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Abstract
Program similarity is a central challenge in many programming-
related applications, such as code search, clone detection,
automatic translation, and programming education.

We present a novel approach for establishing the similar-
ity of code fragments by: (i) obtaining textual descriptions
of code fragments captured in millions of posts on question-
answering sites, blogs and other sources, and (ii) using nat-
ural language processing techniques to establish similarity
between textual descriptions, and thus between their corre-
sponding code fragments. To improve precision, we use a
simple static analysis that extracts type signatures, and com-
bine the results of textual similarity with similarity of the
signatures. Because our notion of code similarity is based
on similarity of textual descriptions, our approach can de-
termine semantic relatedness and similarity of code across
different libraries and even across different programming
languages, a task considered extremely difficult using tra-
ditional approaches. To evaluate our approach, we use data
obtained from the popular question-answering site, STACK-
OVERFLOW. To obtain a ground-truth to compare against, we
developed a crowdsourcing system, LIKE2DROPS, that al-
lows users to label the similarity of code fragments. We used
the system to collect similarity classifications for a massive
corpus of 6,500 program pairs. Our results show that our
technique is effective in determining similarity, and achieves
more than 85% precision, recall and accuracy.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Lan-
guages

Keywords Code Similarity, Natural Language, Program
Analysis, Semantics

1. Introduction
We address the problem of similarity between code frag-
ments. Code similarity and equivalence are classic problems
in programming languages and software engineering [5, 10].
There has been a lot of work on syntactic code similarity and
clone detection [3, 4, 23]. However, most approaches can-
not capture similarity across programs using different APIs
or algorithms, let alone programming languages. There has
also been a lot of work on semantic equivalence and dif-
ferencing of programs [15, 36]. However, most of these ap-
proaches require that the programs being compared not be
too different from one another (e.g., different versions of the
same program with small patches [36], or the same program
at different abstraction levels [39]).

Furthermore, in some cases, equivalence is not what we
are looking for. Our goal is to capture connections between
snippets, such as semantic similarity or relatedness, which
are more relaxed notions than strict equivalence. We further
aim to capture these connections for code fragments using
different libraries and languages.
Our Approach: Combining Big Code and Natural Lan-
guage Processing. Inspired by Hindle et al. [14], we explore
how “big code” (large scale code repositories) and natural
language processing (NLP) can help us address the problem
of semantic relatedness of code fragments. The challenge
is to establish such semantic similarity (more generally, se-
mantic relatedness) automatically.

The main idea of this paper is to tackle the problem of
semantic relatedness between code fragments by consider-
ing the semantic relatedness of their corresponding textual
descriptions. Doing so requires: (i) establishing a relation-
ship between a code fragment and its textual description(s),
(ii) measuring semantic similarity between textual descrip-
tions, and (iii) creating comparable snippet representations

To address the first challenge, we rely on relationships
between code and descriptions as created, for example, on
common Q&A sites such as STACKOVERFLOW (SO), in doc-
umentation, on blog posts, and in comments or method and
variable names. We also match fragments that are not in the
database to existing syntactically similar fragments.
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To address the second challenge, we utilize state-of-the-
art text similarity methods. The third challenge is dealt by
a dataflow analysis that extracts type information and im-
proves the precision of relatedness results. This approach
might seem surprising because NL seems to be less con-
strained space than code; however, we target SOF posts that
use only a small lexicon and contain code fragments that can
serve as anchors. Hence they are semi-structured.

We draw inspiration from previous research in the area
of image retrieval [50, 52], where image similarity can be
determined by comparing tags associated with images and
not only by visual similarity. Our approach represents a
radical departure from standard techniques that only use the
code, and takes an “open world” approach that leverages
collective knowledge.
Main Contributions. The contributions of this paper are:
• A framework for semantic relatedness of code, based on

similarity of corresponding natural language descriptions
and type signatures. Our approach effectively and effi-
ciently determines quantitative similarity between code
fragments using different libraries and code fragments in
different programming languages.
• An implementation of our approach in a tool called SI-

MON, and an evaluation over 100,000 pairs of code frag-
ments in multiple programming languages, showing that
it can handle a wide variety of code fragments.
• A crowdsourcing platform in which users can classify the

relatedness of pairs; results collected from 50 users are
used to classify a sample of 6,500 pairs. The labeled data
is of independent interest for researchers in this area.
• When compared against labeled data, our approach ob-

tains more than 85% precision, recall and accuracy. This
accuracy makes our approach a valuable complement to
techniques based purely on semantic similarity of code.

2. Overview
In this section, we provide an informal, high-level overview
of SIMON using an example.

2.1 Motivating Example
Consider the two code fragments in Figure 1. Both gener-
ate permutations of a given string. The code fragment in
Figure 1(a) is written in Python and the one in Figure 1(b)
is written in Java. Despite considerable syntactic difference
and the different programming languages, we would like to
say that the two are similar: both fragments generate permu-
tations with the slight difference that (a) performs printing
and (b) returns the result.

Efforts to capture this similarity via syntactic approaches,
such as comparison of strings or abstract syntax trees (AST),
will fail due to the large differences in the syntax of these
languages and their use of two different computation struc-
tures. Even semantic approaches that are based on input-
output relations will have difficulty finding the similarity be-

1 def p (head, tail=’’):
2 if len(head) == 0:
3 print tail
4 else:
5 for i in range(len(head)):
6 p(head[0:i] + head[i+1:], tail + head[i])
7 p("abc")

(a)
1 public static Set<String> generateP(String input) {
2 Set<String> set = new HashSet<String>();
3 if (input == "") return set;
4 Character a = input.charAt(0);
5 if (input.length() > 1) {
6 input = input.substring(1);
7 Set<String> permSet = generateP(input);
8 for (String x : permSet)
9 for (int i = 0; i <= x.length(); i++)

10 set.add(x.substring(0, i) + a + x.substring(i));
11 } else {
12 set.add(a + "");
13 }
14 return set;
15 }

(b)

Figure 1. Semantically related fragments for generating per-
mutations of a string: (a) written in Python and (b) in Java.

cause Figure 1(a) holds concrete values (line 7) and Fig-
ure 1(b) expects to get them as an input (line 1). More-
over, the use of language-specific operations (e.g., range
in Python, charAt in Java) adds another layer of difficulty.
We present an approach that sidesteps these challenges.
Intuition. Figure 2 shows a simplified view of our approach
(the actual system architecture is shown in Figure 3). Our
goal is to determine semantic similarity between the code
snippets s and s′. We do so by mapping the snippets to cor-
responding textual descriptions and computing the semantic
similarity between them. To map s and s′ to textual descrip-
tions, we first use syntactic similarity to find representative
snippets ŝ1,ŝ2 and ŝ1

′,ŝ2
′,ŝ3

′ in a pre-computed database
of code fragments with corresponding textual descriptions.
We utilize the similarity between the textual descriptions to
determine the semantic similarity of code fragments. Find-
ing representatives in the description mapping allows us to
compare code fragments even when they are not in our pre
computed description mapping.

