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Abstract
There are several commercial products that use proprietary
languages, which typically look like a wrapper around (some
proprietary extension of) the standard SQL language. Exam-
ples of these languages include ABAP, Informix, XBase++,
SQR and so on. These application are difficult to analyze not
only because it is hard to model the semantics of the underly-
ing database systems but also because of the lack of standard
tools for analysis. One naive way to analyse such programs
is to collect dynamic trace using proprietary debuggers and
run the analyses on the trace. However, this form of dynamic
trace collection can be a severe performance bottleneck. In
this paper, we present our experience with building a frame-
work to help in efficient program analysis in the context of
ticket resolution for ABAP programs.

In our framework, we first translate the given ABAP pro-
grams to semantically equivalent annotated Java programs.
These Java programs are then executed to generate the re-
quired dynamic trace. Our framework allows the plugging
of off-the-shelf static analysis tools (applied on the Java pro-
grams) and dynamic trace analysis tools (on the generated
trace) and maps the results from these analysis tools back to
the original ABAP programs. One novel aspect of our frame-
work is that it admits incomplete ABAP grammar, which is
an important aspect when dealing with proprietary languages
where the grammar may not be publicly available. We have
used our framework on several benchmarks to validate the
translation, and establish the efficiency and the utility of our
instrumented Java code along with the collected trace.
Categories and Subject Descriptors: D.3.4 [Processors]
Debuggers, Code generation
General Terms: Verification, Experimentation, Languages
Keywords: error recovery, source to source translation
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1. Introduction
Ticket resolution is an important part of a service organiza-
tion. In a typical context, a client discovers a bug in the field,
which needs to be resolved as fast as possible. For the scope
of this paper, we assume the code and not the database to
be source of the bug; this is reasonable, because the same
database typically feeds into several other applications that
do work properly.

Working with proprietary code in an proprietary environ-
ment, in an industrial settings brings in interesting set of
challenges: a) hard to reproduce the bug outside the client
execution environment, b) the original code writer may not
be the debugger of the code. This problem gets compounded
when the number of available program analysis tools (pro-
prietary or otherwise) for that language are limited. In this
paper, we discuss our experience with bug resolution in the
context of a proprietary language ABAP. However, the tech-
niques and methodologies developed here can be applied to
other languages with a similar purpose (database access and
report generation).

A naive way of analyzing these programs is to analyze the
trace of the faulty program, obtained via running it through a
proprietary debugger inside an automated script that collect
a trace of the values of all variables at all program points.
Unfortunately, this can be a major performance hurdle; for
instance, such a trace collection for a small ABAP program,
that otherwise runs well under 60 seconds, takes more 20-30
minutes. It may also be noted that, in general the approach of
(automated) instrumentation of the ABAP source programs
to collect the trace is not a feasible option, as executing
a modified version of the source program is typically not
permitted by the clients.

In this paper, we present a scheme to overcome these hur-
dles. Our solution works in three steps
1. We first do a semantics preserving translation of the in-
put ABAP program to Java. We generate the Java code with
built-in instrumentation, so that it outputs a trace when it is
executed; this helps in overcoming the performance issues
discussed above.
2. In the second step we execute the Java program with the
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Figure 1. The block diagram for our ABAP program analysis framework

given input and collect a trace dump of the execution.
3. Our proposed framework allows plug-and-play of stan-
dard off-the-shelf static analysis techniques on the Java code
and fault localization techniques on the generated trace,
whose results are mapped back to the input ABAP program.

One main feature of our framework is that it decouples
the source language of the input program from the actual
analysis, thereby opening the doors for using arbitrary anal-
ysis tools on programs written in proprietary languages.

Translating programs written in languages like ABAP to
a general purpose language like Java comes with its own
set of challenges, such as development of the grammar from
the scratch from language manuals, and implementation of
complex database operations in the target language. To over-
come these hurdles we present a scheme that a) results in
the generation of correct trace even in the absence of com-
plete grammar, and b) emulates physical database operations
by gathering the results of the database operations in the
proprietary debugger and plugging them back in the Java
program1. Since we are using the debugger to extract in-
formation only about very specific commands, the process
continues to be comparatively efficient. We present a spe-
cialized ABAP parser that helps identifying the statements
and the corresponding defined variables requiring debugger-
based trace collection. Note that, unlike the code in three
address code form [2], identifying the uses and defs is non-
trivial in the context of programs with database statements.

Figure 1 shows the overall block diagram of our analy-
sis framework. Given an ABAP program, and possibly in-
complete ABAP grammar, we first generate the parse tree.
The parse tree generator can handle cases where valid ABAP
statements are not parsed because of the incomplete nature
of the available ABAP grammar. The parse tree is used to
generate metadata such as data structures, type information
of the required underlying system libraries, line number in-
formation for the different database related operations (to be
used for setting breakpoints later), and use-def annotations
on the variables used in the statements, by using our anno-
tated ABAP grammar. Our ABAP to Java translator uses the
parse tree and the data structure information from the meta-
data to generate equivalent Java code, and some additional

1 ABAP allows the programs to read and update the physical screen, which
can be seen as a database table with some additional attributes.

breakpoints for collecting use-def information for statements
that could not be translated during the translation phase. We
execute the ABAP code in the debugger and collect partial
trace for the breakpoints set in the previous steps. We use the
generated partial trace and class files from the Java files to
execute the program and generate the complete trace, which
is then fed to the plugged in dynamic trace analysis tool
(shown in a dashed box) such as the one by Saha et al [14].
Similarly, the geneated Java code can be fed to a plugged-
in static analysis tool (also shown in a dashed box) such as
Findbugs [8]. Finally, the inferences derived from the analy-
ses are mapped back to the input ABAP programs.

