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Abstract 

A processor for the Smalltalk-80 'f programming language 
is described. This machine is implemented using a s tandard 
bit slice ALU and sequencer, TTL MSI, and NMOS LSI 
RAMS. It executes an instruction set similar to the 
Smalltalk-80 virtual  machine instruction set. The data  paths 
of the machine are optimized for rapid Smalltalk-80 execu- 
tion by the inclusion of a context cache, tag checking, and a 
hardware method cache. Each context is only partly initial- 
ized when created, and has no memory allocated for it until a 
possibly non-LIFO reference to it is created. The machine is 
microprogrammed, and uses a simple next micro-address 
prediction strategy to obtain most of the performance of 
pipelining without the a t t endan t  complexity. The machine 
can execute simple instructions at  over 7M byteeodes per 
second and has a predicted average throughput of 1.9M 
bytecodes per second. 

1. Introduct ion 

Smalltalk-80 [1] (henceforth, ST-S0) is an object-oriented 
programming language which executes very slowly on conven- 
tional processors. The reasons for this slow execution are 
common to object oriented languages, and include: 

• Message sending with no statically determinable type 
information means tha t  the procedure to perform the 
actions requested by a message must be determined 
dynamically 

• Non-LIFO control means tha t  storage for activation 
records (called ¢ontez~ in ST-80) must be allocated on 
the heap 
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• automatic  storage management means tha t  unused 
storage must be detected and reclaimed by the imple- 
mentat ion 

This paper describes a processor tha t  is designed for the fast 
execution of ST-80. This processor, called Swamp (Smalltalk 
Without All tha t  Much Pipelining), applies an important  and 
general principle tha t  is often used in creating efficient sys- 
tems. This principle is to identify those simple special cases 
which are dynamically frequent, and which do not require the 
expense of the general case, and optimize the handling of 
them. This principle is applied to the above problems in the 
following manner: 

• messages sent to integers or other common classes of 
objects are handled efficiently 

• contexts are allocated based on the assumption tha t  
they will be used in LIFO order, decreasing the memory 
management traffic 

• storage is allocated on the a~umpt ion  tha t  recently 
allocated storage will not be used for long, while 
storage tha t  has been used for a long time will continue 
to be. 

The identification of these problems and the application of 
similar solutions is not new; they have been used in both 
software implementations II0] [11] and hardware implementa- 
tions [3] [14] of ST*80. Where Swamp differs from previous 
implementations is the application of these solutions. 

The ST-80 system is described in terms of an implementa- 
tion called the ST-80 virtual machine (ST-80VM). Implemen- 
tat ions on s tandard processors which adhere to this 
specification generally have poor performance, due to the 
time required to interpret  the ST-80VM instruction set in 
software and due to the lack of any special hardware 
designed to speed ST-80 execution. 

Much higher performance is available by translat ing the 
ST-80VM instructions into the native instruction set of the 
processor. Even when the native instruction set contains no 
support for ST-80, good performance can be achieved [11] 
[15]. The SOAR processor has demonstrated tha t  when sup- 
port for ST-80 is added to the processor, implementations 
which translate  ST-80VM code into the native code can have 
good performance even with a relatively slow processor [3]. 
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The use of the ST,80VM has several advantages. It is 
compact, which reduces both space requirements and instruc- 
tion fetch bandwidth. The ST-80VM is also portable, and 
allows different implementations to use the same implementa- 
tion of the compiler and debugger. Published implementa- 
tions with special hardware for ST-80 have good perfor- 
mance, but we suspected bet ter  performance was possible for 
the same implementation technology. SOAR uses a RISC 
organization, which requires high instruction bandwidth. 
Sword-32 114] uses the ST-80VM, but we believed better  per- 
formance could be obtained with comparable technology. 
Although the cycle time of Sword-32 is 125ns, less than one 
fourth of the 550 as cycle of SOAR, its performance is only 
25% better. We believed tha t  a processor carefully designed 
to suit the requirements of ST-80, and using an instruction 
set similar to the ST-80VM, could perform as well as a native 
code implementation, but still have a dense instruction set 
and low memory bandwidth. 

The goal of Swamp project is to investigate high perfor- 
mance machines for the execution of ST-80. In the first 
phase, we intend to investigate machines using instruction 
sets with only very minor differences from the ST-80VM. 
This will also be used to gain experience with ST-80. In the 
longer term, we expect tha t  changes to the ST-80VM will be 
necessary for maximum performance. 

This paper describes a processor designed as a result of 
the first par t  of the project. The goals of this work were to 
design a processor capable of executing ST-80 at  a rate com- 
parable to a typical workstation executing programs in con- 
ventional languages such as C or Pascal. This meant  a per- 
formance goal of one to two million byte codes per second. 
This implementation was constrained to using s tandard chips 

• because we did not have the resources to devote to a VLSI 
implementation. Because this processor is intended as a 
"one-of" prototype to gain experience with ST-80, there is 
also little point in casting it in silicon. For this reason, bit 
slice technology was selected for the da ta  paths and control 
sequencer. 

2. Object  R e p r u e n t s t | o n  

Object representation is an. important  design decision in 
implementing a ST-80 system. The VM defines a representa- 
tion suitable for small machines, and restricted to 32K 
objects. For a high performance machine such as ours, this is 
unsatisfactory. We use 32 bit object references (called 
OOPs). 

Another disadvantage of the ST-80VM is its use of an 
object table and reference counting as the garbage collection 
method. These are very slow to implement, because every 
reference to a field of an object takes two memory references, 
and because of reference counting overhead. For this reason, 
we used an object representation in which object references 
point directly to the memory locations used by the object, ns 
did BS [17] and SOAR [3] [16[. 