The database is queried for similarity using the steps:
Step 1 - Linking Code to Textual Descriptions: The first step
is to link the code fragments to their corresponding textual
descriptions. Table 1 shows the STACKOVERFLOW questions
which correspond to the code fragments of Figure 1. We use
a syntactic code similarity technique to link a given code
fragment to one that has a corresponding textual description.
Section 6.1.1 elaborates on the retrieval method we use to
find these descriptions, and Section 5.4 specifies the text pro-
cessing steps used to create meaningful descriptions. This
step is based on the observation that pieces of knowledge
close together in cyberspace tend to be related [2].
Step 2 - Extracting Type Signatures: We use static analysis
to extract type signature (inputs→ outputs) from a code frag-
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Figure 2. SIMON’s core: snippets are mapped to correspond-
ing natural language elements and the mapping is used to
determine the snippets’ semantic similarity.

Figure 3. The architecture of SIMON.

Snippet (a)
Title How to generate all permutations of a list in

Python
Content How do you generate all the permutations of

a list in Python, independently of the type of
elements in that list? For example: 〈 some code 〉

Tags python, algorithm, permutation, combinatorics,
python-2.5

Votes 171

Snippet (b)
Title Generating all permutations of a given string

Content What is an elegant way to find all the permuta-
tions of a string. E.g. ba, would be ba and ab, but
what about abcdefgh? Is there any example Java
implementation?

Tags java, algorithm
Votes 124

Table 1. Information about the code fragments in Figure 1.

ment. Section 5.5 provides more details about our definition
of type signature. This step is used to improve the precision
of the text-based similarity method.

In our example, for the snippet of Figure 1(a), we extract
the type signature String × Iterable → String, and for the
snippet of Figure 1(b) we get String→ Set〈String〉.
Step 3 - Comparison: The third step is the comparison be-
tween the new entities. For simplicity, we consider the title
as the only code description; however, SIMON uses the con-
tent of the entire question. The title texts are closely related,

and indeed, their similarity score is higher than 0.79, indi-
cating strong similarity. This value was computed using a
state-of-the art text similarity approach, specialized for the
programming domain, as explained in Section 5.4

The strong affinity between the type signatures allows us
to increase the confidence of the text similarity score.
Key Aspects. This example demonstrates:
• Similarity across languages: SIMON can determine sim-

ilarity of programs written in different programming lan-
guages with different syntax.
• Similarity across libraries: SIMON determines similarity

when using different libraries.
• Similarity between partial programs: SIMON deter-

mines similarity of programs where input and output are
not explicitly defined (no return or explicit parameters).

Applications. The ability to capture similarities between
code fragments written in different or similar programming
languages has numerous applications: (i) code search using
other semantically similar code fragments or a natural lan-
guage description, (ii) automatic translation between code
fragments in different programming languages, (iii) clone
detection, (iv) learning of different implementation tech-
niques, (v) automatic tagging of programs with the words
that best describe them, and (vi) NLP enrichment based on
the similarity classifications obtained from LIKE2DROPS.

3. Background
In this section, we provide the background for the text simi-
larity techniques that are used throughout this paper.

3.1 Text Similarity
Determining the similarity between two texts is one of the
main problems in many NLP and information retrieval (IR)
applications [53]. The vector space model (VSM) [42] based
methods are the most widely used today. In this approach,
any text is represented by a n-dimensional vector, where n
is the number of different terms that were used to index the
training set (the sub-group of texts that is used to train the
model). Each cell is associated with a weight that indicates
its importance and can be calculated in certain ways.
Example. We use two semantically similar sentences to il-
lustrate the use of different text similarity methods.

(a) How can we order a list using Python?
(b) In Java, I want a list to be sorted.

3.1.1 TF.IDF
The term frequency inverse document frequency (TF.IDF)
is a standard VSM based method. It combines the term
frequency (tf) – the number of occurrences of a term in
a document, and the inverse document frequency (idf) –
indication of the uniqueness of a term across all documents,
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each of which can be computed in many ways. We use the
natural tf, and logarithmic and smooth idf, as shown in (1).

idft = log(
|D|

|Dt|+ 1
) + 1, (1)

where |D| is the number of documents and |Dt| is the num-
ber of documents that contain the term t. The equation for
computing a vector cell t for document d is tdt = tfdtidft
[55]. One drawback of this approach is the lack of semantic
knowledge. Going back to our example, the actual similar-
ity value depends on the training set. However, the sentences
share only two common words. One of these words is “a”,
which is not unique and gets low idf. The result is that the
two sentences have a low similarity score.

3.1.2 Latent Semantic Analysis
Latent semantic analysis (LSA), also called latent semantic
indexing (LSI), is another VSM based method that utilizes
the latent structure of the text to overcome the lack of se-
mantic knowledge that TF.IDF suffers from: instead of re-
lying only on the words that people choose, it statistically
captures their usage patterns. Consequently, it can attribute
similarity to different words with similar meaning.

LSA is based on a matrix of terms-documents and on a
mathematical model known as singular value decomposi-
tion (SVD). Any rectangular matrix, M , is decomposed to
the product of three other matrices, such that M = X0S0Y0
whenX0 and Y0 have orthonormal columns (orthogonal and
unit length) and S0 is diagonal. Due to the existence of many
negligible elements in the base term-document matrix, the
matrices can be simplified by deletion of the smallest ele-
ments (e.g. rows and columns) in S0 and the corresponding
columns of X0 and Y0. In other words, only the k most im-
portant elements remain. Deerwester et al. [9] further elabo-
rate on the details of SVD. These matrices are used to create
the semantic space, wherein closely associated elements are
placed near each other. LSA captures the arrangement of the
space such that even terms that don’t appear in a text may
end up around it if they follow a major association pattern.
Terms and documents are represented by a vector of factor
values derived from the simplified matrices. Like in TF.IDF,
the actual similarity value of the example sentences depends
on the selected training set, however, the connection between
the words “order” and “sorted” is captured by this model and
a higher similarity score is obtained.

3.1.3 Align, Disambiguate, and Walk (ADW)
A contemporary, unified semantic representation called
ADW was presented by Pilehvar et al. [38]. It leverages
a common probabilistic representation over the senses of a
word. ADW is based on WordNet 3.0 [30] as its sense inven-
tory and it produces a multinomial frequency distribution by
repeated random walks on the WordNet ontology graph. The
resulting representation is a probability vector, which aggre-
gates the similarities of the text over the entire graph. It also

uses an alignment based disambiguation method and shows
state-of-the-art performance. Using ADW with our example
sentences, we first remove stop words using an English stop
word list expanded with more than 400 programming lan-
guage names and tag each word with its part of speech. For
example, (a) is [order-verb, list-noun] and (b) is [want-verb,
list-noun, sort-verb]. Afterwards, the sentences are aligned
using WordNet, resulting in a connection between the words
order and sort, and in a relatively high similarity score.

