
Heterogeneous Device Hopping
Bridging the Mobile Cross-Platform Gap via a Declarative Query Language

Sanchit Chadha, Antuan Byalik, and Eli Tilevich
Software Innovations Lab

Virginia Tech, Blacksburg, VA 24061, USA
{schadha,antuanb,tilevich}@cs.vt.edu

Abstract
A typical mobile user employs multiple devices (e.g., a smart-
phone, a tablet, wearables, etc.). These devices are powered by
varying mobile platforms. Enabling such cross-platform devices
to seamlessly share their computational, network, and sensing re-
sources has great potential benefit. However, sharing resources
across platforms is challenging due to a number of difficulties.
First, the varying communication protocols used by major mobile
vendors tend to overlap minimally, making it impossible for the de-
vices to communicate through a single protocol. Second, the host
platforms’ underlying architectural differences lead to drastically
dissimilar application architectures and programming support.

In this demo, we present Heterogeneous Device Hopping, a
novel approach that systematically empowers heterogeneous mo-
bile devices to seamlessly, reliably, and efficiently share their re-
sources. The approach comprises 1) a declarative domain-specific
language for device-to-device communication based on the REST-
ful architecture; 2) a powerful runtime infrastructure that supports
the language’s programming model. In this demo, we show how
our approach can be used to implement a multi-device animation
across heterogeneous nearby devices. The animation starts on one
device and moves across the device boundaries, irrespective of the
underlying mobile platform.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms Languages, Experimentation

Keywords Mobile Applications, Near Field Resource Sharing,
Domain Specific Languages, Runtime

1. Introduction
The modern mobile application market remains fragmented with
multiple competing platforms and application architectures. Addi-
tionally, the average mobile user enjoys a wide range of commonly
available device types, ranging from smartphones and tablets to
smart watches and other wearables. With no single, dominant mo-
bile software vendor, these devices may be powered by one of the

major platforms, including Android, iOS, and Windows Phone. The
fleet of available devices carries a wide range of functionality dis-
tributed unevenly among devices. A tablet may be more suitable
for a computationally expensive operation than a smartphone, if
prolonging battery life is a chief concern. Similarly, a smart watch
would be far more appropriate to continuously retrieve heart-rate
information with its built-in sensor than a tablet without this func-
tionality. In essence, resource sharing facilitates access to function-
ality not easily supported on the host device, due to either hardware
or software resource limitations.

Sharing heterogeneous mobile resources efficiently is strewn
with difficulties, chief among which is a lack of a common com-
munication protocol. Figure 1 shows the various primary commu-
nication protocols, available on the latest iOS and Android plat-
forms. As the latest Android-based OS, Android 5.0 is yet to be
fully embraced by the mobile community. Indeed, the current most
common Android version is KitKat (4.4) [1]. This adoption delay
complicates heterogeneous resource sharing—Figure 1 shows that
only Android 5.0 support both BTLE Central and Peripheral along-
side iOS, thus being the only cross-platform communication proto-
col. The primary mobile platforms’ architectural and programming
model differences requires a nuanced handling for heterogeneous
devices to seamlessly share their resources.

In this demonstration, we highlight the main design features
of our nascent project, whose overriding goal is to address the
challenges outlined above. Our approach—Heterogeneous Device
Hopping—enables the mobile software developer to express inter-
device communication logic declaratively, by means of a domain-
specific language. The language is supported by a runtime system
that bridges over the panoply of dissimilarities of the major mobile
platforms, while also providing fault tolerance.

Figure 1. iOS vs. Android Connectivity Protocols

2. Technical Approach
At the core of Heterogeneous Device Hopping is the Resource
Query Language (RQL), a declarative, platform-independent pro-
gramming language based on the RESTful architecture. Its runtime

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3722-9/15/10...$15.00

http://dx.doi.org/10.1145/2814189.2814191

9

Figure 2. From left to right: Start/setup screen for host, iOS initial position, frog sprite “hopped” across to Android screen

system frees the mobile programmer from the need to write low-
level, platform-specific code to enable cross-device communica-
tion. We describe RQL and the runtime in turn next.

2.1 RQL Design
RQL, a platform-independent, domain-specific language for the
sharing of resources across heterogeneous devices, is based on
the RESTful architecture [3], which solves many of the toughest
challenges that arise when engineering robust heterogeneous dis-
tributed systems. Hence, RQL follows the nouns/verbs paradigm:
nouns express the requested resources; verbs express the actions
performed on these resources. In Heterogeneous Device Hopping,
the nouns are characteristics that identify the host or peripheral de-
vice while the four verbs are: (1) pull data, (2) push data, (3)
delegate work and await result, and (4) bind to a resultCharac-
teristic and receive updates.

Figure 3 displays the RQL command, which initiates the pro-
cess shown in Figure 2. Specifically, the RQL bind verb applied
to the any:game/result noun exemplifies the core operational pro-
cedure of RQL. In this instance, the RQL command leverages the
heterogeneity of the bind verb when applied to a noun prefixed
with “any”, which directs the runtime to find any available nearby
resource, as opposed to a particular device or location.

Figure 3. RQL command sent to host

2.2 Runtime Infrastructure
The runtime infrastructure is centered around two major tasks: (1)
process RQL requests, both incoming, from the 3rd-party applica-
tion, and outgoing, to the runtime located on the accessed nearby
device, and (2) handle the appropriate communication details to
send/receive the requested data specified by the RQL requests. Ad-
ditionally, the extensible design of the runtime makes it possible to
handle the communication protocols irrespective of the host plat-
form. Serving as a virtual layer on the communicating hosts, the
runtime provides a level of abstraction making it possible to ex-

press remote requests in a high-level, declarative fashion, without
polluting the code with convoluted fault-tolerance logic.

3. Demonstration Plan
This interactive demonstration illustrates a representative case of
heterogeneous mobile devices pulling their resources to accom-
plish a common task. In particular, we show a multi-device ani-
mation, in which a sprite commences its journey on one device,
and upon reaching the edge of the device’s screen, moves over to
the next device, thus creating the notion of inter-device hopping.
Although animations like this can be implemented by writing low-
level, platform-specific code, in this demonstration we show how
this non-trivial functionality is implemented by means of a couple
of lines of RQL and its platform-specific bindings.

In the demonstrated case, the host mobile device is an iOS-
based device with the devices connecting to it being either Android
or iOS. More specifically, we used two equivalent game develop-
ment toolkits for iOS [2] and Android [4], respectively to create
an animation for both platforms. The main thrust of the demo will
show a hopping frog jumping across device screens as shown in
Figure 2. The demonstration will support as many heterogeneous
devices as we choose to engage for the demo. Furthermore, remov-
ing a device while the journey is in progress would cause the an-
imated character to jump to the next available device. A possible
secondary thrust would be enabling attendees to play the classic
game of pong wirelessly across several heterogeneous devices.1

References
[1] C. B. Bautista. Android Lollipop is only on 5.4 percent of devices, and

KitKat is Still the Most Popular, 2015.
[2] developer.apple.com. About Sprite Kit, 2015.
[3] R. T. Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, Irvine,
2000.

[4] https://code.google.com/. Cocos2d-android, 2015.

1 This research is supported in part by the National Science Foundation
through Grant CCF-1116565.

10