The contributions of this paper are given below.
• We present a framework for program translation in the
presence of incomplete grammar rules.
• We present a grammar annotation based scheme to ob-
tain the used and defined variables for each statement. Com-
pared to the standard techniques where the task of generating
use-def information is relegated to the semantic translation
phase [2], our scheme considerably reduces the development
time and bugs in the process.
• A fail proof translation of ABAP code to annotated Java:
We present a scheme for ABAP to Java translation which
ensures that the translation rules are written in an incre-
mental fashion for different grammar production rules, such
that, unhandled grammar productions do not lead to incor-
rect translation.
• We let plug-and-play of off-the-shelf static and dynamic
analysis tools (for Java programs) to analyze ABAP code.
• To argue about the applicability of our framework, be-
sides plugging-in different existing tools, we have developed
a new pattern-check based analysis to reason about both
“good” and “bad” patterns in ABAP programs and have suc-
cessfully applied it on many existing real world programs.

Organization: We present an overview of ABAP com-
mands that are relevant to this paper in Section 2. We discuss
our grammar annotation and exception handling schemes in
Section 3. Challenges and details about our ABAP to Java
translation are presented in Section 4. Our pattern-check
based analysis is discussed in Section 5. Details of the over-
all framework is presented in Section 6, and that of the im-
plementation in Section 7. We present an evaluation of our
framework in Section 8 and conclude in Section 9.
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Related Work
We are not aware of any past works, that create a transla-
tion and analysis bridge between different programming lan-
guages. We instead present related work aligned to different
components of our framework.
Program Translation for reverse engineering
Source-to-source program translation approaches in support
of reverse engineering and migration, may largely be classi-
fied into -
• Translation via Transliteration and Refinement [6, 20]:
Translators in this class - first transliterate a source program
into a target language on a line by line basis, by translating
each line in isolation; and then apply various refinements to
improve the target program produced.
• Translation via abstraction and re-implementation [7, 18]:
In this approach the source program is first analyzed to ob-
tain an abstract description of the computation being per-
formed. The program is then re-implemented in the target
language based on the abstract description.

These techniques do not support incremental evolution of
the translator itself.In the context of evolving tools, where
their coverage of the language increases in an incremental
fashion, unexpected errors may be thrown when they en-
counter un-handled instructions. Our generic translation er-
ror handling strategy is able to meaningfully continue in the
presence of translation exceptions, while ensuring trace se-
mantics preserving translation.
Parser Error Recovery
A large body of work [1, 4, 9, 13, 17] has looked at the area
of handling syntax errors and recovery in language trans-
lation systems by automatic correction of missing, or erro-
neous tokens. These techniques focus on continuation of the
parsing process in the presence of errors to list all the pos-
sible errors. Our framework addresses the challenge of pro-
ducing a trace semantic preserving translation in the pres-
ence of incomplete grammar. This, goes beyond the artificial
addition of missing, or deletion of not comprehended tokens,
or just continuing after the first error to locate other errors.
Pattern Analysis
There are a number of pattern detection tools, such as Find-
Bugs [8], SPLINT [5], Flawfinder [19], MOPS [3] and so on.
The analyses performed by these tools are static in nature,
and suffer from the common drawback of generating false
positives. In our framework we use pattern analysis tool on
dynamic traces, and as a result false positives due to infeasi-
bility of path is removed. Further, unlike the above tools that
only encode patterns for ‘bad’ behavior, we allow encoding
of both ‘good’ and ‘bad’ behavior. Further, we admit com-
plex patterns (going beyond simple regular expressions) in-
volving data flow relations between variables. This leads to a
significant reduction in false positives. We use an Extended
Finite State Automata (EFSA) to specify the desired prop-
erties (by extending the specification language of Sekar et
al [16]) to describe and check good and bad behavior.

2. Background
In this section, we will be presenting a subset of ABAP
language constructs relevant to this paper. Details can be
found in the ABAP language reference manual [10].
SELECT <fields> FROM tab INTO itab WHERE <cond>.

projects selected columns from a physical or internal table to
an internal (in-memory) table in the program

SORT itab BY <keys> [ASCENDING|DESCENDING].

sorts the internal table on the keys
DELETE FROM tab WHERE <cond>.

deletes rows that satisfy the condition
LOOP AT itab INTO rec WHERE <cond>. <loop-body> ENDLOOP.

executes the instructions in loop body for each record in the
table.

AT NEW fld. <at-body> ENDAT / (AT END fld. <at-body> ENDAT)
Occurs inside a loop over the records of a table. Equivalent
to an if-statement, whose predicate evaluates to true, if the
current record is (not) fresh with respect to the criterion fields
therein; starting from the first field of the record to till fld.

READ itab INTO rec WHERE <cond>.

selects a row from table based on the WHERE clause. If more
than one row matches, the last row is returned

WRITE <vars>. prints the specified variables

Figure 2. Basic ABAP syntax

Figure 2 presents a subset of ABAP statements for the
database related operations. While the actual ABAP lan-
guage commands are more involved and have many varia-
tions, for the sake of presentation in this paper, we restrict
ourselves to this subset. Each command in ABAP terminates
with ‘.’ (dot). Fields of a record are dereferenced by using the
operator ‘−’.

1 SELECT u i d name p r i c e FROM d b t a b INTO i t a b .
2 SELECT u i d d i s c o u n t FROM d b f t a b INTO f t a b .
3 SORT i t a b BY u i d DESCENDING .
4 LOOP AT i t a b INTO wa WHERE p r i c e > 0 .
5 AT NEW u i d .
6 sum = 0 . 0 ;
7 ENDAT.
8 sum = sum + wa−p r i c e ;
9 READ f t a b INTO f a WHERE u i d = wa−u i d .

10 IF NOT IS INITIAL f a .
11 sum = sum − fa−d i s c o u n t .
12 ENDIF .
13 AT END u i d .
14 WRITE fa−name , sum .
15 ENDAT.
16 ENDLOOP.