3.2 Cosine Similarity
The cosine similarity function [28] is widely used to find
the similarity between two given vectors, computed by one
of the aforementioned techniques. In cosine similarity the
vectors are normalized to unit length and the angle has the
only influence on the similarity score. Hence, it is not biased
by different text sizes. Cosine similarity is calculated by
taking the inner product (v1 •v2) of the vectors and dividing
it by the product of their vector lengths.

The similarity between two vectors is computed with
cosine similarity based on the following equation:

cosine(v1, v2) =
(v1 × v2)
‖v1‖‖v2‖

, (2)

where ‖v‖ is the Euclidean norm of the vector v.

4. Leveraging Collective Knowledge
In this section, we describe how SIMON leverages collective
knowledge towards a similarity notion.

4.1 Open World Approach
Sites such as GITHUB, STACKOVERFLOW, and programming
blogs store massive amounts of code, often with additional
meta-data. Programmers interact by sharing code or asking
questions and create associations between code and its nat-
ural language description. STACKOVERFLOW (SO) is a com-
munity question-answering site that allows programmers to
post any programming related question. Each question is as-
sociated with a title, content and tags, chosen by the author
to describe the question. SO creates an implicit mapping be-
tween code fragments and their descriptions.

For our analysis, we used the SO dump from September
2014, provided by the MSR challenge [54]. The dump con-
tains more than 21M posts, divided into around 8M ques-
tions and more than 13M answers.

Finding Representatives. This work presents a radical
departure from common approaches for determining simi-
larity between code fragments. A major challenge for our
approach is the ability to find representatives in the pre-
computed database for an arbitrary pair of snippets provided
by a user. Indeed, the quality of our results may vary widely
in accordance with the quality of representatives.

Covering all possible code fragments is impossible, and
it is likely that for some rare code fragments we will not find

200



Figure 4. The percentage of code fragments that have syn-
tactically syntactically similar code in the database, as a
function of the database size.

good representatives. However, two factors convince us that
our approach holds great potential:

1. Software is not unique. As observed by Gabel et
al. [12]:

”Although the number of legal statements in the language
is theoretically infinite, the number of practically useful
statements is much smaller, and potentially finite.”

That is, software contains many parts that are repetitive. If
we map these, we may get good coverage of commonly used
code fragments. There are more than 16M STACKOVERFLOW

posts that contain code fragments. These can be utilized for
the construction of a rich mapping.

To deal with the “unique” parts, such as variable names or
concrete values, we use syntactic similarity that can ignore
names and concrete values. This helps us link new snippets
to representatives we already have in our mapping. However,
we cannot guarantee good representatives for any arbitrary
rare code fragment that one might think of.

2. Data increases rapidly. For commonly used code snip-
pets we show that the approach is already feasible. We be-
lieve that as this kind of data grows (there are around 15,000
new answers on STACKOVERFLOW every day!), our approach
will become more attractive and more widely applicable.
Figure 4 shows the percentage of code fragments from the
database that have another syntactically similar fragment in
the database (rather than the same fragment itself), as a func-
tion of the database size. The graph illustrates the impor-
tance of a vast database and shows that even within a lim-
ited database (for which we measured pairwise similarity)
we can find duplicates. Note that we show internal syntactic
similarity between fragments in the database just to illustrate
the likelihood of finding syntactically similar code.

This observation highlights our expectation that new code
fragments will be found in our database as it grows. We can
see that the larger the database, the more adjacent fragments
are found; this, alongside the rapid growth of sites such as
STACKOVERFLOW, emphasizes the potential of our approach.

5. Description Based Relatedness
In this section, we describe the technical details of SIMON.

5.1 Similarity Metric Overview
At a high-level, we define the similarity between two given
code snippets s, s′, using the similarity between their cor-
responding snippets in our database. This metric can be the
basis of a ranking algorithm for code search.

simcode(s,s
′) =α · max

d(s,ŝ) < ε,
d(s′,ŝ′) < ε

ŝim(ŝ,ŝ′)+

(1− α) · simsig(s,s
′)

(3)

where

ŝim(ŝ,ŝ′) =β · simtitle(ŝ,ŝ
′)+

(1− β) · simcontent(ŝ,ŝ
′),

(4)

Fragments ŝ,ŝ′ are syntactically similar to s,s′, respectively,
and α, β ∈ [0,1].
To compute these metrics, we rely on the following:
• Finding corresponding snippets in our database. This is

done by syntactic matching of the snippets based on a
distance d (either AST comparison or alignment) being
smaller than some threshold ε.
• simtitle, which uses ADW similarity algorithm applied

to titles that have been enriched with software-oriented
query expansion.
• simcontent, which uses LSA similarity that has been

trained on millions of textual software descriptions.
• simsig , which measures similarity between type signa-

tures that was revealed in type flow analysis.

5.2 Semantic Relatedness of Code Fragments
The term semantic relatedness first appeared in the NLP do-
main. We adapt and modify this term for the programming
domain. In NLP, semantic relatedness is the finer case of se-
mantic similarity, where similarity is based on is-a relations
and can’t be established across different parts of speech. The
notion of relatedness captures similarity, but also includes
other relations, such as: has-part, is-made-of [37]. We use
the modified term relatedness to refer to similarity between
two code fragments based on their functionality. Our notion
of relatedness includes equivalent or similar behaviors of the
programs, inclusion or opposite functionalities. It not only
captures binary decisions that define whether the programs
are similar, but a quantitative spectrum of similarities.

5.3 Syntactic Similarity
Assuming we have a description oracle that maps code to
its corresponding textual descriptions, we need to be able to
look for new code and find its matches in order to borrow
their textual descriptions. Good matches are code fragments
that can share the same textual description. Towards that
end, we look for syntactically similar code fragments. In this
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ip = "192.24.1.17"
InetAddress x = InetAddress.getByName(ip);
String h = x.getHostName();
System.out.println(h);

(a)
InetAddress addr =

InetAddress.getByName("173.194.36.37");
String host = addr.getHostName();
System.out.println(host);

(b)
Figure 5. Two syntactically similar code fragments.

work we refer to two code fragments as syntactically similar
in accordance with the notion of clone types 1 − 3 [18].
Mostly we refer to changes in formatting, naming or literals;
however, a change can be broader as long as it preserves the
flow and functionality of the original program.
From Code Fragment to Description. Given two arbitrary
code fragments s, s′, and a description oracle containing
code fragments with their textual descriptions, we would like
to compute the semantic similarity simcode(s,s

′) between s
and s′, or the opposite notion: d(s,s′) = 1− simcode(s,s

′).
Often, the snippets don’t appear as in the oracle, but with
some negligible differences, such as naming, formatting or
concrete values. To compute their similarity we use standard
techniques for syntactic similarity of code fragments, as ex-
plained below. Specifically, we can find similar fragments
in the oracle’s database even when they differ in variable
names or parameter values. Monperrus et al. investigated
whether the SO search engine can handle code snippets as
input. They searched for code, extracted from the site, but
only 15% of the snippets from their dataset were found [32].
These results along with our dealing with multiple program-
ming languages and our desire to find snippets that don’t
necessarily appear in the exact same way led us to consider
other options. We suggest two similar but not identical tech-
niques to deal with this problem: (i) the first treats the code
as text and therefore works for all programming languages,
and (ii) the second is language specific and based on the syn-
tax of the chosen language.
Generic Syntactic Similarity. To deal with multiple pro-
gramming languages we extract only the relevant tokens
from each fragment – types, functions, keywords, special
characters, etc., while preserving their order. Our approach
is based on the common parts between the desired code and
any code fragment from the search group. Initially, we use
a standard keyword matching technique to find the group of
possible matches, followed by alignment of the common to-
kens. As an example of syntactically similar fragments, con-
sider the two in Figure 5.
Language-Specific Syntactic Similarity. The first approach
yields good results, tested on a subset of our database; how-
ever, we suggest another technique, customized for code.