Garbage collection is done with a generation based 
scheme similar to [7] and [8]. Memory space is divided into a 

number of generations, 8 in this case. Generation 0 is the 
oldest generation, and objects are normally allocated in gen- 
eration 7. All objects refer to other objects by their OOPs, 
but such references are only unconstrained for references 
from objects in generation i to objects in j when j <_ i. All 
other references require tha t  the object containing the refer- 
ence be noted in an entry table. There are 28 such entry 
tables, containing references to all of the objects in genera- 
tion i which refer to objects in generation 2", where i < 2". 

When there is no more space for objects in generation 7, 
garbage collection must take place. The entry tables provide 
a set of potential live references to objects in generation 7. 
All objects still accessible in generation 7 are moved into gen- 
eration 6. Generation 7 is then reused a s ' a  pool of free 
space. The same approach is used when generation 6 or older 
generations fill up. Older generations are garbage collected 
less frequently, and generation 0 is only garbage collected 
off-line. The size of each generation can be optimized by 
observing the lifetime distribution of objects. A minor 
difficulty is to avoid having one generation fill up when 
garbage collecting another. This is most easily avoided by 
having a spare pool of storage of the same size as the largest 
non-0 generation. 

The desire for maximum speed encourages the use of an 
object representation in which objects of class S m a l l l n t e g e r  
are represented by a bit pat tern  similar to the 2's comple- 
ment representation of the value. Our processor carries this 
to the maximum extent possible. S m a l l l n t e g e r s  are 
represented in 2's complement form, but restricted to a sub- 
set of the set of values representable in 32 bits. This means 
tha t  the manipulation of S m a l l l n t e g e r  da ta  can take place 
without any masking or shifting. 

During execution of a ST-80 program, most references are 
to da ta  contained in contexts. Our architecture t rea ts  con- 
texts specially in order to maximize the speed of operations 
on them. ST-80 allows program references to contexts to be 
made, however, requiring t ha t  the implementation appear to 
represent contexts in the prescribed form. Contexts are not 
often referred to by programs, so it is advantageous to 
represent them in a different, more efficient, manner, as long 
as the required information can be recovered. In order to do 
this, our architecture requires tha t  contexts reside in a dis- 
t inct  address space, so tha t  references to them can be easily 
detected and cause special handling to generate the correct 
information. 

Table I gives the representation of objects in our system. 
This OOP representation has some similarities to tha t  of 
SOAR [16]. OOPs with most significant bits (MSB's) of 11 or 
00 are Smal l In tegern ,  and the OOP contains the 2's comple- 
ment representation of the integer. OOPs with MSB's of 01 
are other object references, comprising a 3 bit  generation 
number and a 27 bit memory address. Memory addresses are 
also 27 bits, so any field in an object can be read by adding 
the OOP of the object to the index of the desired field and 
reading tha t  word in memory, without having to perform 
indirection in an object table. Contexts are distinguished 
with MSB's of 10. 
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Representation Meaning 

OOb~b~s • " • bo 2's complement S m a l l l n t e g e r  
l lbsebzs • • • 60 2's complement SmallIntefger  
01g~gtgoa2eu~ "" • u0 object at  address A 
10gzgzg0a~ea~ • • • u0 context at  address A 

F i g u r e  1. OOP Representation 

Objects in memory consist of a 3 word header followed by 
the OOPs contained in the object. The first word of the 
header gives the class of the object, the second gives the size 
of the object, and the third gives a hash value, which is a 
S m a l l I n t e g e r  tha t  the OOP of the object can be mapped 
into. 

Implementations of ST-80 which use OOPe tha t  directly 
address memory do make one feature of ST-80 very expen- 
sive. This is the message become.',  which causes all refer- 
ences to an object to subsequently refer to some other object. 
This is easy to implement with an object table, but requires 
sweeping memory to find all references to the first object in 
schemes in which OOPs directly reference memory. We dis- 
like the presence of beeomel because of its non-local effects, 
and intend to rewrite ST-80 to eliminate all uses of it and 
eventually not support it. We initially considered a scheme 
similar to [9], using invisible pointers to "becomed" objects, 
supported by the hardware, but  rejected it because the com- 
plexity and loss of speed didn' t  appear to be worth the 
minimal advantages or become: .  

$. Are.hlt~..ture Ore.view 

A block diagram of the Swamp processor is given in figure 
2. The instruction fetch unit (IFU) is responsible for fetching 
instructions and decoding them. It maintains a 6 byte queue 
of instructions to execute, and provides the first byte of the 
next instruction in the IFU queue for use by the microee- 
quencer, called nezfop. It also provides two decoded bytes, 
opl and opt, for use as operands. Refill time from loading a 
PC to dispatch on a new instruction is 2 microcycles. 

The primary block of importance is the context cache, 
labelled CCache, and the blocks for addressing it, CCptrs 
and CCA. The context cache is a dual ported set of 512 32 
bit registers. It is divided into 128 directly addressable regis- 
tern and 16 banks of 24 words. Each bank is large enough to 
hold a small ST-80 context. Two adjacent banks are used to 
hold a large context. The microcode is responsible for iasur- 
ink tha t  the contexts which can be directly referred to by a 
ST-80 instruction are in the context cache. 

A four bit current context number register, called CCN, 

indicates the identity of the currently active context in the 
context cache. A five bit register, called of lags , describes the 
type of this context (method or block), and the size of this 
context and its caller (sender). A collection of 7 registers, 

called the CCPtrs,  is used to refer to da ta  in the context 
cache. Two registers, called ccbaae and hcbaae are used to 
refer to the currently active context and possibly another 
context (called the home context). Two other registers, 
called up and ap are used to point to the arguments and tem- 
poraries, and the top of stack in the currently active context. 