Figure 3. Sample ABAP program

To help understand the ABAP syntax, in Figure 3, we
show an example ABAP program processing item discounts.
It first reads uid, name, and price from a physical table into
an internal table itab. It then reads the discount information
from another physical database and stores relevant informa-
tion into another internal table ftab. It then sorts the item
table (itab) and iterates over it. For each fresh record wa,
it initializes the variable sum to 0. The report then adds the
price of that item to sum, reads the discount information and
subtracts the discount from the sum. Finally, the report prints
to the screen the name of the item and the total cost (after
discount), once for each unique item.
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3. ABAP Grammar for Java translation
Program analysis tools for domain specific complex pro-
gramming languages face two main challenges. First one is
that of parsing and translating the complete program (irre-
spective of availability of the complete grammar). The sec-
ond one (important for dynamic trace analysis) is that for
each statement the trace must include the variables used and
defined in that statement. In the context of traditional com-
pilers that deal with some form of three address codes, iden-
tifying the variables used and the variables defined in a state-
ment is trivial. However, in a language like ABAP which
includes many macro-level statements (that update multi-
ple variables present at different positions in the statement),
identifying the use-def variables is a challenge. In this sec-
tion, we present our approach to solve these problems.

3.1 Exception Handling in Grammar
Unavailability of complete grammar forms a major hurdle in
building program analysis tools. Most of the language docu-
mentation is available in the reference manual. However, this
tends to become incomplete [11] as the language evolves in
various versions of the software; our experience was simi-
lar. While grammar inference techniques such as [15] can be
used to fix the grammar automatically to some extent, the
completeness of the grammar obtained is guaranteed to be
limited by the sample set used to learn the grammar. Thus
for an unknown program which has no syntactic errors, the
existing grammar may be incomplete to parse the program.

As shown in Figure 1, parsing a given program and gener-
ating the parse tree is the first step of our framework, which
makes the absence of complete grammar a severe impedi-
ment. In this paper, we present an exception handling strat-
egy to overcome the above problems.

Given a program, the parse-tree-generator has a pre-
processing stage to collect all the included files, and parse
each file. If the file is not parsed, then an exception handling
strategy is invoked. The main goal of the exception handling
strategy is to determine the statements (ending with ‘.’ (dot))
in the file that are responsible for the unsuccessful parsing,
and subsequently replace each such statement with a new
type of statement, called parser-error statement that has
the variables of the original statement. We explain our ex-
ception handling strategy by the help of an example.

Consider the example program given in Figure 3. Say
two of the syntactic constructs, DESCENDING at Line 3 and
WHERE clause at Line 4 are not handled by the grammar.
Here SORT is a simple statement and LOOP is a compound
statement. This program will fail to parse. We first extract
each simple statement (Lines 1, 2, 3, 6, 8, 9, 11, 14), and try
to parse them. Only SORT statement will fail to parse. We
replace the sort statement by the statement ‘parser error
itab, f1.’, by collecting all the terminals and removing
the keywords SORT, BY and DESCENDING. The grammar is
augmented to parse the parse error statement:

parse_error_stmt: parse_error pe_clause? DOT ;
pe_clause: id (COMMA! id)* ;
The terminal id represents an identifier and ’;’ (semicolon)
is used to terminate a rule.

After this change, the file is parsed again, and we still en-
counter a parser failure which is due to the compound state-
ment LOOP. Since, all the simple statements of the loop body
are parsing successfully, the loop statement is determined
as the cause of the parser failure. Subsequently, its header
at Line 4 is replaced by a statement ‘loop parser error
itab, wa, f2.’. by collecting all potential variables. To
be able to parse such a statement, the grammar for the par-
ticular compound statement is augmented. For instance, the
modified rule for parsing the loop statement is given below,
which leads to successful parsing:
loop_stmt: loop_header statement+ endloop

| loop_error statement+ endloop ;

endloop: ENDLOOP DOT ;

loop_header: LOOP AT id INTO id WHERE expr DOT ;

loop_error: LOOP_PARSER_ERROR pe_clause DOT ;

While the modification of the program allows it to be
parsed, it does not assist the Java code generation, as the
semantics of the underlying statement is still unknown. We
use a process of state synchronization during the translation
to help generate correct trace (c.f. Section 4.3).
Limitations
If a statement is not parsed by our grammar, and it is not
a recognized compound statement by the grammar, then we
assume it to be a simple statement, and accordingly gener-
ates the parse error statement. While in general this as-
sumption can lead to incorrect code generation, in practise
we have found our strategy to be quite sound because our
initial grammar did take into account all the compound state-
ments and all the observed parse errors were coming from ei-
ther missing variations for a known statement or an unknown
simple statement.

3.2 Use-Def Generation
Unlike programs in imperative languages, it is not always
straightforward to infer the set of defined and used variables
in 4GL languages like ABAP. Thus to generate a trace in
these declarative programs, trace generation algorithm needs
to know the exact set of variables defined and used in each
statement. In this section we present a simple yet effective
way to infer the used and defined variables in each statement.

There are essentially two tasks in finding use/def infor-
mation for each statement, finding all variables in the state-
ment, and determine whether they are used or defined. Be-
low we describe an easy yet effective process to obtain such
information specifically in the context of large grammars.
Our methodology is dependent on the rewrite rules which
are used to modify the AST in ANTLR ([13]) grammars.

We represent the ABAP grammar in ANTLR grammar
format, in Extended Backus Naur Form (EBNF) form.

ANTLR provides rewrite rules to construct Abstract Syn-
tax Tree (AST) generated by parsing. Typical rewriting syn-
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sort_stmt: SORT itab sort_by_cl? sort_option? DOT

-> ^(SORT itab sort_by_cl? sort_option? DOT)

itab: id -> ^(USEDEF id);

sort_by_cl: BY sort_by_item -> ^(BY sort_by_item)

sort_by_item: id -> ^(USE id);

sort_option: DESCENDING | ASCENDING;

Figure 4. Grammar for the SORT statement.
tax includes ˆ to specify a node as parent node. For example,
for this rewrite rule: ‘x : yz → ˆ(yz)’, rewriting makes the
token accepted by y as the root node, and the token accepted
by z as its child node in the AST. The main usefulness of
rewrite rules is the ease of traversal of the AST.

The use-def information of all statements are maintained
by annotating the grammar. The annotations are determined
by manually identifying the variable part of each statement,
and then annotating each occurrence of a variable with its
ud-type. The ud-type for a variable can either be USE, DEF,
or USEDEF, to denote used, defined or used+defined nature
of the variable, respectively. The annotations are made using
rewrite rules in such a way that the generated AST satisfies
the following invariant: Every node corresponding to the
variable of a statement appears as a leaf node of the AST,
and its immediate parent node is one of the ud-type nodes
(USE/DEF/USEDEF). An example rewrite grammar for the
SORT statement (Figure 2), is presented in Figure 4.