Figure 6. Text processing using a sentence from Section 3.

This technique is language specific and based on AST. For
each snippet, we create a representative string. The string
from the snippet in Figure 8 is:

Assign Name Store Call urlopen Attribute Name Load Load
Str Assign Name Store Call read Attribute Name Load Load

This string captures only the important information about
the code: order, API calls, arithmetics, etc. Identifiers and
concrete values are not captured in this representation. Then,
when searching for new code within our database, we need
to compute its representative string, after which we look for
almost perfect matches, using ideas similar to those of the
first approach. Mismatches of calls to built-in or common
library functions are given a higher penalty.

5.4 Semantic Similarity of Descriptions
The question of semantic similarity between text documents
is central in many NLP tasks, and is studied extensively in
the NLP community. We assume the existence of a descrip-
tion oracle, which takes a code fragment and returns a set of
natural-language documents describing its functionality. We
refer to the set of natural-language documents related to a
code fragment as its semantic description. We measure the
distance between two semantic descriptions using text sim-
ilarity methods. First, we take the semantic description and
process it by lemmatizing (changing each word to its base
form), removing stop words and punctuation signs. Figure 6
shows a text processing demonstration. Pilehvar et al. [38]
claim that techniques such as LSA are still most suitable for
long texts. Hence, we decided to combine various text sim-
ilarity techniques. For the titles, which are short and play a
major role in the description, we use ADW with software
specialized vocabulary as described in Section 5.4.1. For the
question content, which is a longer text, we use LSA on top
of TF.IDF. LSA was trained on top of more than 1M SO
posts and with a reduction to 300 dimensions. This value
has been empirically chosen and has been shown before to
be effective in practice. [26]. We compare the constructed
vectors using cosine similarity.

5.4.1 Specialized NLP
Programming has many domain specific terms, such as
String or Int. WordNet based approaches such as ADW
might have difficulty dealing with these unique words and
produce incorrect results. To deal with this problem we ap-
ply a query expansion approach that is based on data from
a software-specific word similarity database [47]. For each
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compared text, we look for words that originate from the
programming domain. Each such word is searched for within
the database and its two most related words (if exist) are
added to the text. This way, we specialize the NLP tech-
niques for programming; words that are similar only in this
context are linked and increase the texts’ similarity score.
For example, the words “text” and “string” are considered
as similar in the programming domain, a connection we
might miss if we use only standard WordNet.

5.5 Type Signatures
While keeping in mind the problem of similarity across pro-
gramming languages, we wanted to utilize the code itself
to support the text-based similarity function. Towards that
end, we use type signatures as another measure for similar-
ity. Ideally, we would like to use type signatures as a strong
source of information for similarity. However, there are sev-
eral challenges that make this harder than it seems at first
glance: (i) multiple signatures in the same snippet: for snip-
pets that consist of a single method or function, it may be
possible to extract a clean type signature. However, this is
not true for an arbitrary snippet that may contain several dif-
ferent functions, and thus also multiple signatures. (ii) differ-
ent types across programming languages: a language’s set of
types, especially when dealing with an OOP language, might
be infinite and does not necessarily correspond to other lan-
guages. In this paper, we take a rather simple approach to
the problem, and only consider type signatures of short snip-
pets, which mostly have single and primitive type signatures.
This contributes some improvement to the precision, but not
a substantial one. In future work, we plan to treat signatures
more comprehensively in the hope of further improving.
Motivation. Sometimes functionally different code frag-
ments hold semantic descriptions that might be classified
as similar. Here is an example where using type information
is critical. Consider two programs: the first converts a byte
array to a string and the second does the opposite. Figure 7
shows the programs. Their partial descriptions (only titles)
are the following (respectively):

(i) How do you convert a byte array to a hex string;
(ii) Convert a string representation of a hex to a byte array;

These descriptions share many common words; hence they
get a high similarity score. However, their associated pro-
grams are not the same. The use of type signatures reveals
that the two are indeed different and decreases their score.
Example. Consider the code fragment from Figure 8. The
code finds, for a given string (that represents an URL ad-
dress), its html source. The string is hardcoded but the func-
tionality of the code, the fact that it finds the html source, is
the thing we want to isolate. In Figure 9 we can see the data
flow of this code fragment. The string literal is not affected
by other variables; hence it is the first node of the graph. The
code passes a string as an argument to urlopen and saves
the return value into a new variable named res. Using res

static string ByteToHex(byte[] bytes){
char[] c = new char[bytes.Length * 2];
int b;
for (int i=0; i < bytes.Length; i++){
b = bytes[i] >> 4;
c[i * 2] = (char)(55 + b + (((b-10)>>31)&-7));
b = bytes[i] & 0xF;
c[i * 2 + 1] = (char)(55 + b + (((b-10)>>31)&-7));

}
return new string(c);

}

(a)

public byte[] hexToBytes(String hStr){
HexBinaryAdapter adapter = new HexBinaryAdapter();
byte[] bytes = adapter.unmarshal(hStr);
return bytes;

}

(b)
Figure 7. Reversed code fragments.

import urllib2
res = urllib2.urlopen(’http://www.example.com’)
html = res.read()

Figure 8. Code fragment example that has a String →
String type signature.

Figure 9. Figure 8’s data flow graph.

and the function read, it finds the html source, which is also
a string. We can see that the first node has indegree = 0 and
the last node has outdegree = 0, so we can say that the type
signature of this code is indeed String→ String.
Snippet Inputs and Outputs. The inputs and outputs of snip-
pets are not always explicit. If the snippet has a full function
declaration and the language is statically typed, the signature
is obvious and originates directly from the declaration. But
for dynamically typed languages and code fragments that
are not part of defined functions, the task of extracting the
inputs and outputs is slightly more difficult. For code frag-
ments that have no function declaration, as in the example
from Figure 8, we build the data flow graph as explained in
Section 6.2.2 and skim for nodes with indegree and outdegree
equal to zero. These nodes are the snippet’s inputs and out-
puts, respectively. A snippet’s type signature is the relation-
ship between its inputs and outputs.
Cross-Language Set of Types. Any language has its own
set of types. We created a generic type set that includes all
the most prevalent types in each language. Each language-
specific type is mapped into its generic form, and this way
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we can compare signatures from different programming lan-
guages. This set of types includes the following: iterable,
list, set, string, number, dictionary, file,

bool and object. Connections between different types
were also created. Consequently, closely related types, such
as iterable and list, will get a higher similarity score
than completely different ones.

