
Swamp: A Fast Processor for Smalltalk-80

David M. Lewis, David R. Galloway, Robert J. Francis, and Brian W. Thomson

C o m p u t e r S y s t e m s R e s e a r c h I n s t i t u t e

U n i v e r s i t y o f T o r o n t o , T o r o n t o , C a n a d a

Abstract

A processor for the Smalltalk-80 'f programming language
is described. This machine is implemented using a s tandard
bit slice ALU and sequencer, TTL MSI, and NMOS LSI
RAMS. It executes an instruction set similar to the
Smalltalk-80 virtual machine instruction set. The data paths
of the machine are optimized for rapid Smalltalk-80 execu-
tion by the inclusion of a context cache, tag checking, and a
hardware method cache. Each context is only partly initial-
ized when created, and has no memory allocated for it until a
possibly non-LIFO reference to it is created. The machine is
microprogrammed, and uses a simple next micro-address
prediction strategy to obtain most of the performance of
pipelining without the a t t endan t complexity. The machine
can execute simple instructions at over 7M byteeodes per
second and has a predicted average throughput of 1.9M
bytecodes per second.

1. Introduct ion

Smalltalk-80 [1] (henceforth, ST-S0) is an object-oriented
programming language which executes very slowly on conven-
tional processors. The reasons for this slow execution are
common to object oriented languages, and include:

• Message sending with no statically determinable type
information means tha t the procedure to perform the
actions requested by a message must be determined
dynamically

• Non-LIFO control means tha t storage for activation
records (called ¢ontez~ in ST-80) must be allocated on
the heap

t Smalltalk-80 is s trademark of Xerox Corp.

Permission to copy without fee all or part of this mste~d is granted provided
that the copies ate not made or dis~buted for direct commemial sdvant~e,
the ACM copy~lht notice and the title of the publication and its date appear,
and notice is given that. copyin8 is by oermimon of the Association for
Computlnli Machinery. To copy otherwise, or m republi.d~ requires s fee and/
or specific permi~on.

O 1986 ACM 0-89791-204-7/86/0900-0131 75¢

• automatic storage management means tha t unused
storage must be detected and reclaimed by the imple-
mentat ion

This paper describes a processor tha t is designed for the fast
execution of ST-80. This processor, called Swamp (Smalltalk
Without All tha t Much Pipelining), applies an important and
general principle tha t is often used in creating efficient sys-
tems. This principle is to identify those simple special cases
which are dynamically frequent, and which do not require the
expense of the general case, and optimize the handling of
them. This principle is applied to the above problems in the
following manner:

• messages sent to integers or other common classes of
objects are handled efficiently

• contexts are allocated based on the assumption tha t
they will be used in LIFO order, decreasing the memory
management traffic

• storage is allocated on the a~umpt ion tha t recently
allocated storage will not be used for long, while
storage tha t has been used for a long time will continue
to be.

The identification of these problems and the application of
similar solutions is not new; they have been used in both
software implementations II0] [11] and hardware implementa-
tions [3] [14] of ST*80. Where Swamp differs from previous
implementations is the application of these solutions.

The ST-80 system is described in terms of an implementa-
tion called the ST-80 virtual machine (ST-80VM). Implemen-
tat ions on s tandard processors which adhere to this
specification generally have poor performance, due to the
time required to interpret the ST-80VM instruction set in
software and due to the lack of any special hardware
designed to speed ST-80 execution.

Much higher performance is available by translat ing the
ST-80VM instructions into the native instruction set of the
processor. Even when the native instruction set contains no
support for ST-80, good performance can be achieved [11]
[15]. The SOAR processor has demonstrated tha t when sup-
port for ST-80 is added to the processor, implementations
which translate ST-80VM code into the native code can have
good performance even with a relatively slow processor [3].

,September 1966 OOPSLA '86 Proceedings 131

The use of the ST,80VM has several advantages. It is
compact, which reduces both space requirements and instruc-
tion fetch bandwidth. The ST-80VM is also portable, and
allows different implementations to use the same implementa-
tion of the compiler and debugger. Published implementa-
tions with special hardware for ST-80 have good perfor-
mance, but we suspected bet ter performance was possible for
the same implementation technology. SOAR uses a RISC
organization, which requires high instruction bandwidth.
Sword-32 114] uses the ST-80VM, but we believed better per-
formance could be obtained with comparable technology.
Although the cycle time of Sword-32 is 125ns, less than one
fourth of the 550 as cycle of SOAR, its performance is only
25% better. We believed tha t a processor carefully designed
to suit the requirements of ST-80, and using an instruction
set similar to the ST-80VM, could perform as well as a native
code implementation, but still have a dense instruction set
and low memory bandwidth.

The goal of Swamp project is to investigate high perfor-
mance machines for the execution of ST-80. In the first
phase, we intend to investigate machines using instruction
sets with only very minor differences from the ST-80VM.
This will also be used to gain experience with ST-80. In the
longer term, we expect tha t changes to the ST-80VM will be
necessary for maximum performance.

This paper describes a processor designed as a result of
the first par t of the project. The goals of this work were to
design a processor capable of executing ST-80 at a rate com-
parable to a typical workstation executing programs in con-
ventional languages such as C or Pascal. This meant a per-
formance goal of one to two million byte codes per second.
This implementation was constrained to using s tandard chips

• because we did not have the resources to devote to a VLSI
implementation. Because this processor is intended as a
"one-of" prototype to gain experience with ST-80, there is
also little point in casting it in silicon. For this reason, bit
slice technology was selected for the da ta paths and control
sequencer.

2. Object R e p r u e n t s t | o n

Object representation is an. important design decision in
implementing a ST-80 system. The VM defines a representa-
tion suitable for small machines, and restricted to 32K
objects. For a high performance machine such as ours, this is
unsatisfactory. We use 32 bit object references (called
OOPs).

