for spls: Potentials and limitations.
In SPLC, pages 6:1-6:8, 2011.

[24] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. le Traon. Pairwise testing for software product lines: com-
parison of two approaches. SQJ, 20(3-4):605-643, 2012.

[25] C. Pietsch, T. Kehrer, U. Kelter, D. Reuling, and M. Ohrndorf.
Sipl a delta-based modeling framework for software product
line engineering. In ASE, pages 852-857, 2015.

[26] K. Pohl, G. Bockle, and F. van der Linden. Software Product
Line Engineering. Springer, 2005.
[27] X. Qu, M. Cohen, and K. Woolf. Combinatorial Interaction

Regression Testing: A Study of Test Case Generation and
Prioritization. In ICSM, pages 255-264, 2007.

[28] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-
aware Regression Testing: An Empirical Study of Sampling
and Prioritization. In ISSTA, pages 75-86, 2008.

[29] S. Reis, A. Metzger, and K. Pohl. Integration Testing in Soft-
ware product Line Engineering: A Model-Based Technique.
In FASE, pages 321-335. Springer-Verlag, 2007.

[30] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Pri-
oritizing test cases for regression testing. 7SE, Vol.27 No.10:
929-948, 2001.

[31] P. Runeson and E. Engstrom. Software product line testing - a
3d regression testing problem. In ICST, pages 742-746, 2012.

[32] M. Utting and B. Legeard. Practical Model-based Testing.
Morgan Kaufmann, 2007.

[33] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental Test
Generation for Software Product Lines. TSE, 36(3):309-322,
2010.

[34] M. Varshosaz, H. Beohar, and M. R. Mousavi. Delta-Oriented
FSM-Based Testing. In ICFEM, volume 9407 of LNCS, pages
366-381. Springer, 2015.

[35] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: A survey. JSTVR, 22(2):67-120,
2007.