6. Implementation
We implemented and evaluated our approach using the well-
known question-answering site STACKOVERFLOW. One of the
main challenges was to obtain labeled data, to which we
could compare our results. Towards that end, we imple-
mented a system that allows us to crowd-source this task.
The system and experiments were written in Python and
Java, and run on an Intel(R) Core(TM) i7 − 2720QM CPU
@ 2.20Ghz machine with 16GB installed RAM, allocating
a maximum of 750MB heap space.

6.1 Training
The first component of SIMON is the building of a massive
code-to-descriptions mapping. This step is performed only
once (or more accurately, once in awhile in order to keep the
database up-to-date) and used by all the following steps.

6.1.1 Building a Description Oracle
To build the semantic description of a piece of code, we will
use the text of a question from SO, whose code is in its an-
swers (or other but still syntactically similar code). We cre-
ated a description oracle, that contains more than 1M code
fragments linked to their descriptions. We used SO to con-
struct our description oracle, due to its volume and cover-
age, but any code can be analyzed. SO includes many “How
to?” questions answered with a code fragment. Our inves-
tigation shows that in most cases the question can play a
major role in the semantic description of a piece of code.
To build the semantic description of a code fragment, we
use the text of the questions that contain the code fragment
in one of their answers. The semantic description is com-
posed using the title and the question, with different weights
assigned to each. The method for choosing parameter val-
ues is described in Section 6.1.2. We concluded that the title
should have a major influence on the final score, because it
seems to be the most descriptive part of the question. This
conclusion was also drawn by Jeon et al. [17] in previous re-
search regarding question similarity. Because SO is crowd-
based, it might contain wrong answers, which are expressed
by bad code fragments. In order to deal with this challenge,
we use the SO voting system, whereby each post (questions
and answer) is assigned a score by the site users. We collect
statistics about these scores and use them as a quality mea-
sure. Table 2 shows the collected information. According to
Nasehi et al. [33] and our statistics, we know that only 20%
of all answers and 15% of all questions have a score of 3

Type Avgvotes>0 #votes>0 #all #votes>2

Question 3 > 3.7M > 7.9M > 1.1M
Answer 3 > 8.1M > 13.5M > 2.8M

Table 2. Statistics about STACKOVERFLOW posts.

or higher. Moreover, the average score of a SO post with a
score higher than 0 is 3. Therefore, we chose 3 to be the high
score threshold for considering questions and answers as in-
formative and we considered only code fragments that origi-
nate from posts with high enough scores. In this step we also
determine the programming language of the extracted code,
using the tags and the text of the post itself, and we train
an LSA model, using more than 1M textual descriptions ex-
ported from SO.

6.1.2 Parameter Tuning
Our system contains several parameters, such as the weight
assigned to each question part, the influence of the type anal-
ysis on the final similarity score, and the threshold, which
separates similar from different tags. Different parameters
produce different classifiers, and we want to select the best
one. We built a dataset with many pairs of code fragments
and a boolean, which represents whether the fragments are
similar. We use our labeled data, and look for the best values
using ten-fold cross-validation, a common choice for model
selection problems. Ten-fold cross-validation means that the
dataset is randomly split into ten equal size subsets. With ten
validation steps, trained on nine out of ten subsets and tested
on the remaining one, we can find the best values [22]. We
found the parameters that achieve the highest measurement
values (as discussed in Section 7.2), while maintaining rela-
tively low deviation, and set them to be our system parame-
ter values. Our analysis showed that 0.4 of the score should
come from the titles and 0.6 from the entire question text.
The type signature gets 0.15 of the final similarity score, and
the threshold was determined to be 0.52.

6.2 Measuring Similarity
6.2.1 Textual Similarity
The text similarity method is one of the building blocks of
our work. Hence, we had to choose it wisely. We decided to
use a combination of certain text similarity techniques.
For the Titles. Titles are mostly short and descriptive (e.g.,
the titles in Table 1). Hence, we decided to use query ex-
pansion [49], expanding only terms from the programming
domain to avoid reduction in the quality of the results. Our
specialized technique is based on the database created by
Tian et al. [47]. With the expanded titles, we used ADW [38]
to build the corresponding vectors and compute the relevant
cosine similarity between them. This part was written in Java
using the open source code of ADW and SEWordSim.
For the Content. The combination of the title and question is
a longer text (mostly around five sentences). We used TF.IDF
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and SVD (as implemented in Scikit Learn and explained in
Section 3.1.2) to implement LSA. We trained the model once
and created a semantic space, on top of 1M texts that were
exported from SO.

6.2.2 Signature Similarity
To infer the type signature of a given snippet, we visit its
AST and extract type and flow information. Our snippets
are partial programs; they are often not parsable, and hence
we can’t create the AST immediately. In the first step, the
snippet is processed to the code which is most likely to parse;
in Java, for example, we initially import required classes,
and then add variable initialization, fake method and class
declarations, using ASTVisitor. After we get parsable code,
we generate its AST and then we visit all its nodes. For each
node we decided separately which information we want to
keep. In Python, which is a dynamically typed language, we
also extracted its function input and output types, using the
documentations. The final product of this step is a labeled
graph, from which we can find the snippet’s inputs and
outputs. To compute the similarity of type signatures for
two given code fragments, we first try to match each type
in one signature to its best fit in the other signature. Perfect
matches (the same cross-language type) were assigned a
higher score. Partial matches (e.g., set and list), were
assigned a lower score. The final value is in the range of
[0, 1]. We implemented our analysis for Java and Python.

6.3 Labeling System
To build the labeled corpus we had to find a way to determine
the similarity level between a vast group of code fragments.
This task requires human input and cannot be performed au-
tomatically. The idea to use crowdsourcing to support soft-
ware engineering tasks has recently elicited great interest
[7, 46], so we decided to exploit it; we developed a crowd-
source based web application called LIKE2DROPS. The
system is available online here: http://like2drops.
com. In this system, the user’s task is to choose the tag
that most appropriately describes the pair’s similarity on a
5-level Likert scale [27]. The possible tags are: very sim-
ilar, pretty similar, related but not similar, pretty different
and totally different. We designed a human intelligence task
(HIT) of classification (100 pairs each) and looked for qual-
ified programmers, with broad programming knowledge. To
get many experts’ opinions, we posted our system as a job in
many freelancer sites, such as Elance, oDesk and Freelancer,
and collected users’ answers. Because we couldn’t blindly
trust any user, we had to integrate a trust test. Each fifth
pair was taken from a sample set that we manually tagged.
Users with high percentages of disagreement were removed
from our experiments, due to our suspicion that they might
have lied about their expertise. In our labeling system, we
required that pairs be assigned a quantitative score from 1 to
5; however, the final evaluated product is a binary classifier.
We saw that the overall direction of different users was often

int x = Integer.parseInt("8");

(a)

char c = ’1’;
int i = c - ’0’;
// i is now equal to 1, not ’1’

(b)
Figure 10. Two code fragments with inconclusive similarity
level, both written in Java.

def f7(seq):
seen = set()
seen_add = seen.add
return [ x for x in seq if x not in

seen and not seen_add(x)]

(a)
List<Type> liIDs =

liIDs.Distinct().ToList<Type>();

(b)

Figure 11. Semantically related fragments for creating a
distinct list that was found with SIMON

the same, e.g., very similar and pretty similar, but the spe-
cific tags were not. We also saw that a large portion of the
related labels were accompanied by similar labels; hence we
decided to treat related as similar for our binary evaluation
(note that SIMON’s output is quantitative).