Another disadvantage of the ST-80VM is its use of an
object table and reference counting as the garbage collection
method. These are very slow to implement, because every
reference to a field of an object takes two memory references,
and because of reference counting overhead. For this reason,
we used an object representation in which object references
point directly to the memory locations used by the object, ns
did BS [17] and SOAR [3] [16[.

Garbage collection is done with a generation based
scheme similar to [7] and [8]. Memory space is divided into a

number of generations, 8 in this case. Generation 0 is the
oldest generation, and objects are normally allocated in gen-
eration 7. All objects refer to other objects by their OOPs,
but such references are only unconstrained for references
from objects in generation i to objects in j when j <_ i. All
other references require tha t the object containing the refer-
ence be noted in an entry table. There are 28 such entry
tables, containing references to all of the objects in genera-
tion i which refer to objects in generation 2", where i < 2".

When there is no more space for objects in generation 7,
garbage collection must take place. The entry tables provide
a set of potential live references to objects in generation 7.
All objects still accessible in generation 7 are moved into gen-
eration 6. Generation 7 is then reused a s ' a pool of free
space. The same approach is used when generation 6 or older
generations fill up. Older generations are garbage collected
less frequently, and generation 0 is only garbage collected
off-line. The size of each generation can be optimized by
observing the lifetime distribution of objects. A minor
difficulty is to avoid having one generation fill up when
garbage collecting another. This is most easily avoided by
having a spare pool of storage of the same size as the largest
non-0 generation.

The desire for maximum speed encourages the use of an
object representation in which objects of class S m a l l l n t e g e r
are represented by a bit pat tern similar to the 2's comple-
ment representation of the value. Our processor carries this
to the maximum extent possible. S m a l l l n t e g e r s are
represented in 2's complement form, but restricted to a sub-
set of the set of values representable in 32 bits. This means
tha t the manipulation of S m a l l l n t e g e r da ta can take place
without any masking or shifting.

During execution of a ST-80 program, most references are
to da ta contained in contexts. Our architecture t rea ts con-
texts specially in order to maximize the speed of operations
on them. ST-80 allows program references to contexts to be
made, however, requiring t ha t the implementation appear to
represent contexts in the prescribed form. Contexts are not
often referred to by programs, so it is advantageous to
represent them in a different, more efficient, manner, as long
as the required information can be recovered. In order to do
this, our architecture requires tha t contexts reside in a dis-
t inct address space, so tha t references to them can be easily
detected and cause special handling to generate the correct
information.

Table I gives the representation of objects in our system.
This OOP representation has some similarities to tha t of
SOAR [16]. OOPs with most significant bits (MSB's) of 11 or
00 are Smal l In tegern , and the OOP contains the 2's comple-
ment representation of the integer. OOPs with MSB's of 01
are other object references, comprising a 3 bit generation
number and a 27 bit memory address. Memory addresses are
also 27 bits, so any field in an object can be read by adding
the OOP of the object to the index of the desired field and
reading tha t word in memory, without having to perform
indirection in an object table. Contexts are distinguished
with MSB's of 10.

132 OOPSLA '86 Proceedings September 1986

Representation Meaning

OOb~b~s • " • bo 2's complement S m a l l l n t e g e r
l lbsebzs • • • 60 2's complement SmallIntefger
01g~gtgoa2eu~ "" • u0 object at address A
10gzgzg0a~ea~ • • • u0 context at address A

F i g u r e 1. OOP Representation

Objects in memory consist of a 3 word header followed by
the OOPs contained in the object. The first word of the
header gives the class of the object, the second gives the size
of the object, and the third gives a hash value, which is a
S m a l l I n t e g e r tha t the OOP of the object can be mapped
into.

Implementations of ST-80 which use OOPe tha t directly
address memory do make one feature of ST-80 very expen-
sive. This is the message become.', which causes all refer-
ences to an object to subsequently refer to some other object.
This is easy to implement with an object table, but requires
sweeping memory to find all references to the first object in
schemes in which OOPs directly reference memory. We dis-
like the presence of beeomel because of its non-local effects,
and intend to rewrite ST-80 to eliminate all uses of it and
eventually not support it. We initially considered a scheme
similar to [9], using invisible pointers to "becomed" objects,
supported by the hardware, but rejected it because the com-
plexity and loss of speed didn' t appear to be worth the
minimal advantages or become: .

$. Are.hlt~..ture Ore.view

A block diagram of the Swamp processor is given in figure
2. The instruction fetch unit (IFU) is responsible for fetching
instructions and decoding them. It maintains a 6 byte queue
of instructions to execute, and provides the first byte of the
next instruction in the IFU queue for use by the microee-
quencer, called nezfop. It also provides two decoded bytes,
opl and opt, for use as operands. Refill time from loading a
PC to dispatch on a new instruction is 2 microcycles.

The primary block of importance is the context cache,
labelled CCache, and the blocks for addressing it, CCptrs
and CCA. The context cache is a dual ported set of 512 32
bit registers. It is divided into 128 directly addressable regis-
tern and 16 banks of 24 words. Each bank is large enough to
hold a small ST-80 context. Two adjacent banks are used to
hold a large context. The microcode is responsible for iasur-
ink tha t the contexts which can be directly referred to by a
ST-80 instruction are in the context cache.

A four bit current context number register, called CCN,

indicates the identity of the currently active context in the
context cache. A five bit register, called of lags , describes the
type of this context (method or block), and the size of this
context and its caller (sender). A collection of 7 registers,

called the CCPtrs, is used to refer to da ta in the context
cache. Two registers, called ccbaae and hcbaae are used to
refer to the currently active context and possibly another
context (called the home context). Two other registers,
called up and ap are used to point to the arguments and tem-
poraries, and the top of stack in the currently active context.