The main advantage of this technique is that the grammar
rewriting followed by a general traversal is considerably eas-
ier than developing AST traversal for each possible variation
in the AST generated for each statement. Further, this tech-
nique is arguably easier to maintain as the new variations in
the language constructs are simple to understand.

These use-def annotations can be used by the Java trans-
lator to emit code to output the defined and used variables
during the final trace collection. Another use of these anno-
tations is found in generating code in the presence of dif-
ferent incompletenesses in the grammar and the translator
(discussed in Section 4.3).

4. ABAP to Java translation
Translating ABAP programs to Java programs can pose
interesting challenges because of the loose nature of the
ABAP language semantics; for instance, it is legal to assign
a string to an integer variable (provided the string contains
an integer) and vice versa, so a straightforward translation
would lead to uncompilable Java code. In this section, we
discuss some of the challenges and our proposed solutions.

We first note that a full fledged translation would be quite
challenging for the following reasons: (a) It would require
implementation of a complex runtime and library imple-
menting all the abstractions of database related activities.
(b) It can be challenging to execute all the database related
commands and queries more efficiently than a commercial
package like SAP. (c) the issues relating to incomplete gram-
mar and incremental development of the translator make the

class BaseStruct {

public Vector<String> names;

... }

class record1 extends BaseStruct{

String fld1; String fld2;

public record1(){

names.add("fld1"); names.add("fld2");...}

public String getValue(int index){

if (index < 0) return null;

return getValue(names.elementAt(index)); }

public String getValue(String fldName){

if ("fld1".equals(fldName)) return fld1;

if ("fld2".equals(fldName)) return fld2; }...}

Figure 5. Code generated for a structure record1 with two
String fields fld1 and fld2.
problem much harder. We now present the details of our
ABAP to Java translation scheme that tries alleviate some
of these problems.

4.1 Data Structures Design
The ABAP to Java translation has two aspects to it: gener-
ated Java code and the underlying libraries. We first present
the architecture of our generated Java programs, and dis-
cuss some interesting aspects of the underlying libraries in
the later part of the section. For each ABAP program, we
generate a corresponding Java class. As discussed in in Sec-
tion 2, in ABAP programs many commands update global
variables (such as sy subrc). We first create a base class
BaseABAP which acts as the parent class for each of the gen-
erated Java class; BaseABAP contains declarations for the
global variables, and wrappers for the different scalar types
required by the ABAP programs.

In this section, we discuss the internal representation of
the variables and data structures used in our generated Java
programs. We organize this discussion by separating the
discussion on scalars and non scalar variables.
Scalar variables In ABAP, every variable (scalar or oth-
erwise) has five attributes: name, type, length, padding-
character, and optionally the decimal precision for floating
point numbers. These details are used in the Java program
to a) serialize the contained value of a scalar, and b) com-
pare with other scalar variables by comparing the serialized
strings. The serialization of a value of a variable outputs a
string of size length. If the actual number of characters re-
quired to represent the value are more than length then value
is truncated, else padding-character is used to pad for the
remaining characters. The number of decimal places in the
serialized representation depend on the desired precision.
Non scalar variables Our runtime libraries are organized
around the definition of BaseStruct, the base class of all
the records and rows of the tables in the program. In a
language like ABAP, untyped records can be assigned to
each other, inserted to a table, as well as dereferenced via
explicit field names or indices. Such a requirement enforces
a unified structure for all the records and table rows.
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To enable reflection, BaseStruct stores all the field
names and all the attributes of the fields (such as length,
type, padding character and decimal precision). Each struc-
ture used in the program is represented using a class ex-
tending the BaseStruct, and adds new fields in the de-
rived class, corresponding to the fields of the structure.
The BaseStruct contains two setValue (and getValue)
methods that are extended by the derived classes; to help up-
date (and read) fields of the structure using the name of the
field and the index of the field. The compare method does
a field wise comparison and returns true, if all the fields
of the current object match the fields of the argument. The
BaseStruct class has a method to copy the fields by value,
that is useful in the definition of the Table data structure.
Figure 5 shows the (partial) code generated for a structure
containing two fields.

To facilitate the creation of tables of scalar types (such as
Table of integers), we create a wrapper class for each of the
scalar types (such as WrapperInt for the scalar type int);
these wrapper classes extend the parent class BaseStruct.

For efficient translation of ABAP code to Java, we have
also implemented much of the underlying ABAP library
functionality in Java. These include all the string processing,
data processing, numerical process operations. These trans-
lations are mostly standard and are not discussed here.

We now discuss some features of our generic Table class
that is used to represent internal tables. The ABAP lan-
guage allows the programmer to access the work-area of a
table, that contains the current record under consideration.
Our Table class contains a field WA to represent the work
area. We allow three different types of tables: sorted, in-
dexed and standard (to represent tables other than sorted and
indexed). Most of the implementation details of the Table
class is standard. Some specific facets are discussed now.
Each element of a table is a class that extends BaseStruct
and thus we have a unified mechanism to read/update rows
of tables, as well as records. The Table class has a method
add to insert a new row/record; the elements of the record
are copied by value (unlike the usual Java Collections where
the references are directly stored); this ensures that changes
made to the object (after the insertion) are not reflected in
the rows of the table.
Generated program structure All variables declared in the
ABAP report are declared as static variables in the generated
Java class. All the struct type declarations are translated to
Java classes. The entry point for the generated Java code is
derived from translating the code present in different events
such as start-of-selection (See [10]).

4.2 Translation of simple ABAP commands
We now present the translation rules for some of the ABAP
commands and overview of the overall translation scheme.
Figure 6 presents some rules to translate a few of the ABAP
commands. We show a typical translation rule for a database
statement (SELECT) over an internal table as a library call

(accessing of physical tables is discussed in Section 4.3).
The DELETE, INSERT, and SORT commands are translated
alike - we insert code to make appropriate transformation on
the internal table (implemented in our library code for the
class Table). Each ABAP statement results in one or more
Java statement; each of these Java statements is annotated
with the line number of the ABAP statement. Note: in our
implementation, the annotations also include the file name,
to take into account the multi-file ABAP program scenario.

