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Abstract
Immutability is a valuable feature for programmers in object
oriented languages: making objects immutable often sim-
plifies reasoning about the correctness of code, particularly
when concurrency is present. Java allows programmers to
express and enforce immutability by declaring all fields of
an object final, but this comes at the cost of decreased ex-
pressiveness and intuitiveness of initialization. In this work,
we propose a minimalistic type-based mechanism that both
enforces immutability and relaxes these constraints on ini-
tialization. Furthermore, we propose and formalize two dif-
ferent type systems based on this mechanism that form a
meaningful trade-off with respect to complexity, expressive-
ness, and strength of static guarantees. System One is sim-
ple, more expressive, and provides object-level immutabil-
ity; System Two has more complicated annotation, is less
expressive, and ensures that immutable objects are fully ini-
tialized in addition to enforcing immutability.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Coding Tools and Techniques; D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords Immutability, Initialization

1. The Problem
Immutability is an important language feature for software
engineering because it simplifies design and maintenance of
code. Joshua Bloch, in his book Effective Java, goes so far
as to recommend immutability as a default choice when de-
signing a program, only resorting to mutability when a “very
good” reason exists [1]. Current solutions to immutability
can nevertheless be quite burdensome. In Java, immutability
is enforced by labeling the fields of an object with the key-
word final. Such fields must be assigned exactly once by a
static initializer or directly inside the body of a constructor.

This mechanism for immutability constrains the usabil-
ity and expressiveness of object initialization. In terms of
usability, programmers are more productive with, and pre-

fer, APIs that embrace the “create-set-call” approach to ob-
ject construction, whereby objects are first constructed with
a default constructor, and then brought into a specific initial-
ized state with a series of “set” methods [2]. In terms of ex-
pressiveness, cyclic object hierarchies, although not entirely
prohibited, are quite limited and awkward with final-based
immutability.

The existing literature on immutability distinguishes be-
tween read-only references, which cannot be used to mutate
an object’s state, and object-level immutability, which pre-
vents an object’s state from being mutated by any reference
[4]. Object-level immutability is valuable because it elim-
inates the entire class of bugs that arise from unexpected
state changes, at least if the object in question is declared
immutable. Our systems provide object-level immutability
for this reason.

2. Our Approach
Our contributions are (1) A minimalistic, type-based mech-
anism for allowing flexible initialization of immutable ob-
jects; (2) A formalization of this mechanism in a simplified
Java-like language, referred to as “System One”; (3) An ex-
tension to System One that provides additional initialization
guarantees, referred to as “System Two”; (4) A dynamic se-
mantics for a Java-like language, and proofs of the relevant
static guarantees for System One and Two.

2.1 System One
Our mechanism provides object-level immutability. It works
as follows: first, instead of enforcing immutability at the
level of fields, the system require programmers to label
classes as immutable. To allow for flexible initialization,
we devised a type system inspired by “delayed types” [3].
However, instead of tracking the initialization status of spe-
cific fields, this system tracks the status of objects at a much
coarser granularity: an object is either “liquid” (i.e. still be-
ing initialized), or “frozen’ (i.e. initialized and immutable).
The liquid type-state is indicated by an additional annota-
tion wherever types occur (e.g. “@Liquid List”); frozen
is the default type-state for an immutable class. Objects of
immutable classes are initially liquid and are bound to some
scope at creation. We refer to these as “initialization scopes”.
Changing from the liquid to frozen state occurs at the end of
the initialization scope. Our system guarantees object-level
immutability for frozen objects. Objects bind to the smallest
scope that contains them.
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/* Forms a cyclic link between objects.

* "@Initializes" is needed for System Two */

@Initializes("{n1.other, n2.other}")

void link(@Liquid Node n1, @Liquid Node n2) {

n1.other = n2;

n2.other = n1;

}

Node double_link() {

/* this scope is explicit as in the formalism */

initialize {

link(new Node(), new Node());

}

}

Listing 1. Illustrates the use of Liquid types

Making scopes explicit simplifies the proof of correct-
ness. Still, it is possible to infer initialization scopes based
on types declared in method signatures. By using inference
of initialization scopes with sensible default annotations, the
programmer would need to be provide additional annota-
tions only if flexible initialization is actually needed.

To allow unrestricted usage of objects would amount
to tracking all aliasing information about an object. Our
solution to this problem is, broadly speaking, to prevent the
usage of still-liquid objects and only allow operations serve
to initialize these objects. “Usage” of an object entails, for
example, reading the fields of that object or assigning it
to a field of a mutable object. We also disallow @Liquid

fields. Of course, the type system allows assigning still-
liquid objects to fields of other still liquid-objects: this is
what allows the construction of complex object hierarchies.
Our solution is unique in its simplicity: other approaches
(e.g. the one elaborated in [6]) solve this problem by making
the type system more complicated.

2.2 System Two
In switching to System One from the final-based system
that Java uses, the programmer loses the guarantee that ob-
jects are fully initialized once constructed. This is checked
in Java simply by ensuring that each final field is assigned
either statically or directly in the constructor. System Two
imposes additional annotation burden and reduces expres-
siveness but guarantees that all frozen objects are initialized.

Unlike System One, our type formalism for System Two
tracks individual fields. If the a field is possibly uninitialized
at the end of its object’s scope, a compiler error is raised.
Checking the initialization status of a field accurately across
methods requires additional annotation from the program-
mer. Just as in the delayed types system, our formalism en-
codes this information as a set of fields in each method signa-
ture (e.g. {x.f, y.g} ), indicating which fields the method
initializes [3]. Listing 1 shows an example of this.

2.3 Formalism and Proofs
We have devised a small-step semantics to represent the ex-
ecution of programs in a Java-like language. Using this for-

malism, we proved that (1) In System One and Two, the ex-
ecution of a well-typed program never mutates a frozen ob-
ject, nor allows frozen objects to become liquid again; and
(2) In System Two, the execution of a well-typed program
never freezes an object, unless all fields of the object’s run-
time type have been assigned.

The formalization and proofs can be found here.

3. Related Work
Our mechanism strikes a novel balance in terms of simplicity
and expressiveness. Many existing systems, like IGJ, provide
object immutability but do not allow flexible initialization
[7]. Similar approaches exist that allow flexible initialization
in lexical scopes. The system in [6], for example, provides
roughly the same static guarantees as System One and al-
lows flexible initialization. This system allows more usage
of immutable objects during construction, but at the cost of
additional complexity: the type quantifier hierarchy is sub-
stantially more complicated. System One is as minimal as
possible, while still allowing flexible initialization.

Placeholder types are the only system we know of that
matches our system’s simplicity [8]. They are nevertheless
not as expressive. As one example, programmatically ini-
tializing a tree with parent pointers from the bottom-up is
not possible because all nodes of the tree would need to be
constructed in the same placeholder declaration.

Similar trade-offs exist with System Two. System Two is
comparable to the delayed types and masked types systems
in [3] and [5]. Our systems restricts use during initialization
to a greater degree than these systems. On the other hand,
System Two can handle situations that delayed types can-
not (bottom-up initialization of a tree with parent nodes, for
example); System Two is also much simpler from the pro-
grammers point of view than masked types.
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