7. Evaluation
7.1 Labeled Corpus of Program Pairs
For our evaluation we created a large corpus of program
pairs, tagged by similarity level. This corpus is of possible
interest of itself. It contains 6,500 labeled pairs, based on
more than 15,000 user tags, and is continuously growing.

Because similarity is not equivalence, it is not always
clear whether two code fragments really are similar. There-
fore, we had to build this corpus carefully. The corpus base is
the crowd’s knowledge, and each pair’s similarity was deter-
mined by agreement among several users. Cronbach’s alpha
[43] value for program pairs with exactly 3 raters is 0.847
and for 4 raters is 0.81. These values indicate hat the tags as-
signed by different raters are consistent. Figure 10 shows an
example of a pair whose similarity is inconclusive and might
be tagged as similar or different. The figure shows two code
fragments that in principle transform a string representation
of a number to its integer form. However, the first can handle
any integer while the second is limited to digits only. Thus
different users might assign this pair different tags.

7.2 Measurements
Using tags fetched from LIKE2DROPS, we computed the
precision, recall, accuracy and AUC. We denote Precision
as the fraction of snippet pairs that are labeled as similar
and are indeed similar. Recall is denoted by the fraction
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# Configuration Precision Recall Accuracy AUC
1 Full approach 86.2% 85% 87.3% 0.9391
2 Full, without type signatures 85.8% 85% 87.1% 0.9386
3 Full, without software specialized vocabulary 85.1% 83.7% 86.3% 0.9358
4 Full, without ADW and software specialized vocabulary 83.3% 83.1% 85.1% 0.9335
5 Full, without LSA 83.6% 82.4% 85.1% 0.9343
6 Only titles (ADW and software specialized vocabulary) 83.8% 73.7% 82% 0.9011
7 Only content (LSA) 81.1% 73.9% 80.8% 0.8726
8 Tokenized-code, TF.IDF [11] 77.3% 76.5% 79.6% 0.8342
9 Tokenized-code, LSA 79.8% 69.6% 78.7% 0.825

10 Random 45.6% 47.4% 50.7% 0.4993

Table 3. Results obtained by omitting different parts of SIMON and comparison to other techniques.

of similar code fragment pairs that are actually labeled as
similar. Accuracy is the fraction of correct labels.

When building a classifier the challenge is to find a good
threshold (used to separate similar from different samples)
across experiments. Plotting the accuracies using differ-
ent thresholds yields the receiver operating characteristic
(ROC) curve. The accuracy of the classifier is the area un-
der the curve (AUC) value [6]. The ROC curve allows us to
compare different classifiers.

7.3 Similarity Classifier Evaluation

Dataset Setup. The experimental dataset contains 6,500
pairs of code fragments that were extracted from SO. This
dataset consists of code fragments written in 37 different
programming languages, such that Python, Java, C#, php and
Javascript are the dominant languages. The average snippet
length is 165 characters, while the smallest snippet has 35
characters and the longest one has 600. Figure 11 is an ex-
ample of a similar pair from the database. We collected more
than 15,000 user classifications. For 94% of the labeled pairs
there was a consensus regarding similarity (similar or not);
however, in the remaining 6% we couldn’t determine the
correct label because the answers varied greatly. It thus ap-
pears that no conclusive decision is possible. We therefore
omitted these pairs from our experiment.
What is the best configuration for establishing similarity?
For pairs with more than one user label (sample set of 2749
pairs), the results show that 87.3% of our labels are consis-
tent with those of the users, while the precision is 86.2%
and the recall is 85%. Table 3 shows the results using dif-
ferent configurations of SIMON; note that we chose the best
threshold for each configuration, and that these values are
the candidates that maximize the accuracy while maintain-
ing relatively high recall and precision. The first row is the
full configuration, that is, SIMON with all its steps. The next
rows show the numbers achieved using a partial configura-
tion of SIMON. Row 2 is the full configuration, using the text
analysis only, without type signatures. Row 3 is the full con-
figuration, using the text analysis, without software-specific
specialized vocabulary. Row 4 is the full configuration, using

Method Precision Recall Accuracy
SIMON 92.2% 92.6% 89%
DECKARD [18] 71.5% 51.5% 55.6%
JPlag [41] 65.3% 45.1% 48.5%

Table 4. Comparison results on Java-Java pairs dataset.

LSA alone as the text similarity method. Row 5 is the full
configuration, using TF.IDF as the text similarity method.
Row 6 is the full configuration, using the title only for the
textual description (ADW as the text similarity method).
Row 7 is the full configuration, using the content only for the
textual description (LSA as the text similarity method). Row
8 shows the tokenized-code approach, using TF.IDF for the
text analysis. This result was achieved using the approach of
the DeSoCoRe tool [11]. Row 9 shows the tokenized-code
approach, using LSA for the text analysis. Row 10 shows
a random choice for each pair (uniform). Tokenized-code
refers to the naive approach, where we use the code as its tex-
tual description. The results of lines 8 and 9 were achieved
with pre-processed code (token decomposition and operator
removal), and the results without this step are less accurate
(around 10% less). The relatively high values achieved us-
ing this approach can be explained by wrong user labels that
were based on the syntax instead of the semantics. These
wrong labels acted in favor of the naive approach. It can
be seen that the difference between the first two lines is not
significant: the contribution of the type signatures is almost
unobservable due to a bias caused by relatively few pairs
having signatures (the implementation does not cover all the
programming languages). We believe that the type signature
could be more useful than what we have demonstrated in our
experiments in datasets with more pairs that have similar de-
scription and different type signatures. McNemar’s test [29]
between the results obtained with our approach and each of
the other configurations (excluding the second) showed two-
tailed P-values of less than 0.0001, which by conventional
criteria indicate significant difference.
Comparison to other code similarity techniques. It is im-
portant to note that when the given programs are very close
syntactically, syntactic clone detection might be more pre-
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#Users #Labels Precision Recall Accuracy AUC
All 3951 80.4% 81.7% 83.1% 0.9036
> 1 2749 86.2% 85% 87.3% 0.9391
> 2 1430 89.5% 86% 89.7% 0.9591
> 3 710 91.7% 88.5% 91.4% 0.9720
> 4 419 92.6% 88.5% 91.9% 0.977
> 5 282 91.5% 87% 90.8% 0.9727
> 6 200 94% 91.9% 94% 0.9834
> 7 147 93.4% 93.3% 94.6% 0.9889

