Concolic Testing: A Decade Later (Keynote)

Koushik Sen

EECS Department, UC Berkeley, CA, USA.
ksen@cs.berkeley.edu

Abstract

Symbolic execution for software testing has witnessed renewed
interest in the recent years due to its ability to generate high-
coverage test suites and find deep errors in software systems. In
this talk, I will give an overview of a modern symbolic execution
technique, called concolic testing, discuss its key challenges in
terms of path exploration, and introduce MultiSE, a new technique
for tackling the path exploration challenge.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Symbolic execution, Testing tools, Debugging
aids

Keywords symbolic execution, MultiSE, value summary,
JavaScript, test generation, concolic testing, Jalangi

1. Introduction

Symbolic execution, which was introduced more than four decades
ago, is typically used in software testing to explore as many dif-
ferent program paths as possible in a given amount of time, and
for each path to generate a set of concrete input values exercising
it, and check for the presence of various kinds of errors including
assertion violations, uncaught exceptions, security vulnerabilities,
and memory corruption. A key limitation of classical symbolic ex-
ecution is that it cannot generate useful test inputs if the program
under test uses complex operations such as pointer manipulations
and non-linear arithmetic operations.

Our research on Concolic Testing [2, 3, 6] (also known as
DART: Directed Automated Random Testing or Dynamic Sym-
bolic Execution) alleviated the limitations of classical symbolic ex-
ecution by combining concrete execution and symbolic execution.
We demonstrated that concolic testing is an effective technique for
generating high-coverage test suites and for finding deep errors in
complex software applications. The success of concolic testing in
scalably and exhaustively testing real-world software was a major
milestone in the ad hoc world of software testing and has inspired
the development of several industrial and academic automated test-
ing and security tools.

One of the key challenges of concolic testing is the huge number
of programs paths in all but the smallest programs, which is usu-
ally exponential in the number of static branches in the code. We

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
WODA'’15, October 26, 2015, Pittsburgh, PA, USA

ACM. 978-1-4503-3909-4/15/10
http://dx.doi.org/10.1145/2823363.2823364

have been working on a variety of techniques [1, 4, 5, 7] to make
automated test generation scalable and exhaustive for large pro-
grams. We have developed hybrid concolic testing [4], a combina-
tion of random testing, a fast and non-exhaustive method of testing,
with concolic testing, an exhaustive and slow testing technique. We
have also developed a novel strategy where concolic test genera-
tion is guided by the static control flow graph of the program under
test to quickly achieve high code coverage [1]. We have proposed
lazy test generation [5], an approach similar to the counterexample-
guided refinement paradigm from static software verification. The
technique first explores, using concolic testing, an abstraction of
the function under test by replacing each called function with an
unconstrained input.

In this talk I will describe MultiSE [7], a new technique for
merging states incrementally during symbolic execution, without
using auxiliary variables. The key idea of MultiSE is based on an
alternative representation of the state, where we map each variable,
including the program counter, to a set of guarded symbolic expres-
sions called a value summary. MultiSE has several advantages over
conventional symbolic execution and state merging techniques: 1)
value summaries enable sharing of symbolic expressions and path
constraints along multiple paths, 2) value-summaries avoid redun-
dant execution, 3) MultiSE does not introduce auxiliary symbolic
values, which enables it to make progress even when merging val-
ues not supported by the constraint solver, such as floating point
or function values. We have implemented MultiSE for JavaScript
programs in a publicly available open-source tool. Our evaluation
of MultiSE on several programs shows that MultiSE can run sig-
nificantly faster than traditional symbolic execution.

Acknowledgements

The work is supported in part by NSF grants CCF-1017810, CCF-
0747390, CCF-1018729, CCF-1423645, CCF-1409872, and CCF-
1018730, and gifts from Samsung and Mozilla.

References

[1] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In ASE’08, pages 443-446. IEEE, 2008.

[2] C. Cadar and K. Sen. Symbolic execution for software testing: Three
decades later. Communications of the ACM (CACM), 56(2):82-90,
February 2013.

[3] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In PLDI’05, pages 213-223, 2005.

[4] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE’07, pages
416-426. IEEE, 2007.

[5] R. Majumdar and K. Sen. Latest : Lazy dynamic test input generation.
Technical Report UCB/EECS-2007-36, EECS Department, University
of California, Berkeley, Mar 2007.

[6] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In ESEC/FSE’05, pages 263-272. ACM, 2005.

[7] K. Sen, G. Necula, L. Gong, and W. Choi. Multise: Multi-path symbolic
execution using value summaries. In ESEC/FSE’15. ACM, 2015.