I oo*'. I I .
P'~ I I

l f

F i g u r e 2. Architecture Overview

There are three other registers, called ocbaae, rump1, and
temp/~ used for scratch registers.

The architecture is a two addrem one, in which two
values may be read and placed onto the Abns and Bbus,
entering the ALU, and the result written back into one of the
locations read. A variety of special values can also be placed
onto the Bbus. The addresses used to access the context
cache can be generated in a variety of ways by the context
cache addressing (CCA) box. The mcet complicated way
allows a sum of one of the CCPtrs, plus or minus either of
opl or opt, plus a small constant in the range -I..8 to be
computed and used as an address in the context cache. This
is useful when an instruction contains an overand which
refers to some location in a context or a value buried in the
stack. A related form of addressing allows one of the CCPtrs
and the small constant to be added and used as an address in
the context cache, and the CCPtr to be incremented or
decremented after the microinstruction. This is useful for
pushing or popping the stack. Only a s u b ~ t of the CCptrs
can auto-increment or decrement. The first 128 registers can
be addressed via an absolute register number. The C C N a n d

CCPtrs are also capable of being modified in a variety of ape-
cia] ways during message sending or returning.

In order to speed message sending where contexts are used
in a strictly LIFO manner, contexts are not fully initialized
when created. Contexts exist in a variety of states, called
soft, mushy, and hard. These varieties are similar to the
organizations of contexts in [II]. A soft context is the
minimal context. It does not have a memory allocation
reserved for it, and there is no OOP tha t can refer to it. The
sender, receiver, and argument fields of a soft context are not
initialized. The sender is implicitly the context at the next
lower address in the context cache, and the arguments are on
the sender's stack, and pointed to by up. When a context i8
first created, it is created as a soft context . A soft context
can only be used for LIFO control, and must be converted

September 1986 OOPSLA '86 Proceedings 133

into another form when the possibility of non-LIFO control
exists.

The next form of context, mushy, also has no memory
associated with it, but has the sender field valid and the
arguments have been copied into it. A mushy context is only
used for LIFO control, but its sender might not be in the con-
text cache.

A fully initialized context is called hard, and in addition
to the sender field, receiver, and arguments, has a memory
allocation associated with it. A hard context will be either in
the context cache or in main memory at any time. An addi-
tional 6eld in the context points to the memory locations
reserved for it. The main memory copy of a context has a
field which indicates whether the context is currently in the
context cache or main memory. Contexts are allocated in a
separate memory space so tha t program references to fields
in contexts can be detected and the actual location of the
context determined. Contexts are initially created soft, and
will be converted into hard ones when an OOP must be gen-
erated for the context. Statist ics in [11] indicate tha t less
than 10% of contexts are used in a manner tha t requires tha t
an OOP be generated for it. When a context is converted
into a hard one, all of its callers must also be converted.
Soft and mushy contexts are freed upon return, but hard con-
texts must be reclaimed by the garbage collector.

The da ta read onto the Abus and Bbus is latched and
passed to an ALU which produces a result on the Fbus. If no
memory reference is being made, this result is passed to the
Rbus. If a memory operation is being performed, the Fbus is
used as the address and the result read from the memory
cache (Mcache) is placed on the Rbus. Memory writes use
the Fbus as the address, and either the Bbus or MDR as the
data.

Tag checking circuitry can detect if the Abus, Bbus, and
Fbus each contain integer OOPs, whether the Fbus contains
a context OOP, and whether a memory write is of a newer
generation OOP into an older generation.

The block labelled MHcache is a method lookup cache
which, given a class and message symbol, will hash the two
values and perform tag checking, and read the method
header into a special register. This takes place concurrently
with other actions during message sending, and greatly
increases the speed of message sending.

In order to simplify microprogramming, the
microprogrammer's view of the architecture is a non-
pipelined machine. For increased speed, writes are performed
in the cycle after the cycle which performs the operation.
Bypassing logic detects read-write conflicts, and forwards
results without a time penalty. The CCA also computes the
addresses in the cycle before they are used, but has access to
the next-cycle values of the CCPtrs, so there is no hazard.

4. M|ez'oeode Sequencer

Our processor uses a s tandard micro sequencer [12] for
micro program sequencing, but augments it with a powerful
wide branching capability in order to be able to rapidly test

a number of conditions simultaneously. The sequencer main-
tains an internal microprogram counter, and has a bus, the
seqDbus, a t tached to it. This bus can be used to specify the
destination address o£ conditional branches, or i teration
counts. Our machine can drive this bus from several
different sources under microcode control. In the most com-
mon case, the seqDbus is driven from a microword field called
brunchbaae. It is also possible to cause branchbnse to be
modified by bitwise ORing of a small number taken from a
variety of sources. These are called the wide branch sources.
The seqDbun can also be driven from a two bit instruction set
register and the nextop field from the IFU, allowing byte code
dispatching. A special value outside of the range of byte
codes is inserted if the IFU does not have a complete byte
code in its buffer.

The wide branch sources are used to test a number of
conditions simultaneously. These sources are arranged so
tha t 0 is the most common result, where it is possible to
predict the result statically. As an example, the trapBran-
chNotlnLABF wide branch is used when perfosming operations
on OOPs which are expected to be Smal l ln t ege re . i t pro-
duces the value 0 if the A, B, and F buses all contain
integers, I if A is not an integer, 2 if A is an integer, but B is
not, and 3 otherwise. This feature is used to implement a
variety of tag checking traps, as does the Symbolics-3600 [18]
and SOAR [1O].