I oo*'. I I .  
P'~ I I 

l f 

F i g u r e  2. Architecture Overview 

There are three other  registers, called ocbaae, rump1, and 
temp/~ used for scratch registers. 

The architecture is a two addrem one, in which two 
values may be read and placed onto the Abns and Bbus, 
entering the ALU, and the result written back into one of the 
locations read. A variety of special values can also be placed 
onto the Bbus. The addresses used to access the context 
cache can be generated in a variety of ways by the context 
cache addressing (CCA) box. The mcet complicated way 
allows a sum of one of the CCPtrs,  plus or minus either of 
opl or opt, plus a small constant  in the range -I..8 to be 
computed and used as an address in the context cache. This 
is useful when an instruction contains an overand which 
refers to some location in a context or a value buried in the 
stack. A related form of addressing allows one of the CCPtrs  
and the small constant  to be added and used as an address in 
the context cache, and the CCPtr  to be incremented or 
decremented after the microinstruction. This is useful for 
pushing or popping the stack. Only a s u b ~ t  of the CCptrs 
can auto-increment or decrement. The first 128 registers can 
be addressed via an absolute register number. The C C N a n d  

CCPtrs  are also capable of being modified in a variety of ape- 
cia] ways during message sending or returning. 

In order to speed message sending where contexts are used 
in a strictly LIFO manner, contexts are not fully initialized 
when created. Contexts exist in a variety of states,  called 
soft, mushy, and hard. These varieties are similar to the 
organizations of contexts in [II]. A soft context is the 
minimal context. It does not have a memory allocation 
reserved for it, and there is no OOP tha t  can refer to it. The 
sender, receiver, and argument fields of a soft context are not 
initialized. The sender is implicitly the context at  the next 
lower address in the context cache, and the arguments are on 
the sender's stack, and pointed to by up. When a context i8 
first created, it is created as a soft context .  A soft context 
can only be used for LIFO control, and must be converted 
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into another form when the possibility of non-LIFO control 
exists. 

The next form of context, mushy, also has no memory 
associated with it, but has the sender field valid and the 
arguments have been copied into it. A mushy context is only 
used for LIFO control, but its sender might not be in the con- 
text cache. 

A fully initialized context is called hard, and in addition 
to the sender field, receiver, and arguments, has a memory 
allocation associated with it. A hard context will be either in 
the context cache or in main memory at  any time. An addi- 
tional 6eld in the context points to the memory locations 
reserved for it. The main memory copy of a context has a 
field which indicates whether the context is currently in the 
context cache or main memory. Contexts are allocated in a 
separate memory space so tha t  program references to fields 
in contexts can be detected and the actual location of the 
context determined. Contexts are initially created soft, and 
will be converted into hard ones when an OOP must be gen- 
erated for the context. Statist ics in [11] indicate tha t  less 
than 10% of contexts are used in a manner tha t  requires tha t  
an OOP be generated for it. When a context is converted 
into a hard one, all of its callers must also be converted. 
Soft and mushy contexts are freed upon return, but hard con- 
texts must be reclaimed by the garbage collector. 

The da ta  read onto the Abus and Bbus is latched and 
passed to an ALU which produces a result on the Fbus. If no 
memory reference is being made, this result is passed to the 
Rbus. If a memory operation is being performed, the Fbus is 
used as the address and the result read from the memory 
cache (Mcache) is placed on the Rbus. Memory writes use 
the Fbus as the address, and either the Bbus or MDR as the 
data.  

Tag  checking circuitry can detect if the Abus, Bbus, and 
Fbus each contain integer OOPs, whether the Fbus contains 
a context OOP, and whether a memory write is of a newer 
generation OOP into an older generation. 

The block labelled MHcache is a method lookup cache 
which, given a class and message symbol, will hash the two 
values and perform tag checking, and read the method 
header into a special register. This takes place concurrently 
with other  actions during message sending, and greatly 
increases the speed of message sending. 

In order to simplify microprogramming, the 
microprogrammer's view of the architecture is a non- 
pipelined machine. For increased speed, writes are performed 
in the cycle after the cycle which performs the operation. 
Bypassing logic detects read-write conflicts, and forwards 
results without a time penalty. The CCA also computes the 
addresses in the cycle before they are used, but has access to 
the next-cycle values of the CCPtrs,  so there is no hazard. 

4. M|ez'oeode Sequencer 

Our processor uses a s tandard micro sequencer [12] for 
micro program sequencing, but augments it with a powerful 
wide branching capability in order to be able to rapidly test  

a number of conditions simultaneously. The sequencer main- 
tains an internal microprogram counter, and has a bus, the 
seqDbus, a t tached to it. This bus can be used to specify the 
destination address o£ conditional branches, or i teration 
counts. Our machine can drive this bus from several 
different sources under microcode control. In the most com- 
mon case, the seqDbus is driven from a microword field called 
brunchbaae. It is also possible to cause branchbnse to be 
modified by bitwise ORing of a small number taken from a 
variety of sources. These are called the wide branch sources. 
The seqDbun can also be driven from a two bit instruction set 
register and the nextop field from the IFU, allowing byte code 
dispatching. A special value outside of the range of byte 
codes is inserted if the IFU does not have a complete byte 
code in its buffer. 