An interesting aspect of ABAP language is that it allows
numeric (integers, floating point) values to be stored in a
string and accessed as desired. For instance, we can assign
an integer to a string. A naive translation would lead to a
type mismatch error in the generated Java code. Our ABAP
to Java translator maintains and uses the type information to
do a correct translation; for instance, see rules 2(a), 2(b), and
2(c). We omit the translation rules for AT NEW and AT END
(handled as nested if statements), and LOOP (translated into
Java loops).
Trace generation via annotated Java code Besides gener-
ating a semantically equivalent Java code, we also generate
an instrumented translation, which on execution dumps the
complete trace for the original ABAP program; this trace is
used by the plugged-in dynamic trace analysis tool.

For each of the generate Java statement s, we emit code
(after s) to output the values of all the variables that are
used and defined in that statement. Such a translation helps
output a forward path trace, by executing the generated Java
program. The set of used and defined variables is obtained
by analyzing the annotations of the AST (USE, DEF or
USEDEF) for the input program.

4.3 Translation via Exception Handling
In this section, we discuss our efforts at handling incom-
pleteness in the grammar and incompleteness in the trans-
lation, while ensuring that the resulting Java code generates
a trace that matches the hypothetical trace generated by the
input ABAP program. Our translator throws an exception
when it encounters any of these incompletenesses. Further,
in some rare situations our translator throws an exception
(such as NullPointerException) because of some unhandled
corner cases. There are also practical issues in our transla-
tor that leads to some bugs in the generated Java code that
lead to a) compilation error or b) incorrect traces. Our trans-
lation tries to handle each of these cases. Such a scheme is
also useful for developing the ABAP to Java translator in an
incremental fashion wherein even the incomplete translator
can be used in the framework in an effective way. We now
discuss the details of these techniques.
Syntax not handled: These are the statements that are not
yet handled by the translator. Instances of such commands
include, physical database accesses, calls to unknown library
functions (with no side effects) etc. The translator throws
an exception for the code-repairer which performs state-
synchronization to help ensure a correct trace generation.
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1. Select :
L1:SELECT <flds> FROM tab WHERE <conds> INTO itab

¯
=⇒ /*L1*/ itab.select(tab, <flds>, <conds>);

2(a). Assign : L1 : a = e //typeOf(a) = typeOf(e)} =⇒ /*L1*/ a = e;
2(b). Assign : L1 : a = e//typeOf(a) = String, typeOf(e) = int} =⇒ /*L1*/ a = ""+e

2(c). Assign : L1 : a = e//typeOf(a) = int, typeOf(e) = String} =⇒ /*L1*/ a = Integer.toInteger(e)

Figure 6. Rules to translate ABAP programs to Java. tab is an internal table in Rule 1.
The state-synchronization happens at two levels: 1) at the
ABAP to Java translator side and 2) at the debugger side
which creates a partial trace. The translator side steps are as
follows: a) Roll back any code that might have been gener-
ated by the translator for the statement under consideration.
b) Extract the DEF variables from the parse tree of the state-
ment. c) Create a breakpoint in the source program, after the
statement under consideration. d) In case the statement is a
conditional/compound statement create a predicate-marker
for the statement and a target-marker for each of the target
statements. e) Generate code to read the values of the DEF
variables from the partial trace. f) If the statement is a con-
ditional/compound statement then generate code to read the
target-marker from the partial trace and transfer the control
to the statement corresponding to the target-marker.

At the debugger side, we create a partial trace file: For
each breakpoint created by the translator the debugger stops
to collect the values of the marked variables. Further, for
conditional/compound statements it uses the introduced
target-marker to note the statement that was executed af-
ter the statement marked with the predicate-marker.

We present a minor optimization for unhandled loop
statements, whereby the number of lookups at the time of the
execution of the Java code to the partial-trace are co-located.
We create breakpoints for the LOOP and the ENDLOOP state-
ments (which are executed for each iteration of the loop) to
collect the partial trace in the debugger. The looping con-
dition in the generate Java code is decided based on the
total iteration count, which in turn is computed from num-
ber of contiguous patterns of the form LOOP <loop-body>
ENDLOOP in the partial trace, for the particular instance of
invocation. A limitation of state-synchronization approach
is that it cannot handle statements with implicit side effects.
Parser Flagged Exception: These are handled exactly sim-
ilar to the previous case of syntax not handled. Note that the
parser exception handling also specifies the type of marker
statement as - normal, conditional, or loop.
Exception while translating a statement: We encountered
these when because of our limited knowledge about the
language, certain variation of an ABAP statement were not
handled in the translation. These exceptions are also handled
similar to the case of syntax not handled.
Generated Java code does not compile: We maintain a
mapping between the line numbers of the statements of the
ABAP code and the generated Java code. On a compilation
error, we identify the source statement in ABAP and invoke
the state-synchronization method on that statement and re-
peat the process.

Incorrect Execution of the Translated Code: Considering
the complexity of the source ABAP language and large cod-
ing effort involved in writing the complete framework, we
do not give any formal guarantees about the correctness of
translation. In lieu of the formal guarantee, our technique
samples the generated trace statements against the actual
execution. The sample size is determined as a threshold per-
centage over the whole code and the statements there are
marked with a verification marker. For a statement carrying
a verification marker, apart from the normal translation the
translator does the following:
• flags this statement to be included in partial trace collec-
tion for both its use and def variables
• inserts an assert statement after the translated statement
which compares the actual values of the def variables of the
statement with the ones collected in the partial trace.

