
Toward a Java Based Infrastructure
for Unmanned Aerial Vehicles

Yu David Liu
SUNY Binghamton, USA
davidl@cs.binghamton.edu

Lukasz Ziarek
SUNY Buffalo, USA
lziarek@buffalo.edu

Abstract
Unmanned Aerial Vehicles (UAVs) have recently emerged as
a promising platform for civilian tasks and public interests,
such as merchandise delivery, traffic control, news report-
ing, natural disaster management, mobile social networks,
and Internet connectivity in third-world countries. Looking
forward, the exciting potential of UAVs is accompanied with
significant hurdles that call for broad and concerted interdis-
ciplinary research, with diverse focuses on real-time system
design, energy efficiency, safety and security, programma-
bility, robotics and mechanical design, among others. This
poster proposes an open-source and extensible software in-
frastructure for UAVs.

Categories and Subject Descriptors D.4.7 [Organization
and Design]: Real-time systems and embedded systems;
D.3.3 [Language Constructs and Features]: Frameworks

Keywords Unmanned aerial vehicles, software infrastruc-
ture, extensibility, Java

1. Introduction
In our opinion, an open-source, extensible, and general in-
frastructure is critical for promoting research and educa-
tion in UAV systems, ultimately leading to a better under-
standing, assessment, and possibly wider application of this
emerging technology. Prior work has focused on very low
level embedded software / hardware platforms. To the best
of our knowledge, only few projects — the most notable one
is perhaps Paparazzi [5] — share our vision of developing an
open infrastructure that a broader community of users with
diverse interests can benefit. The most fundamental problem
of Paparazzi — and similar systems such as AutoPilot [1]

and OpenPilot [4] — is that UAVs are viewed as a hardware-
centric embedded/robotics system. By openness and exten-
sibility, those projects focus on offering refined support to
interface with diverse models of autopilot boards, sensors,
motion controllers, and so on. As a result, Paparazzi directly
operates on micro-controllers with no operating system sup-
port; programming in Paparazzi is restricted to low-level em-
bedded system programming; the support of high-level Ap-
plication Programming Interfaces (APIs) is minimal; and ad-
vanced support for software quality (such as program anal-
ysis or verification) is non-existent. Overall, we believe a
Paparazzi-like infrastructure may be suitable for a mechan-
ical engineering researcher to prototype, or for a UAV afi-
cionado to navigate model planes, but its standpoint may be
too low-level to accommodate a broad spectrum of computer
science research, and introducing UAVs in the classroom.

2. jUAV Software Infrastructure
We propose an extensible software infrastructure for UAVs
and their payload applications. We envision an infrastruc-
ture that enables the UAV as a unified computation plat-
form: the developers can engage in a wide range of appli-
cation tasks — data collection, monitoring and surveillance,
physical object transfer, communication intermediary — and
researchers can explore and meet a diverse set of require-
ments such as predictability, energy efficiency, program cor-
rectness, and application security. To support this vision, we
introduce the following design goals:

Design Goal I [Whole-Stack Extensibility]: to promote
UAV research from different areas, the new infrastructure
should be structured in an extensible fashion so that re-
searchers from different research areas can all effectively
contribute.

Design Goal II [Portability]: since UAV hardware com-
ponents are extremely diverse, the new system should en-
courage solutions portable to different architectures, operat-
ing systems, virtual machines, and compilers.

Design Goal III [Resource Awareness]: the new system
must provide infrastructure-level support to account for sys-
tem resources critical for UAV systems, such as energy, and
expose them to higher levels of compute stacks to enable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3722-9/15/10
http://dx.doi.org/10.1145/2814189.2817276

56



and facilitate whole-stack research on addressing these con-
straints.

Design Goal IV [Software Quality]: UAVs in many ap-
plications are mission-critical. The infrastructure-level sup-
port should promote safety, and provide strong support for
debugging.

Design Goal V [Payload Application Friendliness]: the
new system must provide well-defined, intuitive, and high-
level programming interfaces to accommodate diverse appli-
cation domains for UAV software payloads.

Design Goal VI [Education Effectiveness]: the new sys-
tem must be easy to understand, learn, and experiment with.