In keeping with the goal of providing a non-pipelined
architecture to the microprogrammer, a wide branch can use
results generated in the cycle tha t specifies the branch. In
the interests of speed, however, the implementation a t tempts
to pipeline instructions. When a wide branch is specified, the
machine will fetch the next microinstruction based upon the
assumption t ha t the wide branch value will be 0. Near the
end of the cycle, this assumption is checked, and if it is
wrong, the cycle is s tretched while the correct microinstrac-
tioa is fetched. The dynamically frequent wide branches are
organized so the the value 0 is the most common one. The
machine will normally run with short cycles. This gives most
of the performance of pipelining without the extra program-
ming complexity. It is also doubtful t ha t a pipelined machine
would be able to accomplish any useful work in the cases
where our machine cannot predict the branch.

Wide branches actually come in two flavours: t raps and
branches. A wide branch of the t rap flavour will prevent any
modification of the Ccache or CCPtrs if the branch value is
non-0. This allows the microprogrammer to perform destruc-
tive operations on da ta at the same time as checking tha t
the assumptions are true, without trashing the da ta if the
assumptions are false.

The wide branching also interacts with the next byte code
decoding. When next byte code decoding is specified, a wide
branch may also be specified. If the wide branch modifier is
0, then the byte code decode will be done. Otherwise, the
branch will be to bruachbnse ORed with the wide branch
modifier. This allows the microeode to immediately execute
the next byte code if the amumptions made were correct.

134 OOPSLA '86 Proceedings ~ 1986

Two examples will illustrate the combined power of the
data paths and sequencer. The first, in figure 3, is the micro-
code for the push-temp byte code. The syntax
" A ~ r e g # n + m " indicates tha t the Abus should be drives with
the register pointed to by the sum of reg, n and m. Reg is a
CCPtr, and n can be an operand or its complement, or an
increment/decrement command, or 0. M is the small con-
s tan t in -1..8. The push-temp byte code is implemented by a
single microinstruction. The microcode places a temporary
in the current context on the Abus. The temporary tha t is
to be pushed is indicated by the opl field of the current byte
code. The ALU is set to p a ~ it unmodified (zero extend a 32
bit quanti ty to a 32 bit quantity), and write the result back
into the context cache, while incrementing the stack pointer.
The next byte code can then be executed, by performing an
unconditional branch with the "macro" field set. The push-
temp byte code always takes one microcycle.

The second example, in figure 4, is the microcode for the
send-+ byte code, which sends the message + and one argu-
ment to the receiver buried one deep on the stack. The
receiver and argument will most often be Smal l In t ege r s , so
the microcode assumes tha t they are, and dispatches the next
byte code if they are. If the receiver and argument are not
both S m a l l l n t e g e r s , or overflow occurs, then a branch to
sendPlus plus 1, 2, or 3 will occur. The send-+ byte code will
complete in one microcycle in the vast majority of cases (over
95~, according to information contained in 151). in the other
5 ~ of the cases the cycle will be stretched while the target of
the microbranch is fetched, and the general code to send the
message + will be invoked.

A cc~cbase~/~op I +ArgOffse t B(~sp#post inc+l
aluZeroExtA writeB seqOpGoToD macro

F i g u r e 3. Push-temp Microoode

I A~.~)sp#postdec B ~ p ~ O + m i n u s l aluAdd writeB
t rapTrapNot ln tABF seqOpGoToD
sendPlus macro

F i g u r e 4. Send-+ Microcode

The byte code to send a message requires 9 mierocyeles if two
or fewer temporaries are created. The most common
execution path is illustrated in figure 5. The first microin-
struction fetches the class of the receiver, checking if it was a
Smal l In t ege r . The second fetches the message selector to
be sent. The method header cache then begins its operations
concurrently with the execution of the microcode. Mieroin-
struction 3 saves the PC in the currently active context.
Microinstruction 4 saves the flags (cflags, the ap and sp) in
the current context, increments C C N and eebase and hebase
to point to a new context via the special operation send-
NewContezt . It also dispatches on a wide branch tha t checks
tha t the method header cache hit, and the kind of method
found. Microinstruction 5 checks the flags of the new context
to see if it was free, and initializes the ap and sp via sendln-
i lCCPtrs. Mieroinstruetion 6 initializes the method field of
the new context by reading it from word 2 of the method
header cache entry. Microinstruction 7 computes the new
PC and sends it to the IFU, and dispatches on the number of

temporaries required by the new method. Assuming one tem-
porary, microinstruction 8 will initialize it to Nil, and
mieroinstruetion 9 will dispatch on the next byte code.
Instruction 8 could dispatch, but the IFU would not be ready,
and this would cause microinstruction 8 to be stretched, and
the microcode for the dummy macro instruction to be exe-
cuted for microinstruction 9. It is therefore faster to not
dispatch until the IFU is ready. A message send tha t creates
n temps takes maz (9, n + 7) microcycles. This depends on
several conditions which are usually true: The receiver is not
a Sma l l In t ege r , the method is in the method header cache,
and the newly allocated context is free. Sends to Smal l In -
t ege r s take an extra cycle.