5. Pattern Checking
Identifying patterns in the code can be considered as the
most effective and scalable technique for finding common
bugs [8]. In this context we have built an automatic pattern
detection engine for ABAP language. The important feature
of our pattern detector is that it works on a given execution
trace, instead of static code. This helps in a) allowing run-
time patterns with actual values, and b) finding out the ex-
act problem causing the buggy behavior, which is important
from the ticket resolution perspective. However, it reduces
the scope of pattern checking to only parts of the code that
have been exercised by the trace. This pattern checker can
be used as a plugin in our proposed framework.
Pattern Specification We use Extended Finite State Au-
tomata (EFSA) to describe patterns. Informally, EFSA ex-
tends finite state automata with state variables in states, and
constraints and assignments in state transitions. The transi-
tion is only enabled if the constraints are satisfied, and then
assignments are used to assign values to the state variables.

Formally, a Pattern-EFSA is an 9-tuple E = (Q, Q0, F,
X, E, G,A, T, D), where
• Q is a finite set of states ∪ the set of variables X ,
• Q0 ⊆ Q is the set of start states
• F = {Good, Bad} ⊆ Q is the set of final states.
• E is the set of events, each event is associated with a set of
attributes. Attr = set of all attributes over all the events.
• G is a set of boolean conditions/guards over the elements
in X and all possible attributes of an event; the guards can
use constant value, user inputs, and user-defined functions.
• A is a set of assignment statements which are of the form
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Figure 7. Sample EFSA: (a) InsideLOOP (b) SORT-AT
x := y, where x ∈ X ∪Attr, and y ∈ X .
• T ⊆ Q×(E×G×A)×Q is a set of transitions. A transition
(q, (e, g, a), q′) is enabled if in state q the event e ∈ E
is available and the boolean condition g ∈ G is satisfied.
When the transition is taken the assignment statements in
a are executed. Additionally, a transition may be associated
with a tag non-vacuous (discussed later).
• D is a direction property of the pattern which signifies
whether the sequence of events should represent a trace from
start to end (D=forward) or end to start (D=backward).

An execution trace is represented as a sequence of events
(an event for each statement), each having a set of attribute-
value pairs (for instance, type attribute of the sort statement
is SORT) . Each attribute represents a static/dynamic prop-
erty of a statement executed by the trace. We term a sequence
of events as good-accepted (or bad-accepted) by an EFSA if
it corresponds to a sequence of enabled transitions from the
start state to the final Good (or Bad) state, leading to a a pos-
sible good (erroneous) execution.

We present two examples of pattern-EFSAs in Figure 7.
The InsideLOOP Pattern-EFSA is an example of a forward
pattern that represents a bad behavior of the trace. The Insid-
eLOOP pattern represents a policy which states that having a
select and sort statement inside a loop is a bad behavior, as
it may lead to performance issues. The transition from state
s1 to state s2, first checks whether the input event has a type
attribute having value SELECT or SORT. The transition then
records the line number (given by the attribute e.line) of
the candidate statement in a state variable L in state s2. The
presence of a loop statement around the candidate statement
can be identified by comparing the line numbers of the END-
LOOP and it’s corresponding LOOP header. (the check for
same filename is omitted for brevity). The self-loop transi-

tions do not alter the values of the state variables and are
used to consume the events unrelated to the current pattern.
Note that, the type, line, LoopLine attributes are all static
attributes of the statements that are collected by traversal of
the parse tree in meta-data collection phase (See Figure 1).
Another pattern that accounts of erroneous behaviour is that
of deleting rows from a table in a loop that iterates over the
rows of that table.

If a trace is bad-accepted by a pattern, then the trace
contains possible bad behaviors, and all the events in the
input sequence which are enabled by the transitions are
highlighted to the user as a possible fault. For instance, if
a trace is bad-accepted by the InsideLOOP Pattern-EFSA,
then the sort statement and loop statement are highlighted.

Consider the SORT-AT pattern-EFSA presented in Fig-
ure 7(b). The pattern represents a policy which states that,
AT statement on a table should be preceded by a sort state-
ment on that table, and the table should be sorted on all the
(implicit and explicit) fields on which the AT check is done.
As discussed in Section 2, the semantics of the AT statement
states that along with the field f mentioned in AT, any change
in values of the fields that occur before f in the declaration
of the table also makes the condition to be true.

As the pattern check to be done from existence of AT
statement first, and then existence of SORT statement, the
D property of the pattern has value backward. We now de-
scribe some of the transitions.
• s2 → s3: Finds an enclosing LOOP statement that loops
over table rows (checked by loop option = AT TABLE). The
name of the table and the fieldname are passed on to s3.
• s3→ Good: We find a sort statement on the same table on
which AT check was done. The predicate ensures that the ta-
ble is sorted on the fields on which AT check was done in the
same order: if the sort statement mentions no field names,
then the sort is done on all the fields in the order that ex-
ist in table definition and thus needs no further checks. In
case the field names are mentioned in the sort statement, we
use a helper function getfields to obtain the fields from
the table declaration and compare with the implicit fields on
which AT check was done (using function till).
• s3 → s3: This transition enables us to capture the propa-
gation of table names through assignments.

If a pattern is expressed with good final states, then
the non-acceptance of a sequence of events may denote a
possible bad behavior. However, it is possible that a non-
acceptance of a sequence happened without enabling any
“relevant” transitions (such as s1→ s2 or other words with-
out finding any AT statement). And that sequence should
not be described as a bad behavior based on this pattern.
To handle such cases, our pattern language allows certain
transitions to be tagged non-vacuous in pattern-EFSAs that
have a Good final state. This tagging is done by the EFSA
writer. Non-acceptance of a trace along with enabling of
non-vacuous transitions represents bad behavior.
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The examples illustrated so far present cases where
checks are performed on the static properties of statement.
We now present some possible patterns on the dynamic prop-
erties (all with direction property D is forward).
• Unsuccessful db commands: In ABAP, execution of a
database commands sets a status variable called sy-subrc. A
non-zero value of sy-subrc denotes an unsuccessful database
commands. The policy checks for non-zero value of sy-subrc
after execution of a database command, before the updated
records/tables are used.
• Large Internal Tables: One of the common problem no-
ticed in ABAP is use of insufficient keys in select statement
which returns more than expected number of rows. The pol-
icy checks for the length of the internal table exceeding an
user input value.
• Overflow: After an assignment statement like a = b,
whether the value of a is equal to b. This is not the case
if length of b is greater than that of a and truncation of value
occurs. This is important if the sizes of a and b are different.
• Missing check: Given a predefined set of key-value pairs
whether any deletion was performed on a table which
deleted the rows associated with the given set of key-value
pairs; useful in finding missing entries in report output.