No existing UAV infrastructures we know of satisfy all of
the above Design Goals. At its heart, our infrastructure is a
software ecosystem that draws on existing technologies —
including hardware-centric frameworks such as Paparazzi,
real-time operating systems (RTOS), C-based compilers and
linkers, real-time Java and its virtual machines — and in-
tegrate them in novel ways to achieve our listed Design
Goals, while providing a useful infrastructure for enabling
the research and educational for the broader community. It
is important to point out that our proposed infrastructure is
not meant to be a universal solution for all future UAV de-
velopments. Our intended scope of UAV support is ”mid-
dleweight” — not too powerful like a ”flying desktop,” but
not too resourceless like micro-UAVs [3, 6] with memory
size in the KBs (e.g., Robobees [2]). Instead, we will target
commodity embedded boards.

2.1 Proposed Infrastructure

Ground 
Station

RTOS

JVM

Payload

Embedded Deployment

Auto Pilot

Flight 
Visualization

Physics
Simulator

Visual 
Debugger

Development Machine

Temporal DBMS

Logging Trace

Actuator 
Commands

Sensor
Values

Fly by Wire

Debug Queries

Energy
Simulator

Energy
Model

Figure 1: High-Level System Stack

Our proposed infrastructure is illustrated in Fig. 1. It con-
sists of three distinct components, which can be deployed
on the same machine for simulation, or separate machines
in more realistic deployment environments: (1) an autopilot
and software payload execution framework, typically exe-
cuted on an embedded board; (2) a ground station and sim-
ulation support, typically executed on a desktop or develop-
ment machine; and (3) debugging and tracing support.

To promote Whole-Stack Extensibility, we propose a UAV
software infrastructure with a conceptually layered design
including hardware drivers, (real-time) operating systems
(OS), virtual machines (VM), and compilers. One attractive

consequence of the design is Portability, where the diver-
sity of hardware can remain abstract at OS, VM, or com-
piler levels, and the diversity of system software can remain
abstract at the application level, promoting the platform in-
dependence of UAV payload applications. The layers in our
design are conceptual: we offer flexible modes of compi-
lation and interpretation support to maximize efficiency, so
that e.g., the VM and the OS can be compiled to a binary im-
age with aggressive cross-layer optimizations, or a VM with
direct support of load-time or run-time just-in-time compila-
tion.

Java, as well as other languages that leverage the man-
aged runtimes, are widely used for application-level pro-
gramming. We propose to offer UAV programmers a Java
programming interface, promoting Payload Application
Friendliness. For instance, numerous Android Apps ad-
dress tasks useful for UAVs, such as geo-based tracking,
video/camera management, and motion detection and pat-
tern recognition. With Java support, such Apps may undergo
minimal or no modifications to serve as off-the-shelf build-
ing blocks for developing UAV applications. Another dis-
tinct advantage of the Java-based programming model is its
strength in safety: Java guarantees type safety and memory
temporal and spatial safety at the language level, with sig-
nificant research and tool support on debugging, error han-
dling, program repair, and verification. These technologies
promote Software Quality. To accommodate Whole-Stack
Extensibility, where some low-level programming is nec-
essary at the hardware abstraction layer or the OS layer,
our proposed framework also supports the C programming
model with full interoperability and backward compatibility.

Acknowledgments

We thank the anonymous reviewers for the useful comments
and suggestions. This work is sponsored by US NSF CNS-
1512992 and CNS-1513006.

References
[1] Autopilot: Do it yourself uav, http://autopilot.

sourceforge.net.

[2] Bryan Kate, Jason Waterman, Karthik Dantu, and Matt Welsh.
Simbeeotic: A simulator and testbed for micro-aerial vehicle
swarm experiments. In Proceedings of the 11th International
Conference on Information Processing in Sensor Networks,
IPSN ’12, pages 49–60, New York, NY, USA, 2012. ACM.

[3] Gregory Mone. Rise of the swarm. Commun. ACM, 56(3):16–
17, March 2013.

[4] Openpilot, http://www.openpilot.org/.

[5] Paparazzi: The free autopilot, http://wiki.paparazziuav.
org/.

[6] Rj Wood, B Finio, M Karpelson, K Ma, No Pérez-Arancibia,
Ps Sreetharan, H Tanaka, and Jp Whitney. Progress on ’pico’
air vehicles. Int. J. Rob. Res., 31(11):1292–1302, September
2012.

57