The wide branch sources are used to test  a number of 
conditions simultaneously. These sources are arranged so 
tha t  0 is the most common result, where it is possible to 
predict the result statically. As an example, the trapBran- 
chNotlnLABF wide branch is used when perfosming operations 
on OOPs which are expected to be Smal l ln t ege re .  i t  pro- 
duces the value 0 if the A, B, and F buses all contain 
integers, I if A is not an integer, 2 if A is an integer, but B is 
not, and 3 otherwise. This feature is used to implement a 
variety of tag checking traps, as does the Symbolics-3600 [18] 
and SOAR [1O]. 

In keeping with the goal of providing a non-pipelined 
architecture to the microprogrammer, a wide branch can use 
results generated in the cycle tha t  specifies the branch. In 
the interests of speed, however, the implementation a t tempts  
to pipeline instructions. When a wide branch is specified, the 
machine will fetch the next microinstruction based upon the 
assumption t ha t  the wide branch value will be 0. Near the 
end of the cycle, this assumption is checked, and if it is 
wrong, the cycle is s tretched while the correct microinstrac- 
tioa is fetched. The dynamically frequent wide branches are 
organized so the the value 0 is the most common one. The 
machine will normally run with short cycles. This gives most 
of the performance of pipelining without the extra program- 
ming complexity. It  is also doubtful t ha t  a pipelined machine 
would be able to accomplish any useful work in the cases 
where our machine cannot  predict the branch. 

Wide branches actually come in two flavours: t raps and 
branches. A wide branch of the t rap  flavour will prevent any 
modification of the Ccache or CCPtrs  if the branch value is 
non-0. This allows the microprogrammer to perform destruc- 
tive operations on da ta  at  the same time as checking tha t  
the assumptions are true, without trashing the da ta  if the 
assumptions are false. 

The wide branching also interacts  with the next byte code 
decoding. When next byte code decoding is specified, a wide 
branch may also be specified. If the wide branch modifier is 
0, then the byte code decode will be done. Otherwise, the 
branch will be to bruachbnse ORed with the wide branch 
modifier. This allows the microeode to immediately execute 
the next byte code if the amumptions made were correct. 
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Two examples will illustrate the combined power of the 
data  paths and sequencer. The first, in figure 3, is the micro- 
code for the push-temp byte code. The syntax 
" A ~ r e g # n + m "  indicates tha t  the Abus should be drives with 
the register pointed to by the sum of reg, n and m. Reg is a 
CCPtr,  and n can be an operand or its complement, or an 
increment/decrement command, or 0. M is the small con- 
s tan t  in -1..8. The push-temp byte code is implemented by a 
single microinstruction. The microcode places a temporary 
in the current context on the Abus. The temporary tha t  is 
to be pushed is indicated by the opl  field of the current byte 
code. The ALU is set to p a ~  it unmodified (zero extend a 32 
bit quanti ty to a 32 bit quantity), and write the result back 
into the context cache, while incrementing the stack pointer. 
The next byte code can then be executed, by performing an 
unconditional branch with the "macro" field set. The push- 
temp byte code always takes one microcycle. 

The second example, in figure 4, is the microcode for the 
send-+ byte code, which sends the message + and one argu- 
ment to the receiver buried one deep on the stack. The 
receiver and argument will most often be Smal l In t ege r s ,  so 
the microcode assumes tha t  they are, and dispatches the next 
byte code if they are. If the receiver and argument are not 
both S m a l l l n t e g e r s ,  or overflow occurs, then a branch to 
sendPlus plus 1, 2, or 3 will occur. The send-+ byte code will 
complete in one microcycle in the vast majority of cases (over 
95~,  according to information contained in 151). in the other 
5 ~  of the cases the cycle will be stretched while the target  of 
the microbranch is fetched, and the general code to send the 
message + will be invoked. 

A cc~cbase~/~op I +ArgOffse t B(~sp#post inc+l  
aluZeroExtA writeB seqOpGoToD macro 

F i g u r e  3. Push-temp Microoode 

I A~.~)sp#postdec B ~ p ~ O + m i n u s l  aluAdd writeB 
t rapTrapNot ln tABF seqOpGoToD 
sendPlus macro 

F i g u r e  4. Send-+ Microcode 

The byte code to send a message requires 9 mierocyeles if two 
or fewer temporaries are created. The most common 
execution path is illustrated in figure 5. The first microin- 
struction fetches the class of the receiver, checking if it was a 
Smal l In t ege r .  The second fetches the message selector to 
be sent. The method header cache then begins its operations 
concurrently with the execution of the microcode. Mieroin- 
struction 3 saves the PC in the currently active context. 
Microinstruction 4 saves the flags (cflags, the ap and sp) in 
the current context, increments C C N  and eebase and hebase 
to point to a new context via the special operation send- 
NewContezt .  It also dispatches on a wide branch tha t  checks 
tha t  the method header cache hit, and the kind of method 
found. Microinstruction 5 checks the flags of the new context 
to see if it was free, and initializes the ap and sp via sendln- 
i lCCPtrs.  Mieroinstruetion 6 initializes the method field of 
the new context by reading it from word 2 of the method 
header cache entry. Microinstruction 7 computes the new 
PC and sends it to the IFU, and dispatches on the number of 

temporaries required by the new method. Assuming one tem- 
porary, microinstruction 8 will initialize it to Nil, and 
mieroinstruetion 9 will dispatch on the next byte code. 
Instruction 8 could dispatch, but the IFU would not be ready, 
and this would cause microinstruction 8 to be stretched, and 
the microcode for the dummy macro instruction to be exe- 
cuted for microinstruction 9. It is therefore faster to not 
dispatch until the IFU is ready. A message send tha t  creates 
n temps takes maz (9, n + 7) microcycles. This depends on 
several conditions which are usually true: The receiver is not 
a Sma l l In t ege r ,  the method is in the method header cache, 
and the newly allocated context is free. Sends to Smal l In -  
t ege r s  take an extra cycle. 