1 A f ~ s p # o p l b a r + l Br#R0 aluZeroExtA memRead
writeMhcacheClass t rapBranchNotlntABF
seqOpGoToD sendCode

2 A~hebase~0+MethodOffse t B~op2+OO+OMethLi tera ls
aluAdd memRead writeMhcacheMsg
seqOpGoToD sendSavePC

3 A~cebase~0+PCOffse t pcnext aluZeroExtB writeA
4 A(~ccbase~+FlagOffse t flags aluZeroExtB

writeSendNewContext trapBranehMHCacheFlags
seqOpGoToD sendCheckType

5 A~hcbase~0+FlagOffse t aluZeroExtA
writeSendlnitCCPtrs trapBranchFlagBits
seqOpGoToD sendCheekNew

6 A ~ c b a s e # 0 + M e t h o d O f f s e t MHCaeheWord#2
aluZeroExtB writeA
seqOpGoToD sendNilTemps

7 A~hcbase~0+MethodOffse t MHCaeheLitCount4
aluAdd writePCWord seqOpGoToD
trapBranchMHCaeheNTemps nilNTemps

8 A ~ s p # p o s t i n e Br#Rni l writeA seqOpGoToD nil0Temps
9 seqOpGoToD macro

F i g u r e 8. Send Microcode

Another example of the use of the wide branching capability
is to speed up the subscripting messages a t : and a t :pu t : .
These messages request an indexable object to read or write
an object reference at a specified location in the indexable
object. Each class contains a word tha t specified whether
tha t class is indexable, whether the indexable units are bytes
or words, and whether the da ta in the object are OOPs or
bits. It is still necessary to perform a message lookup when
doing a subscripting message because a class can redefine a t :
and a t : pu t : . Because of the importance of this, we added a
fourth bit to the class description. This bit is set if this class
or a superclass of it redefines a t : or a t : p u t . As a result, the
byte codes which send the subseripting messages can check
all 4 of these bits via a single 16-way branch, saving the 7
microcycles needed to do a message lookup and enter the
builtin subscripting microcode through the normal control
path. This method is also po~ible for other common mes-
sages, but only subseripting messages were found to be fre-
quent enough to justify it, as was determined by using the
statistics from [51 in the spreadsheet. Some messages to con-
texts can bypass method lookup by doing a check of the
address space of the receiver.

September 1986 O0 PSLA '86 Proceedings 135

5. Performance Modelling

Performance modelling of our architecture was an essen-
tial part of optimizing performance, taking place con-
currently with architectural design. The dynamic frequencies
of each byte code were calculated from [5] and entered in a
spreadsheet calculator. [5] contains a large number of statm-
tics derived from a large test of the system's performance.
To quote from it:

During this test, the browser, compiler, decompiler,
and window system are exercised in every conceiv-
able way. With full performance monitoring, the
test covers millions of bytecodes and takes over six
hours.

The result is shown in the appendix. The frequencies include
only tboee byte codes that complete in the fastest possible
manner. For example, the send-+ byte code frequency is only
for send-+ byte codes that operate on Smal l In tegers .
Send-+ byte codes that perform a full send are included in
the full send category. Another point to note is that both
micro and macro branch delays are fully accounted for in
this estimate.

/us the architecture evolved, the microcode for each byte
code type was sketched and the overall system performance
was calculated by the spreadsheet calculator. The time w u
estimated in minor cycles, where t microcyele is 2 minor
cycles if it does not reference memory, and 3 if it does. Am
we began with a conventional implementation of message
sending requiring about 25 microcycles, the spreadsheet
immediately pointed out that message sending was the
bottleneck. Adding the method header cache and partial
context initialization reduced thi~ to an estimated 7 microcy-
clue, with 9 microcycles ae the eventual result. With our
microcycle time of 138 ns., the current performance estimate
is 1.9M bytecodes per second.

The spreadsheet indicates the relatively successful parts
of the architecture, and those which still need work. About
45°~ of the byte codes execute in one cycle, and 15~ execute
in two cycles, which together use only 20% of the proee~or's
cycles. Sends and returns, which comprise about 18% of the
byte codes executed, use 40% of the proceseor's cycles. The
byte codes causing context cache manipulation, although only
1°~ in frequency, are estimated as using S ~ of the processor's
cycles. This is baaed on the assumption that they cause a
context to be transferred to or from main storage.

A few caveats are in order whenever performance esti-
mates are made. Our spreadsheet does not include any
allowance for memory cache mimes or method header cache
misses. It only partly accounts for context cache overhead
due to copying hard contexts out of the context cache. Some
allowance for copying contexts into the cache is made bnsed
on the a~umption that byte codes invoking non-LIFO control
cause one context to be copied in. The time estimate for "all
other primitives" is also a guess baaed on average time
predicted for the large number of other primitive operations.

A set of standard benchmarks [2] provide a method of
comparing the speeds of various ST-80 systems. Figure 6

contains a comparison of several benchmarks. K means 1000
(not 1024). Part (a) gives some raw performance data for
Swamp. The first column is the name of the benchmark.
gPiun4 tests the speed of integer arithmetic. Lo&d-
T e m p N R e f tests the speed of pushing Sma l l ln t ege r local
variables onto the stack. L o a d T e m p R e f tests the same,
using an object which is subject to garbage collection. Load-
T e m p R e f will be slower than L o a d T e m p N R e f in reference
counting systems. A e t i v a t l o n R e t u r n tests the speed of
message sending. Ar rayA. t tests the speed of array indexing.

The second column gives the number of byte codes exe-
cuted in the test. The third column gives the time for the
Dorado, the standard against which ST-80 systems are usu-
ally compared, to execute the benchmark. The fourth
column given the time for Swamp to execute the benchmark.
This is not simply s multiple of the microeycle time because
of the inclusion of memory access time and cycle stretching.
The fifth column gives the execution rate of the benchmark
in bytecodes per second.