6. Rubber meets the Road
6.1 Uses of the trace
Trace for debugging input program Our framework, al-
lows that arbitrary trace analysis tools can be plugged in. For
instance, we have plugged-in the fault-detection tool of Saha
et al [14] in our framework to derive expected results. The
main requirement for plugin to work with our framework is
that the plugin must conform to the interface requirements of
our framework. We now discuss the details of the interface.

Our framework presents the details of the trace in two
different files. The first file contains the variable and type
information. For each variable used in the program, we store
the name of the variable, scope (function name, class name
or global), and the type details: an unique type id, structure
of the type (scalar or struct or table), the declared type and
the Java type. A struct type has additional attributes for the
fields of the structure. A table type has additional attributes
for the type of the table (standard, sorted, indexed) and the
type of the rows of the table.

The second file is the complete trace file and is used
to interface with the trace analysis tools. which contains
the use-def data for each program statement. Each line in
the trace has two identifiers: a) static line number, and b)
the dynamic sequence number of this statement during the
execution. Each trace line gives the details of all the variables
and literals referred (used and/or defined) in the statement.
Trace for debugging the translation As discussed in Sec-
tion 1, a naive way to generate the dynamic trace is to debug
a program by stepping-into each statement, and use a screen-
scrapping methodology to collect the use-def information

SAP Server

Our GUI scripting

Our Downloader
Function Module Framework

Our Analysis

RFC Call

User Machine

SAP Client GUISE38

Figure 9. Interaction with SAP components

at each program point. We use this scheme (time consum-
ing nevertheless) to establish the correctness of our transla-
tion. We generated the complete trace once using the screen-
scrapping method, and then use it to compare the trace from
our generated Java code. The translation is considered cor-
rect if both the traces match (both in terms of the order of
the executed statements and values of the DEF variables at
each program point). During the course of our initial de-
velopment, this approach helped us to identify some corner
cases in our implementation.

6.2 Application of standard tools
For a given ABAP program and its input, our framework
generates its equivalent Java code, annotated with line num-
bers of the original ABAP code. One main advantage of such
a translation is that since the generated code is written in
Java, it allows a host of program analysis techniques written
for Java; these can be plugged-in to our framework to derive
desired results. Instances of the program analysis tools that
can be applied are FindBugs [8], Khasiana [12] and so on.

6.3 Mapping the results
The results of all the plugged-in analyses is given in terms of
the line numbers of the Java program or the line number of
the trace. Since both the generated Java program as well as
the dynamic trace are annotated with the line numbers of the
original ABAP program, it is trivial to map the results back.
We use this mapping technique to design a GUI based client
(briefly discussed in the following section).

7. Implementation details
We have implemented the system illustrated in Figure 1. We
now briefly discuss the implementation details.
• Parser - was generated for our ANTLR 3.2 based grammar
for ABAP, with Java as the target. The complexity and the
size of the ABAP grammar posed a unique challenge here.
The compilation of the generated Java Parser ran into the
”Code too large” problem. To deal with this we devised an
automatic technique to partition the grammar into separate
logical chunks. We have observed that even a naive partition-
ing of the grammar based on a threshold on the production-
rule-count in each chunk has been found quite effective.
• Fault Patterns Analyzer It took pattern descriptions de-
clared using XML as input and matched them on the trace.
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Figure 8. Snapshot of our ABAP Code Analysis Framework
• GUI - an Eclipse Rich Client Platform based GUI was
implemented as the user-interface for tool. A snapshot of the
tool in action is illustrated in Figure 8. This tool works as an
interface to load the analysis, and displaying the results. The
details of the GUI client (usability, speed, interactions etc)
are beyond the scope of this submission.
• Integration with SAP system - Interfacing with the SAP
system was done as illustrated in Figure 9. We implemented
a function module in ABAP, which we upload to the SAP
system, and then use via an SAP RFC call for the pur-
pose of extracting the ABAP source, dependencies, and data-
dictionary of built-in types. We use SAP Client GUI 7.10
installed on the user’s machine for the purpose of collect-
ing selective traces. Our system generates a VB script based
on SAP GUI scripting language. This script automatically
- (a) opens the ABAP program in SE38 (debugger) trans-
action; (b) puts required breakpoints on the lines indicated
by the translator to be collected; (c) collects the partial trace
at those breakpoints and dumps it to an XML file. An in-
teresting issue we encountered here was that the SAP de-
bugger transaction (SE38) puts a limitation of maximum 30
breakpoints; which was not sufficient for some of the large
programs. We generated the partial trace collection for 30
breakpoints at a time and merged the final trace. In our ex-
perience this resulted only in minor additional cost.

8. Evaluation
In this section, we present our experience in using our ABAP
Code Analysis Framework. We divide the presentation into
three sections: experience with parser exception strategy,

Prog LOC # Err Execution Time (in seconds)
Parsing LineParsing Writing

N1 198 1 1.8 0.3 0.01
N2 207 3 2.0 0.5 0.01
N3 630 5 1.9 0.5 0.07
N4 737 41 2.1 0.3 0.1
N5 925 2 2.1 0.6 0.1
N6 932 10 2.1 0.7 0.2
N7 966 2 2.1 0.4 0.2
N8 1078 3 2.0 0.6 0.2
N9 1401 2 2.0 1.1 0.3
N10 3281 1 2.7 1.8 1.0
N11 3330 3 2.7 1.7 1.0
N12 3838 6 2.2 3.1 1.2
N13 25766 238 4.1 46.7 23.9