1 A f ~ s p # o p l b a r + l  Br#R0  aluZeroExtA memRead 
writeMhcacheClass t rapBranchNotlntABF 
seqOpGoToD sendCode 

2 A~hebase~0+MethodOffse t  B~op2+OO+OMethLi tera ls  
aluAdd memRead writeMhcacheMsg 
seqOpGoToD sendSavePC 

3 A~cebase~0+PCOffse t  pcnext aluZeroExtB writeA 
4 A(~ccbase~+FlagOffse t  flags aluZeroExtB 

writeSendNewContext trapBranehMHCacheFlags 
seqOpGoToD sendCheckType 

5 A~hcbase~0+FlagOffse t  aluZeroExtA 
writeSendlnitCCPtrs trapBranchFlagBits  
seqOpGoToD sendCheekNew 

6 A ~ c b a s e # 0 + M e t h o d O f f s e t  MHCaeheWord#2 
aluZeroExtB writeA 
seqOpGoToD sendNilTemps 

7 A~hcbase~0+MethodOffse t  MHCaeheLitCount4 
aluAdd writePCWord seqOpGoToD 
trapBranchMHCaeheNTemps nilNTemps 

8 A ~ s p # p o s t i n e  Br#Rni l  writeA seqOpGoToD nil0Temps 
9 seqOpGoToD macro 

F i g u r e  8. Send Microcode 

Another example of the use of the wide branching capability 
is to speed up the subscripting messages a t :  and a t :pu t : .  
These messages request an indexable object to read or write 
an object reference at  a specified location in the indexable 
object. Each class contains a word tha t  specified whether 
tha t  class is indexable, whether the indexable units are bytes 
or words, and whether the da ta  in the object are OOPs or 
bits. It is still necessary to perform a message lookup when 
doing a subscripting message because a class can redefine a t :  
and a t : pu t : .  Because of the importance of this, we added a 
fourth bit to the class description. This bit is set if this class 
or a superclass of it redefines a t :  or a t : p u t .  As a result, the 
byte codes which send the subseripting messages can check 
all 4 of these bits via a single 16-way branch, saving the 7 
microcycles needed to do a message lookup and enter the 
builtin subscripting microcode through the normal control 
path. This method is also po~ible for other common mes- 
sages, but only subseripting messages were found to be fre- 
quent enough to justify it, as was determined by using the 
statistics from [51 in the spreadsheet. Some messages to con- 
texts can bypass method lookup by doing a check of the 
address space of the receiver. 
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5. Performance Modelling 

Performance modelling of our architecture was an essen- 
tial part of optimizing performance, taking place con- 
currently with architectural design. The dynamic frequencies 
of each byte code were calculated from [5] and entered in a 
spreadsheet calculator. [5] contains a large number of statm- 
tics derived from a large test of the system's performance. 
To quote from it: 

During this test, the browser, compiler, decompiler, 
and window system are exercised in every conceiv- 
able way. With full performance monitoring, the 
test covers millions of bytecodes and takes over six 
hours. 

The result is shown in the appendix. The frequencies include 
only tboee byte codes that complete in the fastest possible 
manner. For example, the send-+ byte code frequency is only 
for send-+ byte codes that operate on Smal l In tegers .  
Send-+ byte codes that perform a full send are included in 
the full send category. Another point to note is that both 
micro and macro branch delays are fully accounted for in 
this estimate. 

/us the architecture evolved, the microcode for each byte 
code type was sketched and the overall system performance 
was calculated by the spreadsheet calculator. The time w u  
estimated in minor cycles, where t microcyele is 2 minor 
cycles if it does not reference memory, and 3 if it does. Am 
we began with a conventional implementation of message 
sending requiring about 25 microcycles, the spreadsheet 
immediately pointed out that message sending was the 
bottleneck. Adding the method header cache and partial 
context initialization reduced thi~ to an estimated 7 microcy- 
clue, with 9 microcycles ae the eventual result. With our 
microcycle time of 138 ns., the current performance estimate 
is 1.9M bytecodes per second. 

The spreadsheet indicates the relatively successful parts 
of the architecture, and those which still need work. About 
45°~ of the byte codes execute in one cycle, and 15~ execute 
in two cycles, which together use only 20% of the proee~or's 
cycles. Sends and returns, which comprise about 18% of the 
byte codes executed, use 40% of the proceseor's cycles. The 
byte codes causing context cache manipulation, although only 
1°~ in frequency, are estimated as using S ~  of the processor's 
cycles. This is baaed on the assumption that they cause a 
context to be transferred to or from main storage. 

A few caveats are in order whenever performance esti- 
mates are made. Our spreadsheet does not include any 
allowance for memory cache mimes or method header cache 
misses. It only partly accounts for context cache overhead 
due to copying hard contexts out of the context cache. Some 
allowance for copying contexts into the cache is made bnsed 
on the a~umption that byte codes invoking non-LIFO control 
cause one context to be copied in. The time estimate for "all 
other primitives" is also a guess baaed on average time 
predicted for the large number of other primitive operations. 