Part (b) compares the relative performance of Swamp and
some other systems. The second column gives the relative
speed of Swamp versus the Dorado, with numbers greater
than one being faster than the Dorado. The third and fourth
give the relative speeds of SOAR and Sword-32 compared to
a Dorado. The last column gives the relative speed of
PS/68020 compared to a Dorado [15]. PS/68020 is a
Smalltaik implementation baaed on the ideas in [11] running
on a 68020 microprocessor.

test ~tinst Dorado Swamp Swamp
time time inst/see

3Plum 400K ,16 .095 4.2M
LoadTempNRef 400K ,28 .082 3.25M
LoadTempRaf 408K .40 .089 4.65M
ActivationReturn 844I(1.01 .12e 2.eM
ArrayAt 80K .19 .147 .54M

(a) Raw Swamp Performance

teat Swamp SOAR Sword-32 PS/68020
perf perf perf perf

SPins4 1.88 .58 t .80 t .e6
LoadTempNRef 8.25 2.941 .86
LoadTempRef 4.65 1.g2
ActivationReturn 8.01 4.1 S.0 1.84
ArrayAt 1.29 .51 .Y2

(b) Performance Relative to Dorado

test SOAR Swordo32 PS/68020 Dorado
pert pert pert per(

8Plus4 1.30 t .49 t . ~ .96
LoadTempNRet .63 t .93 .14
LoadTempRef .29 .09
ActivationReturn 2.07 .57 .20 .Of,
ArrayAt 1.80 .49 .34

(c) Performance Relative to Swamp With Nornmlised Cycle Times

t: computed by us from published data

F i g u r e 6. Benchmark Results

136 OOPSLA '86 Proceedings September 1986

We believe tha t our spreadsheet is more accurate than esti-
mates baaed on a few benchmarks. Using only a few micro
benchmarks appears to inflate predicted performance. This
is also supported by [5], which states: "Early investigative
work on our system used the t e s t S t a n d a r d T e s t s bench-
marks u~ i l we noticed tha t the results bore little relation to
statistics gathered from normal usage." For example, using
the 5 s tandard benchmarks, our machine has a net perfor-
mance of 3.21V[bytecodes per second (MBCPS), and the
Dorado has a predicted performance of .SMBCPS. Since the
Dorado is observed to have a typical performance of
.4MBCPS, use of a few benchmarks appears to inflate perfor-
mance, which is consistent with our spreadsheet. The most
accurate benchmark is believed to be t e s t A c t i v a t i o n R e -
t u r n , in which the Dorado executes at .36MBCPS, close to
its observed average throughput. Although Swamp executes

this benchmark at 2.6]VIBCPS, this throughput would not be
achieved in a real instruction mix because sends and returns
have been sped up relative to other parts of the implementa-
tion.

Architectural analyses should include the effects of
different implementation technologies to compare the relative
merits of architecture in a technology independent manner.
Because most processor's cycle times are close to the time
required to perform a read and write into a register file, we
a t tempt to compare the performance of the various architec-
tures and instruction sets by comparing the number of cycles
required to execute a given program. Par t (e) compares the
performance of all implementations assuming tha t the imple-
mentation used the same 136us cycle time tha t Swamp does.
Each column gives the performance of tha t implementation
relative to tha t of Swamp. In terms of normalized cycle
times, SOAR has bet ter performance, ranging from 39~o to
107~o faster for the same cycle time. Sword-32 is slower than
Swamp, as is PS/68020. Although both PS and SOAR use
native code, PS is much slower than SOAR on a normalized
cycle basis, presumably due to the lack of ST-80 specific
hardware in the 68020 architecture. The Dorado is by far
the slowest architecture.

Another use of the spreadsheet is to estimate memory
bandwidth. The average ST-80VIv[byte code is less than 1.1
bytes long, requiring about 2.1MB/s or .SMW/s of memory
bandwidth. Another study using the spreadsheet shows tha t
the average byte code makes .58 memory references, for a
bandwidth of I . IMW/s. The total bandwidth of 1.6]VlW/s is
small for a machine of 1.9M byte codes per sccond perfor-
mance. SOAR [3], for example, has an instruction bandwidth
of I.SMW/s even though it executes the three benchmarks
compared from .35 to .51 times as fast as Swamp. A SOAR
with a 136 ns cycle would have a bandwidth of 7.4MW/S,
much larger than its relative performance would justify. The
caveats for this number are stronger than before, however, as
much of the total memory bandwidth appears to be used by
features tha t we have only poor estimates of.

Adherence to the ST-8OVM seems to incur a performance
penalty. It is worthwhile seeing how small the performance
penalty due to the use of a byte coded instruction set can be
made. We would like to execute as much of the source level

program as possible in each register read plus write cycle,
provided tha t this does not lengthen the cycle. This suggests

the use of a multiple address architecture. A three address
version of Swamp would run at the same speed, and hopefully
accomplish more work per cycle. We investigated the perfor-
mance implications of such an architecture. It could speed
up some instructions tha t currently take 2 microcycles to
execute, and increase the fraction of instructions executed in
one cycle to 56~o, but this would increase performance by less
than 3%. With the current ST-80VM, a three address archi-
tecture is not useful enough to justify the cost.

We believe tha t a significant component of the penalty is
due to the single address nature of the ST-80VM. We believe
that this significantly reduces performance for Swamp. For
example, the expression a < b i fTrue : [] ifFalse: [] com-
piles into two push instructions, a send-<, and a branch
instruction, requiring a total of 7 microcyeles. Implementing
a branch-on-< instruction would decrease the instruction
count by one, and the number of microcyeles by 2-3. As
another example, the code a + b produces two pushes and a
send-+ instruction requiring 3 microcycles. If both operands
are temps, a three address version of Swamp could perform
all of the actions in one microcycle.

We believe tha t an al ternate instruction byte coded
instruction set might offer a significant performance advan-
tage. One reason for this is the ability to use a more efficient
multiple address instruction set. Future work will look at
some approaches for reducing this penalty. First, instruction
set changes can be made to the ST-80VM to introduce multi-
ple address or multiple operation instructions. An example is
a push-temp-send-+ instruction, which pushes a temp and
then sends the message +. This replaces two ST-80VM
instructions by one. The current version of Swamp can exe-
cute this in one microcycle.