Figure 10. Result: Parser Exception Strategy Handling
experience with ABAP to Java translation, and the utility of
our new pattern analysis technique.
Parser Exception Handling In our ongoing project, we
started with an initial version of the ABAP grammar derived
from the online language manual (http://help.sap.com).
For reasons discussed before, that grammar was not able to
parse the complete set of benchmarks we had at hand. But
our analysis tool development and testing continued even in
the presence of those unparsed statements. Eventually the
grammar evolved to parse all our benchmarks. To test the ef-
fectiveness of the exception strategy handling we therefore
chose a new set of ABAP programs that we had got recently.
In Figure 10, we present the evaluation of our current gram-
mar with respect to a subset of these programs that could
not be parsed with our existing grammar and the grammar
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exception handling strategy was used used derive analyz-
able parse trees. For each benchmark we show, the number
of lines of code (LOC), number of parse errors (# Err), and
the breakup of the time taken by the our grammar exception
handling strategy. The figure shows the time it took the parse
the whole program (“Parsing”), time it took for parsing indi-
vidual lines to identify and extract exact details for parsing
failures (“LineParsing”), and the time taken to rewrite the
updated file with relevant parse error statements. The total
time taken went upto 75 seconds (for a large program with
25K lines of code), and rest all programs took just a few
seconds. Overall, we conclude that a) there is a need for
grammar exception handling strategy, and b) the overhead
incurred by our proposed methodology is reasonable.
ABAP to Java translation To evaluate the coverage and
correctness of our ABAP to Java translation scheme, we
designed 165 unit testcases to cover all our known variations
of ABAP. We compared the generated trace with the ideal
trace to gain confidence on our translation.

For evaluating the efficacy of our ABAP to Java transla-
tion, we use a set of heavily used proprietary ABAP pro-
grams provided by our development teams; these are dif-
ferent from the newly obtained program benchmarks used
earlier in this section. Some characteristics of these bench-
marks can be found in the first two columns of Figure 11. We
have used two sets of benchmarks - the first set is one from
real applications, and the second set consists of all synthetic
benchmarks. The third column lists the number of break-
points that are used by the debugger mode partial trace col-
lection. The performance benefits of using the our scheme
compared to the complete trace obtained via the debugger
are shown in the columns 4-6. It shows that our approach
may result up to 11x speed ups.

Two observations: a) our approach may not yield benefit
when the programs are trivially small which do not offset the
overhead of our approach. b) For larger programs, the gains
from our approach offsets the overheads we incur.

We have also used the FindBugs [8] tool on our generated
Java code. It did correctly identify some simple warnings
(such as unused variables, unused computation etc), but it
did not find any programming bugs like null dereferences
etc. This is quite expected as these programs are well tested
and used in the industry for a while.
Pattern Analysis We encoded several static/dynamic pat-
terns and run against traces of several programs. The results
are shown in Figure 12. We give a short account of all the
patterns in Figure 13. These patterns are suggested to us by
ABAP practitioners. Only the pattern A8 has direction value
D to be forward. To evaluate these patterns, the bugs were
manually seeded in the benchmarks.

9. Conclusion
In this paper we shared our experience of building a frame-
work for finding faults in ABAP programs in the context of

Prog dbg mode num num a2j mode impr
time (s) lines breakpts time (s)

B1 4854 393 2517 446 5.64 x
B2 860 235 355 183 1.94 x
B3 15746 900 1817 633 2.87 x
B4 1484 426 369 548 2.70 x
B5 4189 421 3298 576 5.73 x
B6 2542 530 587 194 3.03 x
B7 1694 427 5115 486 11.98 x
B8 1066 186 1424 136 10.41 x
S1 48 13 84 21 4.00 x
S2 48 13 26 19 1.37 x
S3 43 18 35 22 1.59 x
S4 49 24 43 22 1.95 x
S5 67 15 26 21 1.24 x
S6 86 16 32 60 0.53 x
S7 85 26 66 32 2.06 x
S8 35 11 14 67 0.21 x
S9 89 22 29 36 0.81 x
S10 133 36 470 97 4.85 x

Figure 11. ABAP to Java translation: evaluation
Pattern Description
A1 SORT-AT pattern described in Section 5
A2 InsideLOOP pattern described in Section 5
A3 Similar to SORT-AT; field names existed in On-

Change are compared with the fields in SORT
A4 Delete adjacent should be performed on same field

names as sort for the same table
A5 Does not use select * or provide * syntax
A6 Is initial check needs to be done on a variable before it

is used in forall clause in select statement
A7 read with binary search option should use the same

keys on which the table is sorted
A8 database commands be followed by sy-subrc check

Figure 13. Sample Dynamic Patterns
ticket resolution. Due to the limited availability of debugging
tools for localizing faults in such programs, we have taken
the approach of generating equivalent translation to anno-
tated Java programs, and executing it to generate the equiv-
alent trace, such that we can use static and dynamic analysis
tools for fault localization.

We present a new grammar annotation mechanism, along
with different exception handling schemes to handle incom-
pleteness in the grammar, and the translation. We observed
that our proposed framework was able to cover all the bench-
marks provided to us and the incurred performance overhead
was kept to an acceptable limit. We have further developed
and used a pattern matching tool which finds matching pat-
terns in the generated traces. The use of both static and dy-
namic properties makes it particularly useful for fault local-
ization in ABAP language.
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Prog Static Patterns Time Dynamic Patterns Time
A1 A2 A3 A4 A5 A6 A7 A8 (sec) unsucc-db overflow bigtbl missing (Sec.)

B1 58/1 0 3/2 0 4/3 1/1 0 30/2 5.7 1/1 0 0 1/1 3.0
B2 0 0 0 0 0 3/3 1/1 0 0.1 0 0 0 - 1.5
B3 0 0 0 0 0 2/2 0 0 0.7 22/4 0 0 - 3.0
B4 0 0 0 0 3/2 0 0 3/2 0.1 0 0 0 - 0.1
B5 0 62/2 0 0 1/1 0 0 5/5 3.5 0 0 0 1/1 9.0
B6 0 0 0 0 0 0 0 0 1.2 0 0 0 - 0.1
B7 166/2 0 0 0 1/1 0 0 86/4 60.0 0 0 0 - 6.0
B8 0 0 0 0 0 0 0 1/1 1.3 84/1 84/1 0 - 0.1

Figure 12. Static and Dynamic Pattern Analysis: statement instances/statements
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