A set of standard benchmarks [2] provide a method of 
comparing the speeds of various ST-80 systems. Figure 6 

contains a comparison of several benchmarks. K means 1000 
(not 1024). Part  (a) gives some raw performance data for 
Swamp. The first column is the name of the benchmark. 
gPiun4 tests the speed of integer arithmetic. Lo&d- 
T e m p N R e f  tests the speed of pushing Sma l l ln t ege r  local 
variables onto the stack. L o a d T e m p R e f  tests the same, 
using an object which is subject to garbage collection. Load-  
T e m p R e f  will be slower than L o a d T e m p N R e f  in reference 
counting systems. A e t i v a t l o n R e t u r n  tests the speed of 
message sending. Ar rayA. t  tests the speed of array indexing. 

The second column gives the number of byte codes exe- 
cuted in the test. The third column gives the time for the 
Dorado, the standard against which ST-80 systems are usu- 
ally compared, to execute the benchmark. The fourth 
column given the time for Swamp to execute the benchmark. 
This is not simply s multiple of the microeycle time because 
of the inclusion of memory access time and cycle stretching. 
The fifth column gives the execution rate of the benchmark 
in bytecodes per second. 

Part  (b) compares the relative performance of Swamp and 
some other systems. The second column gives the relative 
speed of Swamp versus the Dorado, with numbers greater 
than one being faster than the Dorado. The third and fourth 
give the relative speeds of SOAR and Sword-32 compared to 
a Dorado. The last column gives the relative speed of 
PS/68020 compared to a Dorado [15]. PS/68020 is a 
Smalltaik implementation baaed on the ideas in [11] running 
on a 68020 microprocessor. 

test ~tinst Dorado Swamp Swamp 
time time inst/see 

3Plum 400K ,16 .095 4.2M 
LoadTempNRef 400K ,28 .082 3.25M 
LoadTempRaf 408K .40 .089 4.65M 
ActivationReturn 844I( 1.01 .12e 2.eM 
ArrayAt 80K .19 .147 .54M 

(a) Raw Swamp Performance 

teat Swamp SOAR Sword-32 PS/68020 
perf perf perf perf 

SPins4 1.88 .58 t .80 t .e6 
LoadTempNRef 8.25 2.941 .86 
LoadTempRef 4.65 1.g2 
ActivationReturn 8.01 4.1 S.0 1.84 
ArrayAt 1.29 .51 .Y2 

(b) Performance Relative to Dorado 

test SOAR Swordo32 PS/68020 Dorado 
pert pert pert per( 

8Plus4 1.30 t .49 t . ~  .96 
LoadTempNRet .63 t .93 .14 
LoadTempRef .29 .09 
ActivationReturn 2.07 .57 .20 .Of, 
ArrayAt 1.80 .49 .34 

(c) Performance Relative to Swamp With Nornmlised Cycle Times 

t: computed by us from published data 

F i g u r e  6. Benchmark Results 
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We believe tha t  our spreadsheet is more accurate than esti- 
mates baaed on a few benchmarks. Using only a few micro 
benchmarks appears to inflate predicted performance. This 
is also supported by [5], which states: "Early investigative 
work on our system used the t e s t S t a n d a r d T e s t s  bench- 
marks u~ i l  we noticed tha t  the results bore little relation to 
statistics gathered from normal usage." For example, using 
the 5 s tandard benchmarks, our machine has a net perfor- 
mance of 3.21V[ bytecodes per second (MBCPS), and the 
Dorado has a predicted performance of .SMBCPS. Since the 
Dorado is observed to have a typical performance of 
.4MBCPS, use of a few benchmarks appears to inflate perfor- 
mance, which is consistent with our spreadsheet. The most 
accurate benchmark is believed to be t e s t A c t i v a t i o n R e -  
t u r n ,  in which the Dorado executes at  .36MBCPS, close to 
its observed average throughput. Although Swamp executes 

this benchmark at 2.6]VIBCPS, this throughput would not be 
achieved in a real instruction mix because sends and returns 
have been sped up relative to other parts  of the implementa- 
tion. 

Architectural  analyses should include the effects of 
different implementation technologies to compare the relative 
merits of architecture in a technology independent manner. 
Because most processor's cycle times are close to the time 
required to perform a read and write into a register file, we 
a t tempt  to compare the performance of the various architec- 
tures and instruction sets by comparing the number of cycles 
required to execute a given program. Par t  (e) compares the 
performance of all implementations assuming tha t  the imple- 
mentation used the same 136us cycle time tha t  Swamp does. 
Each column gives the performance of tha t  implementation 
relative to tha t  of Swamp. In terms of normalized cycle 
times, SOAR has bet ter  performance, ranging from 39~o to 
107~o faster for the same cycle time. Sword-32 is slower than 
Swamp, as is PS/68020. Although both PS and SOAR use 
native code, PS is much slower than SOAR on a normalized 
cycle basis, presumably due to the lack of ST-80 specific 
hardware in the 68020 architecture. The Dorado is by far 
the slowest architecture. 

Another use of the spreadsheet is to estimate memory 
bandwidth. The average ST-80VIv[ byte code is less than 1.1 
bytes long, requiring about 2.1MB/s or .SMW/s of memory 
bandwidth. Another study using the spreadsheet shows tha t  
the average byte code makes .58 memory references, for a 
bandwidth of I . IMW/s.  The total  bandwidth of 1.6]VlW/s is 
small for a machine of 1.9M byte codes per sccond perfor- 
mance. SOAR [3], for example, has an instruction bandwidth 
of I.SMW/s even though it executes the three benchmarks 
compared from .35 to .51 times as fast as Swamp. A SOAR 
with a 136 ns cycle would have a bandwidth of 7.4MW/S, 
much larger than its relative performance would justify. The 
caveats for this number are stronger than before, however, as 
much of the total  memory bandwidth appears to be used by 
features tha t  we have only poor estimates of. 