The instruction set design must be done carefully to avoid
instructions tha t may cause a full message send in the mid-
dle. For example, the branch-on-< instruction is not feasible,
because sending < might require a full message send. Upon
return, the branch should be performed, however, since this
corresponds to par t of the instruction, there is no program
counter tha t corresponds to this point in the execution of the
branch-on-< instruction. One approach to avoid this in
which the]FU recognizes instruction pairs dynamically and
generates pseudo instructions corresponding to the pair will
be investigated. If a full message send is required, then the
IFU can backup and process the instructions one at a time.
Another approach is to encode the branch-on-< instruction
so the last par t of the instruction contains a correct branch-
on-true instruction.

SOAR [3] [16] contains aspects of both of these improve-
ments, which we believe is a primary reason for its good per-
romance. We believe that a multiple address byte coded
instruction set can be designed to obtain comparable perfor-
mance with lower instruction bandwidth.

The other significant performance limit is due to the cost
of message sending. Further simplification of the actions per-
formed during message sending and added hardware may

September 1986 OOPSLA '86 Proceedings 137

reduce the 40% of the processor cycles used simply for mes-
sage sending and returns. One minor improvement to allow
the method header cache to calculate a new PC and send it
directly to the IFU would speed up message sending by 33%,
and increase the speed of the t e s t A c t i v a t i o n R e t u r n bench-
mark by ll.5°J~. Its omission was an oversight, as it would
increase the complexity of the machine by less than 2%.

In spite of this minor problem, message sending is one of
the relatively successful parts of the processor. The bench-
marks clearly demonstrate the relative performance increase
gained by the resources devoted to message sending and
returns. Message sending and returns is the one area where
Swamp performance is most dramatically improved over the
Dorado implementation.

6. Implementat ion

A processor based upon the architecture described is being
constructed. It comprises about 550 chips, with 340 in the
CPU and the remainder in the memory and display. A
workstation is used to load the microcode and perform disk
IO. The processor uses 45 ns 2K X 8 static RAMs for all
memories in the CPU. A master clock with a 34ns period
controls a small machine which generates the processor c l~k .
Note tha t the minor cycles in the spread sheet are two mas-
ter clock cycles I. A microcycle is a minimum of 4 master
clock cycles, for a time of 13fins. The shortest possible clock
cycle capable of multiplexing two addresses and performing a

read and write into the RAMs used is l l2ns, so there is not
much room for improvement before hitting this limit. The
first 3 master clock cycles of each microcycle are used to
allow the IFU to use the memory cache. A memory reference
tha t results in a cache hit causes the microeycle to be
stretched to 6 master clock cycles. Cache misses take 5 more
master clock cycles. A wrongly predicted branch requires
stretching the microcycle by 4 master clock cycles. Memory
references complete in the microcych in which they are ini-
tiated.

A C compiler which compiles to microcode is used for
dynamically infrequent code and first implementations of
complex routines such as BitBIt and the garbage collector.
Our implementation of BitBIt is based on the ideas in [131,
and generates optimal code for the operation using a small
number of instructions defined in a second instruction set.

A IKhz timer interrupt causes the execution of a small
routine which checks the amount of storage free, and invokes
the garbage collector if this falls below the amount tha t can
be allocated by the processor in Ires. This means that all
code tha t allocates a small bounded size of storage does not
need to check if there is free storage.

I This clock is double the minor cycle frequency to allow cache accesses
to take 3 X 34ns clock cycles for 102ns, rather than 2 x 68ns for 136ns
This only speeds up execution in the case of instruction fetch, and so
improves performance by .8%, which is probably not worth the
d,fliculties encountered squeezing the logic funct,ons of the processor
clock generator into a 34us cycle.

There are two strategies for reducing the CPU's cost and
complexity from its present 350 chips through the use of
VLSI. Gate arrays could be used to integrate all logic other
than RAM's and speed up the CPU somewhat. Although the
CPU's complexity of about 15000 gates suggests t ah t a single
chip could be used to implement it, the roughly 300 pins tha t
would be required is excessive. Four arrays ranging from
3000 to 6000 gate complexity and reasonable pin counts could
be used. The total CPU complexity would be reduced to
40-60 chips depending on RAM density. An implementation
based on a full custom chip containing the microcode ROM
and context cache RAM would increase its speed further, and
reduce the CPU to 1 custom chip, 10 RAMs, and 8 bus inter-
race chips. An advanced process, 1.5/~ or be~ter, would be
required to integrate the 300Kbits of ROM and 12Kbits of
RAM as well as the da ta paths.

7. Conclusions

We have discussed a high speed processor for ST-80 capa-
ble of 1.9M bytecode per second performance. This processor
executes a byte coded instruction set. This processor handles
the dynamically frequent cases of ST-80 with circuitry tha t

allows it to execute rapidly. Wide branching in microcode
allows the execution of the special case to take place con-
currently with the checking of the assumptions tha t it is a
special case.

Swamp performs faster than any other ST-80 processor
known to us. It ranges from 44%0 to 80% faster than its
closest competitor, even though Swamp's microcycle time is
9% longer. It clearly demonstrates tha t byte coded imple-
mentat ions of the Smalltalk-80 programming language can
obtain good performance it sufficient a t tent ion is paid to
optimizing the handling of the important cases. Performance
modelling concurrent with architectural design is a useful
tool for improving performance. A simple spreadsheet can be
used to allow rapid estimation of the performance implica-
tions of architectural features.

Although Swamp demonstrates tha t machines designed to
execute byte coded instruction sets can obtain good perfor-
mance, some limits of the ST-80VM have been exposed. The
Swamp processor contains sufficient resources to perform
more operations than are specified in most ST-80VM instruc-
tions. Because Swamp can already execute most instructions
in a single cycle, we do not believe tha t significantly better
performance can be obtained with the current ST-80VM.
These limits have not previously been apparent because the
performance of previous implementations has been limited by
other factors. The problems do not suggest " that the ST-
80VM be scrapped, but modified. We believe tha t further
speed improvements will require a redesign of the ST80-VM
to include multiple address instructions. Future work will
concentrate on increasing the speed of Swamp while keeping
the same low instruction bandwidth provided by byt6 coded
instruction sets.