Table 5. Results obtained by different confidence levels.

cise than our approach. The goal of our approach is to han-
dle the case in which the given code snippets are not simi-
lar syntactically, and applying techniques that rely on syn-
tax is unlikely to succeed. This distinguishes our technique
from classic clone detection techniques. Figure 1 is an excel-
lent example of such case. To evaluate our approach, against
a pure structural approach, we compared it to JPlag [41],
a tool that finds similarities among multiple sets of Java
source code files in order to detect code plagiarism. To-
wards the comparison, we filtered only Java-Java pairs, made
them parsable (as described in Section 6.2.2), and used them
for this evaluation. The results are shown in Table 4 and
based on 354 Java-Java pairs. JPlag achieved “high” preci-
sion due to the large number of pairs that were classified
with a score of 0. We used the same Java-Java dataset with
Deckard [18], using the following parameters that achieved
optimized results: 10 minimum tokens, 0 stride and 0.45
similarity threshold. These results are also shown in Ta-
ble 4. Vinayakarao et al. [48] present a technique for find-
ing functionally similar snippets, using textual similarity
and program analysis techniques. The approach is demon-
strated with STACKOVERFLOW posts, focused on Java snip-
pets. The similarity between two snippets is determined by
applying a simple text similarity method to the correspond-
ing posts’ vocabulary, and by the snippet’s structural infor-
mation. Our work differs from this work in the following
ways: Vinayakarao et al.’s goal is to find code fragments that
match a given query, while ours is to capture similarities be-
tween code fragments. Moreover, the second step of their
approach is to filter out syntactically similar fragments by
their complexity level, while we want to preserve fragment
similarity. We tried to adapt Vinayakarao et al.’s approach
to our case; however, many implementation details are miss-
ing and their approach being query-post oriented, led to bad
performance, so we decided to omit this evaluation.
Does agreement between more raters improve the results?
Despite our efforts to get many answers for each pair (e.g.,
many user opinions), there was still a group of pairs with
only a few tags. To check the source of the mismatches
between the labeled data and SIMON’s classifications, we
manually analyzed a representative group (|group| > 200)
of misclassified tags. Figure 12 shows the error distribution.
Many errors were caused by wrong labels, given by one

Figure 12. Analysis of more than 200 wrong classifications.

user. We tried to understand whether agreement between
more users can help us to achieve better results. Table 5
shows the different measurements achieved using pairs with
an increasing agreement threshold. The threshold is based
on the number of distinct users that agreed on a specific
pair. Notably, even an increase to agreement between two
users dramatically improves the results. The pie chart also
indicates the possibility of improving the results by adopting
better text similarity techniques and shows that we can’t
blindly trust the descriptions.

7.4 Code Retrieval Evaluation
To find representative fragments, as explained in Section 5.3,
we have to query our database using syntactic similarity
technique. We performed several experiments to evaluate our
ability to query the documentation oracle.
Generic method. The first experiment examines our abil-
ity to retrieve syntactically similar snippets with the generic
method. We checked two sets of code fragments from mul-
tiple programming languages: (i) control group: 25 frag-
ments randomly chosen from our 1M database, and (ii) 25
fragments randomly chosen from our 1M database that were
mutated by a programmer. He was instructed to apply muta-
tions that consist of changes in the formatting, naming and
literals – changes that preserve the flow and functionality of
the original program.
This experiment consists of two sub-experiments:

Full database (our original 1M snippets database) - We
used each fragment as an input query and evaluated our
ability to retrieve the correct fragment. Fragments from the
first group were correctly returned as the first match in all
cases. Fragments from the second group were retrieved as
the first result in 16/25 of the cases, as the second result in
8/25, and not at all only once.

Limited database - We created a test set with 1,000 code
fragments that were randomly extracted from SO. A pro-
grammer with more than 7 years of experience tagged each
of the 50,000 pairwise options of query and database entry.
This process was long and took around 4 months using a
dedicated system that allowed him to easily tag many pairs.
With these labels we managed to compute the precision, re-
call and accuracy, as shown in Table 6.
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Precision Recall Accuracy
94% 92.1% 99.987%

Table 6. Our code retrieval results based on a test set with
1,000 code fragments and 50 search queries.

>>> wordlist = [’Schreiben\nEs’, ’Schreiben’,
’Schreiben\nEventuell’, ’Schreiben\nHaruki’]

>>> [ i.split("\n")[0] for i in wordlist ]
[’Schreiben’, ’Schreiben’, ’Schreiben’, ’Schreiben’]

(a)
>>> la = ["a.b.c.d", "a.b.c", "y.d.k", "z"]
>>>
>>> [elem.split(’.’)[-1] for elem in la]
[’d’, ’c’, ’k’, ’z’]

(b)

Figure 13. Syntactically similar code fragment.

Python-specific method. To evaluate the Python-specific
syntactic similarity method, we designed a simple and
precision-oriented experiment. We chose this method of
evaluation due to the success of the previous technique and
the fact that this method is recall-preservative and may neg-
atively affect only the precision (each pair that was found
similar using the first method will necessarily be similar
in this method). We initialized the pair database with more
than 1,000 pairs. Then, we collected pairs that were labeled
as similar by SIMON (Figure 13 shows an example of such
a pair). Another programmer, with more than 8 years of ex-
perience, validated the results and determined whether each
pair indeed represents similar snippets. For identical frag-
ments with no modifications except to their variable names,
perfect results are obtained. The results show almost 94%
agreement along all the checked pairs. Analysis of the errors
revealed that many of them are the product of very short
programs, important function parameters (that change the
code’s functionality) or use of functions with the same name,
originating from different libraries. We could have tightened
the requirements for a pair to be declared as syntactically
similar; however, had we chosen to do so, we would have
lost good matches. Our current preference is to use this ap-
proach, but it is open for future research.

7.5 Performance
SIMON’s performance was not a priority, and therefore no
major optimization steps were implemented. However, we
aimed to achieve reasonable computation times. Nonethe-
less, the first phase, wherein we build the documentation
oracle and train the text similarity models, is long: around
8 hours. This step is done only once in awhile to keep the
database updated. The average running time for the text sim-
ilarity (LSA and ADW) and type signature comparison steps
is around 1 second each, while the code retrieval step takes
around 0.5 seconds in the generic retrieval method, and 1
second for the Python-specific method.