Adherence to the ST-8OVM seems to incur a performance 
penalty. It is worthwhile seeing how small the performance 
penalty due to the use of a byte coded instruction set can be 
made. We would like to execute as much of the source level 

program as possible in each register read plus write cycle, 
provided tha t  this does not lengthen the cycle. This suggests 

the use of a multiple address architecture. A three address 
version of Swamp would run at the same speed, and hopefully 
accomplish more work per cycle. We investigated the perfor- 
mance implications of such an architecture. It could speed 
up some instructions tha t  currently take 2 microcycles to 
execute, and increase the fraction of instructions executed in 
one cycle to 56~o, but this would increase performance by less 
than 3%. With the current ST-80VM, a three address archi- 
tecture is not useful enough to justify the cost. 

We believe tha t  a significant component of the penalty is 
due to the single address nature of the ST-80VM. We believe 
that  this significantly reduces performance for Swamp. For 
example, the expression a < b i fTrue :  [ ]  ifFalse:  []  com- 
piles into two push instructions, a send-<, and a branch 
instruction, requiring a total  of 7 microcyeles. Implementing 
a branch-on-< instruction would decrease the instruction 
count by one, and the number of microcyeles by 2-3. As 
another example, the code a + b produces two pushes and a 
send-+ instruction requiring 3 microcycles. If both operands 
are temps, a three address version of Swamp could perform 
all of the actions in one microcycle. 

We believe tha t  an al ternate instruction byte coded 
instruction set might offer a significant performance advan- 
tage. One reason for this is the ability to use a more efficient 
multiple address instruction set. Future work will look at 
some approaches for reducing this penalty. First, instruction 
set changes can be made to the ST-80VM to introduce multi- 
ple address or multiple operation instructions. An example is 
a push-temp-send-+ instruction, which pushes a temp and 
then sends the message +. This replaces two ST-80VM 
instructions by one. The current version of Swamp can exe- 
cute this in one microcycle. 

The instruction set design must be done carefully to avoid 
instructions tha t  may cause a full message send in the mid- 
dle. For example, the branch-on-< instruction is not feasible, 
because sending < might require a full message send. Upon 
return, the branch should be performed, however, since this 
corresponds to par t  of the instruction, there is no program 
counter tha t  corresponds to this point in the execution of the 
branch-on-< instruction. One approach to avoid this in 
which the ]FU recognizes instruction pairs dynamically and 
generates pseudo instructions corresponding to the pair will 
be investigated. If a full message send is required, then the 
IFU can backup and process the instructions one at  a time. 
Another approach is to encode the branch-on-< instruction 
so the last par t  of the instruction contains a correct branch- 
on-true instruction. 

SOAR [3] [16] contains aspects of both of these improve- 
ments, which we believe is a primary reason for its good per- 
romance. We believe that  a multiple address byte coded 
instruction set can be designed to obtain comparable perfor- 
mance with lower instruction bandwidth. 

The other significant performance limit is due to the cost 
of message sending. Further  simplification of the actions per- 
formed during message sending and added hardware may 
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reduce the 40% of the processor cycles used simply for mes- 
sage sending and returns. One minor improvement to allow 
the method header cache to calculate a new PC and send it 
directly to the IFU would speed up message sending by 33%, 
and increase the speed of the t e s t A c t i v a t i o n R e t u r n  bench- 
mark by ll.5°J~. Its omission was an oversight, as it would 
increase the complexity of the machine by less than 2%. 

In spite of this minor problem, message sending is one of 
the relatively successful parts  of the processor. The bench- 
marks clearly demonstrate the relative performance increase 
gained by the resources devoted to message sending and 
returns. Message sending and returns is the one area where 
Swamp performance is most dramatically improved over the 
Dorado implementation. 

6. Implementat ion 

A processor based upon the architecture described is being 
constructed. It comprises about 550 chips, with 340 in the 
CPU and the remainder in the memory and display. A 
workstation is used to load the microcode and perform disk 
IO. The processor uses 45 ns 2K X 8 static RAMs for all 
memories in the CPU. A master clock with a 34ns period 
controls a small machine which generates the processor c l~k .  
Note tha t  the minor cycles in the spread sheet are two mas- 
ter clock cycles I. A microcycle is a minimum of 4 master 
clock cycles, for a time of 13fins. The shortest  possible clock 
cycle capable of multiplexing two addresses and performing a 

read and write into the RAMs used is l l2ns,  so there is not 
much room for improvement before hitting this limit. The 
first 3 master clock cycles of each microcycle are used to 
allow the IFU to use the memory cache. A memory reference 
tha t  results in a cache hit causes the microeycle to be 
stretched to 6 master clock cycles. Cache misses take 5 more 
master clock cycles. A wrongly predicted branch requires 
stretching the microcycle by 4 master clock cycles. Memory 
references complete in the microcych in which they are ini- 
tiated. 

A C compiler which compiles to microcode is used for 
dynamically infrequent code and first implementations of 
complex routines such as BitBIt and the garbage collector. 
Our implementation of BitBIt is based on the ideas in [131, 
and generates optimal code for the operation using a small 
number of instructions defined in a second instruction set. 

A IKhz timer interrupt causes the execution of a small 
routine which checks the amount  of storage free, and invokes 
the garbage collector if this falls below the amount tha t  can 
be allocated by the processor in Ires. This means that  all 
code tha t  allocates a small bounded size of storage does not 
need to check if there is free storage. 