138 OOPSLA '86 Proceedings September 1986

[1] Adele Goldberg and David Robson, Smalllaik-80
The Language and its Implementation, Addison
Wesley, 1983

[2] Kim McCall, The Smalltalh-80 Benchmarks, in
Smalitaik-80 Bits of History, Words of Advice, Glenn
KrMner (ed.), Adison Wesley, 1983

[3] David Ungar, Ricki Blau, Peter Foley, Dais Sam-
plea, and David Patterson, Architecture of SOAR:
Smalltalk on a RISC, Proceedings of the Eleventh
Annual Symposium on Computer Architecture,
1984

[4] Kenneth A. Pier, A Retrospective on the Dorado,
Proceedings of the Tenth Annual Symposium on
Computer Architecture, 1983

[5] Joseph R Falcons, The Analysis of the Smalltalk-80
S~tem at Hewlett-Packard, in Smalltalk-80 Bite of
History, Words of Admce, Glenn Krtmner (ed.),
Adison Wesley, 1983

[6J D .A . Pattemon and C.H. Sequin, A VLS! RISC,
Computer, 15,9, September 1982

[7] Henry Lieberman and Carl Hewitt0 A Real-Time
Garbage Collector Based on the Lifetime of Objects,
CACM 28,6, June 1983

[8] David Unpr, Generation Scavenging: A Non-
disruptive High Performance Storage Reclamation
Algorithm, Software Engineering Notes, 9,3, May
1984

[9] Glenn KrMner, David Ungar, and Michael Mal-
colm, About Become, in .Smalltalk.80 Newsletter 4,
Xerox Corp, Sept 1984.

[10] Norihiaa Suzuki and Minoru Terada, Creating
E~cient Systems for Object Oriented Languages,
ACM Conference on Principles of Programming
Languages, 1984

[11] L. Peter Deutaeh and Allan M Schiffman, E~icient
Implementation of the Smalltalk-80 System, ACM
conference on Principles of Programming
Languages, 1984

[12] Advanced Micro Devices, g9800 Family llandbook,
Advanced Micro Devices, April, 1985

[13] Rob Pike and Bare Locanthi, Hardware/Software
Tradeoffa for Bitmap Graphics in the Bill, Software
Practice and Experience, Vol 15(2), Feb. 1985

[14] Norihisa Suzuki, Koichi Kubota, and Takashi Aoki,
SwordS£: A Bytecode Emulating Microprocessor for
Object-Oriented Languages, in Proceedings of the
International Conference on Fifth Generation Com-
puter Systems, 1984

[15] Xerox PARC/SCL'm PS/880£0, in Smalltalk-80
Newsletter 7

[16] David M. Ungar, The Design and Evaluation of a
High Performance Smalllalk System, Report No.
UCB/CSD 80/287, March 1988, University of Cali-
fornia at Berkeley

[17] David M. Ungar and David A. Patterson, Berkeley
Smulltalk: Who knows Where the Time Goesf, in
Smalltalk-80: Bite of llietory, .Words of Aduice, F_,d.
Glenn Krtsner,

[18] David A~ Moon, Architecture of the Symbolics 8600,
in Proceedings of the Twelfth Annual Symposium
on Computer Architecture, 1985

6. Appendix

Performance Spreadsheet

Instruction % #minor contri-
cycles bution

full sends, prim. failure
Pseudo primitive send
send +,-,and,or
send <,>,<-,>==,==,--
send @
send *, / / , \ ,1
send bitShift:
<Object> at:
<Object> - -
<Dlockcontext> value
<Object> size
<String> at:
<Object> at:put:
<ContextPar t> blockCopy:
<Behavior> new
<Object> clam
<BirDie> ¢opyBita
all other primitive sends

6.99 24.00 1.88
3.36 18.00 0.60
5.21 2.00 0.10
3.72 5.00 0.19
0.56 25.00 0.14
0.35 40.00 0.14
0.24 8.00 0.01
2.12 14.00 0.30
1.83 5.00 0.08
0.66 50.00 0.33
0.84 19.00 0.12
0.47 18.00 0.08
0.47 14.00 0.07
0.36 75.00 0.27
0.35 50.O0 0.18
0.23 5.00 0.01
0.20 0.00 0.00
1.06 30.00 0.32

push temporary
push special constant
push active context
push receiver variable
push extended
push literal variable
push literal constant

10.72 2.00 0.39
19.70 2.00 0.25
0.42 50.00 0.21
7.63 5.00 0.38
1.32 2.97 0.04
! .31 8.00 0.10
1.27 5.00 0.08

store temporary
pop
store receiver variable
Imp and store extended
store extended

3.94 2.00 0.08
2.41 2.00 0.05
1.78 5.00 0.09
1.51 2.87 0.04
1.17 2.87 0.03

pop and branch on false
pop and jump on false
jump
branch

4.25 7.00 0.30
1.94 7.00 0.14
1.84 6.00 0.11
0,56 9.00 0.03

return toe from method
return self
return toe from block
return false
return true
return nil

4.93 10.00 0.49
1.43 10.00 0.14
0.62 30.00 0.19
0.43 10.00 0.04
0.20 10.00 0.02
0.00 10.00 0.00

TOTAL 99.98 7.68

nilnor cycles per byteeode 7.68
mim)r cycle (ns) 68.00
bytccodes per second 1879677~4~

Notes: A microcycle is 2 or 3 minor cycles. Times foe instruc-
tions tha t have more than one possible time (eg, send-< ,
branch-on-false) are averages of all possibilities. Non-
integral t imes are weighted averages of all possible t imes for
the instruction. Bitblt is ignored.

September 1986 OOPSLA '86 Proceedings 139