8. Discussion
In this section we present justifications for some of the
choices we made, interesting points, and certain limitations.
Limitations. The significant challenge of our approach is
to find representative code in our database for an arbitrary
code fragment provided by a user. While it seems a ma-
jor challenge, we believe that as a more code is integrated
into our database, the greater the chance that any reasonable
fragment will have a proper representative. Even a closed
code base could be annotated with descriptions from SO.
This challenge and its solution are discussed in greater de-
tail in Section 4.1. Another challenge in our approach is
that it is heavily crowd-based. When a given program does
not have sufficiently detailed or precise corresponding tex-
tual descriptions, the textual similarity may be too weak. In
such cases, our approach may fail to establish similarity. We
adopted elimination techniques, such as ignoring code frag-
ments that originate from posts with a low voting score and
removing bad user classifications; however, our approach
might still be biased. Another limitation is associated with
relatedness. While we believed that this term is well defined
and clear, a review of classified pairs showed that it is con-
troversial. Consequently, we got many pairs classified as re-
lated, some of which indeed follow our definition, but some
of which do not. This reduced SIMON’s performance and we
think that the term relatedness between code fragments can
be a foundation for future work. One should also note that
our approach is limited by the performance of its syntactic
similarity and text similarity techniques. With that said, our
evaluation shows that the chosen methods are a good match.
ADW & LSA. Simple text similarity techniques such as
TF.IDF are sufficient and can get good results in many cases;
however, they cannot capture semantic relationships due to
the randomness of human expression. Consider, for exam-
ple, two code fragments that sort a list. One is associated
with the textual description: Arrange group of numbers in
Python and the second with Sort my digits list - Java. It is
easy to see the affinity between the descriptions; however,
without the addition of advanced techniques such as ADW
or LSA, they might be classified as different.
Specialized Vocabulary. Software contains unique words
that are not part of “everyday speech”, such as types (e.g.,
String, Int, Integer) and keywords. It also contains words
whose meanings are different from their everyday sense,
such as directory. The meaning of the word “directory” (ac-
cording to Merriam-Webster) is “serving to direct; specif-
ically: providing advisory but not compulsory guidance” or
“a book that contains an alphabetical list of names of people,
businesses, etc.” But in the programming domain directory is
a folder, where we can store our files. The words folder and
directory are strongly related when dealing with software, a
fact we would miss if our method were unable to recognized
the unique meaning of these words in the software context.
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However, we did not observe that this distinction had any
significant effect on the results in general. This is probably
due to the use of mostly consistent terms in the descriptions.
Text Similarity vs. Code Similarity. Semantic text similarity
is a hard problem due to ontologies and negation. Much re-
search has been conducted on this subject [16, 38]. Common
techniques are based on knowledge bases, such as WordNet,
which help to clarify the randomness created by ontologies
and achieve good results. On the other hand, the nature of
code complicates the use of standard text similarity tech-
niques. Code fragments have different syntax, according to
their programming language, different documentation, for-
matting, identifiers, data types, APIs, libraries, algorithms,
literals, etc. Similar code fragments can be much more com-
plex than texts and differ in many ways. In contrast, the text
similarity problem we deal with is even easier in that we
have to compare texts that originate from the narrow domain
of programming, all written in English. These restrictions
make our specific text similarity problem solvable and, com-
bined with snippet analysis, which eliminates the errors of
the text similarity method – it yields great results.

9. Related Work
In this section, we briefly survey a few related works.
Cross-Language Code Similarity. The topic of cross-language
code similarity has not been widely investigated. However,
some research exists. Flores et al. [11] approached this prob-
lem to detect source code re-use across programming lan-
guages, using NLP techniques. After splitting source code to
functions, they compare the similarity of functions from the
source codes, using basic NLP techniques, such as n-grams
and tf. To measure the distance between two code repre-
sentations, they used cosine similarity. There has also been
some work that relies on probabilistic models of programs
based on large code bases [19]. In this work, Karaivanov et
al. suggested an approach for program translation based on
mapping between C# and Java grammars.
Clone Detection. In general, syntactic clone matching tech-
nique works on the structure of the program. For example,
Deckard [18] turns ASTs into a vector and uses locality sen-
sitive hashing to find similar vectors. Deckard uses features
that are directly extracted from the program’s AST and does
not rely on mapping them to more abstract concepts like nat-
ural language description as done in our work. Tools like
Deckard can be used for initial mapping of a given program
to corresponding representatives in the database.
NL as a Tool for Programming Tasks. Hindle et al. [14]
were the first to apply statistical language models originat-
ing from the NLP world to programming languages. They
showed that code is more repetitive and predictable than
natural language and hence can be modeled using statisti-
cal language models. Furthermore, they suggest that code
fragment retrieval can rely on English descriptions, a task

we deal with. Kuhn, Ducasse and Gírba [25] leverage the se-
mantic knowledge expressed in code naming and comments
to cluster code sections. They use LSI and other IR tech-
niques to find topics, utilizing the vocabulary in the code.
Applying such techniques directly on the code may be the
first step in building the textual descriptions for “new” code
fragments. There has been a lot of work on the use of natural
language in software engineering tasks. Some work has ad-
dressed the problem of inferring specifications from natural
language descriptions [35, 57]. Other works have dealt with
security policy extraction [51], detection of API documen-
tation errors [56], bug identification [13], code convention
modification [1], traceability link recovery [34] and source
code search [21]. To the best of our knowledge, we are the
first to use the mapping from code to textual description cap-
tured in big code to establish cross-language code similarity.
Automatic Tagging. Our approach is also inspired by auto-
matic tagging of images used in the search context [8, 24].
In such methods images are annotated with textual tags that
are used for retrieval. Existing work on synthesis of high-
level descriptions from code fragments [45] typically relies
on structural analysis of the code itself. While this has many
advantages, this approach is often limited to describe the
code only in terms of its actual operations (in terms of the
solution), without any mention of the problem being solved.
Code Retrieval. Mishne and De Rijke [31] used conceptual
modeling of code to perform the task of code retrieval, avoid-
ing the differences in programming language syntax. They
represent each code as a conceptual graph (CG) [44] and
thus were able to capture the content and the structure of the
code. Ponzelli et al. [40] developed an Eclipse plug-in which
connects code snippets to relevant STACKOVERFLOW discus-
sions. They built a ranking model to evaluate the relevance
of the discussion to the code. Keivanloo et al. [20] suggested
approach for spotting working code examples via free-form
queries used for Internet-scale code engines. Their approach
is based on p-strings, cosine similarity and ranking models.

10. Conclusion
We presented a novel approach for measuring semantic relat-
edness between code fragments based on their correspond-
ing natural language descriptions and their type signatures.

Our approach is inspired by work on image retrieval,
where image similarity is determined by first associating im-
ages with textual descriptions (tags), followed by compari-
son of these descriptors. We believe that this presents a new
direction to be explored for program similarity, where the
approach presented in this paper is a first modest step.

We implemented our approach in a tool called SIMON, us-
ing STACKOVERFLOW, and applied it to determine relatedness
between program pairs. We used the crowd to collect labeled
data, which may itself be of interest. We combined an open-
world approach, text similarity techniques, and type analy-
sis, and showed that it leads to promising results.
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