I This clock is double the minor cycle frequency to allow cache accesses 
to take 3 X 34ns clock cycles for 102ns, rather than 2 x 68ns for 136ns 
This only speeds up execution in the case of instruction fetch, and so 
improves performance by .8%, which is probably not worth the 
d,fliculties encountered squeezing the logic funct,ons of the processor 
clock generator into a 34us cycle. 

There are two strategies for reducing the CPU's cost and 
complexity from its present 350 chips through the use of 
VLSI. Gate  arrays could be used to integrate all logic other 
than RAM's and speed up the CPU somewhat. Although the 
CPU's complexity of about 15000 gates suggests t ah t  a single 
chip could be used to implement it, the roughly 300 pins tha t  
would be required is excessive. Four arrays ranging from 
3000 to 6000 gate complexity and reasonable pin counts could 
be used. The total  CPU complexity would be reduced to 
40-60 chips depending on RAM density. An implementation 
based on a full custom chip containing the microcode ROM 
and context cache RAM would increase its speed further, and 
reduce the CPU to 1 custom chip, 10 RAMs, and 8 bus inter- 
race chips. An advanced process, 1.5/~ or be~ter, would be 
required to integrate the 300Kbits of ROM and 12Kbits of 
RAM as well as the da ta  paths. 

7.  Conclusions 

We have discussed a high speed processor for ST-80 capa- 
ble of 1.9M bytecode per second performance. This processor 
executes a byte coded instruction set. This processor handles 
the dynamically frequent cases of ST-80 with circuitry tha t  

allows it to execute rapidly. Wide branching in microcode 
allows the execution of the special case to take place con- 
currently with the checking of the assumptions tha t  it is a 
special case. 

Swamp performs faster than any other ST-80 processor 
known to us. It ranges from 44%0 to 80% faster than its 
closest competitor, even though Swamp's microcycle time is 
9% longer. It clearly demonstrates tha t  byte coded imple- 
mentat ions of the Smalltalk-80 programming language can 
obtain good performance it sufficient a t tent ion is paid to 
optimizing the handling of the important  cases. Performance 
modelling concurrent with architectural  design is a useful 
tool for improving performance. A simple spreadsheet can be 
used to allow rapid estimation of the performance implica- 
tions of architectural  features. 

Although Swamp demonstrates tha t  machines designed to 
execute byte coded instruction sets can obtain good perfor- 
mance, some limits of the ST-80VM have been exposed. The 
Swamp processor contains sufficient resources to perform 
more operations than are specified in most ST-80VM instruc- 
tions. Because Swamp can already execute most instructions 
in a single cycle, we do not believe tha t  significantly better 
performance can be obtained with the current ST-80VM. 
These limits have not previously been apparent  because the 
performance of previous implementations has been limited by 
other factors. The problems do not suggest " that  the ST- 
80VM be scrapped, but modified. We believe tha t  further 
speed improvements will require a redesign of the ST80-VM 
to include multiple address instructions. Future work will 
concentrate on increasing the speed of Swamp while keeping 
the same low instruction bandwidth provided by byt6 coded 
instruction sets. 
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6. Appendix  

Performance Spreadsheet 

Instruction % #minor contri- 
cycles bution 

full sends, prim. failure 
Pseudo primitive send 
send +,-,and,or 
send <,>,<-,>==,==,-- 
send @ 
send *, / / , \ ,1  
send bitShift: 
<Object> at: 
<Object> - -  
<Dlockcontext> value 
<Object> size 
<String> at: 
<Object> at:put: 
<ContextPar t>  blockCopy: 
<Behavior> new 
<Object> clam 
<BirDie> ¢opyBita 
all other primitive sends 

6.99 24.00 1.88 
3.36 18.00 0.60 
5.21 2.00 0.10 
3.72 5.00 0.19 
0.56 25.00 0.14 
0.35 40.00 0.14 
0.24 8.00 0.01 
2.12 14.00 0.30 
1.83 5.00 0.08 
0.66 50.00 0.33 
0.84 19.00 0.12 
0.47 18.00 0.08 
0.47 14.00 0.07 
0.36 75.00 0.27 
0.35 50.O0 0.18 
0.23 5.00 0.01 
0.20 0.00 0.00 
1.06 30.00 0.32 

push temporary 
push special constant 
push active context 
push receiver variable 
push extended 
push literal variable 
push literal constant 

10.72 2.00 0.39 
19.70 2.00 0.25 
0.42 50.00 0.21 
7.63 5.00 0.38 
1.32 2.97 0.04 
! .31 8.00 0.10 
1.27 5.00 0.08 

store temporary 
pop 
store receiver variable 
Imp and store extended 
store extended 

3.94 2.00 0.08 
2.41 2.00 0.05 
1.78 5.00 0.09 
1.51 2.87 0.04 
1.17 2.87 0.03 

pop and branch on false 
pop and jump on false 
jump 
branch 

4.25 7.00 0.30 
1.94 7.00 0.14 
1.84 6.00 0.11 
0,56 9.00 0.03 

return toe from method 
return self 
return toe from block 
return false 
return true 
return nil 

4.93 10.00 0.49 
1.43 10.00 0.14 
0.62 30.00 0.19 
0.43 10.00 0.04 
0.20 10.00 0.02 
0.00 10.00 0.00 

TOTAL 99.98 7.68 

nilnor cycles per byteeode 7.68 
mim)r cycle (ns) 68.00 
bytccodes per second 1879677~4~ 

Notes: A microcycle is 2 or 3 minor cycles. Times foe instruc- 
tions tha t  have more than one possible time (eg, send-< ,  
branch-on-false) are averages of all possibilities. Non- 
integral t imes are weighted averages of all possible t imes for 
the instruction. Bitblt  is ignored. 
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