

“Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

PSI EtA'10, 17-OCT-2010, Reno, USA
Copyright © 2010 ACM 978-1-4503-0544-0/10/10…$10.00”

A Simulation-based Software Design Framework for
Network-Centric and Parallel Systems

Hussain M. J. Almohri Osman Balci
Department of Computer Science

Virginia Polytechnic Institute and State University (Virginia Tech)
Blacksburg, Virginia 24061, U.S.A

almohri, balci@vt.edu

Abstract
In this paper we discuss a software design framework that
is capable of realizing network-centricity and the rising
multicore technology. Instead of producing static design
documents in the form of UML diagrams, we propose
automatic generation of a visual simulation model, which
represents the target system design. We discuss a design
environment that is responsible for the generation and
execution of the simulation model.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design

General Terms Design, Verification

Keywords Design, simulation, modeling, network-centric,
parallel processing

1. Introduction
One purpose of software design as a process within the
software development life cycle is to develop a conceptual
design model representing the software. The resulting
design model is intended to enable verification and
validation of the design as well as planning for the
corresponding code-level implementation.

The verification and validation are essential to assess
the accuracy of the design. We need to be able to refine
existing requirements by uncovering new requirements and
modify (or remove) the existing ones. In addition, it is
important to check the design for its feasibility, perform
various analyses and test for possible software faults,
failure and malfunction.

It is crucial to plan for an accurate code-level
implementation at the design stage. Since a software design
model is an abstract representation of the target software
system, it must provide design decisions for every aspect of
the software. That does not mean interference with the

implementation of the design by providing very low level
details of the software system. However, the design model
has to be comprehensive and expressive enough and yet
remain high-level, abstract and mostly platform
independent.

By examining the existing approaches to software
design, we have realized the lack of expressiveness and the
ability to perform verification and validation on the design
documents. Some of the existing research has addressed the
idea of executable software design. In particular, the
research in this area has centered on UML [22], the widely
used object-oriented software modeling language.
However, we believe that to perform a useful execution of
the software design, there is a need for a design framework
that can realize issues related to the execution from early
stages of the design.

In fact, we observed that the existing modeling
languages are not expressive enough to address the needs
of today’s complex software systems. Most large and
complex systems need to be distributed and thus become a
network-centric system. In addition, we have seen the
rapidly increasing number of cores on commonly used
computing platforms. Therefore, in order to utilize the
available distributed and parallel computing power, we
need to have an expressive and detailed design framework
that can provide the required abstractions to design such
systems.

In our ongoing work, we propose the development of
a Design Framework (DF) from which we can
automatically generate a corresponding visual simulation
model representing the software design. We envision a DF
that is capable of addressing the needs for network-centric
and parallel software systems. These two elements of our
DF will assist in enabling verification and validation of the
design as well as planning for an accurate code-level
implementation of the design.
Throughout this paper we discuss some of the ideas related
to the Design Framework, a survey of related work and our
plans for future work.

2. Design Framework
The Design Framework is defined as an underlying
structure and organization of ideas, which constitute the
anatomy and basic skeleton that, guide a software designer
in representing a network-centric and parallel software-
based system in the form of a visual simulation model.

We do not tie the DF to a specific software design
paradigm or an existing modeling language. Instead, using
the DF a designer shall be able to use major software
design paradigms such as Procedural, Object-Oriented, and
Service-Oriented, to design the target software system.

In our DF, we define a Conceptual Construct (CC) as
a design-level concept, which represents an abstract
element of software systems that is independent from a
specific paradigm or a platform. In this section we
introduce some of the conceptual constructs that are
fundamental as well as those related to parallel and
network-centric systems.

2.1 Fundamental Conceptual Constructs
The fundamental CCs form a set of basic CCs that can be
used to describe a generic software system. The
fundamental CCs provide a basis for other kinds of CCs
such as those for Parallel and Network-Centric.

Within the fundamental CC, we define a block as an
abstract CC that represents a software component, module,
service, or class. A block can be simple or nested. A nested
block consists of sub-blocks that are designed to be as part
of their container block. The sub-blocks of a nested block
are not able to directly interact with outside world. They
are special blocks that assist the container block in
accomplishing its tasks. Thus, the container block can
always control the behavior of its sub-blocks.

A simple block cannot contain sub-blocks. In Object-
Oriented terms, a simple block is similar to a class without
having other classes defined as part of it.

A block can be executable or non-executable. Those
blocks that define their execution logic can be executed
during the simulation runtime. The non-executable blocks
can also be part of the simulation runtime when the
instantiation of these blocks is simulated.

Blocks can participate in block interactions. Blocks
can interact as part of a service request and response
mechanism. For instance, a block can request invocation of
particular execution logic as a service from another block.
This way a Remote Procedure Call, a Remote Method
Invocation or a local procedure call can be modeled. A list
of parameters is associated with each interaction
established between two blocks. The parameters include the
requester and the responder, the requested execution logic,
and the synchronization method. Block interactions are
specified without being part of an execution context.
Instead, the specified interactions can be put into action as
part of execution logics within various blocks as far as the
interaction requirements are fulfilled.

2.2 Multicore Parallelism
Our literature review indicates that, except for a few trials
[14], the research community has paid little attention to
parallelism at the design stage. We believe parallelism is a
problem to be dealt with at both the design and the
implementation stages of software development life cycle.
That is because there are design decisions that have to be
made on the way parallelism takes place within the
software execution.

With today's rising multicore technology, the
designers of complex software systems need to be able to
appropriately design the software with utilization of the
multicore technology. It is important to be able to model
physical cores, their availability, and the way various
software modules would use them.

The Design Framework defines CCs for a number of
physical hardware resources that are associated with the
execution of a software system. These CCs are machine,
processor and core, which abstract physical machines,
processors and cores respectively. The level of abstraction
here is determined by the specification needs of the
software. As designers, we need to be able to define new
machines, processors and cores to be selected as execution
platforms for specific executable blocks.

The designer can direct the execution to a specific
core or a group of cores on a particular machine. For
example, a block can be designated to run on a specific
core on a specific machine. Alternatively, the designer can
choose to run the class on a machine without specifying the
core. This is important in the case that explicit
parallelization is not important at the conceptual level.

Another element of parallelization in our framework
is the availability. For example, the designers can indicate
the level of availability of a core to its execution block. An
execution block can occupy a core all the time, or it can
occupy some parts of it for a period of time. Therefore, we
also add a usage capacity to each core to indicate how
much of core's capacity is available to a particular
execution block.

2.3 Network-Centricity
Our Design Framework needs to capture basic elements of
a network-centric software system. Network-centric
systems are not limited to a collection of distributed (and
perhaps homogeneous) software systems. Network-centric
software can be thought of as a network of heterogeneous
software systems organized under what is called a system
of systems [1]. The Design Framework focuses on the
distributed nature of network-centric software systems.

We include abstractions to enable high-level design of
the networking functionality needed by the system. The
choice of network protocol, service requests and responses
and the connectivity between software blocks are among
essential networking abstractions.

We abstract geographic regions to be used as part of
the design. Machine cores as defined in Section 2.2 can be
assigned to different geographic regions. This makes it
necessary to include the networking abstractions discussed
earlier. A software block uses the networking abstractions
to model a communication channel established between the
distributed blocks. A distributed block is an execution
block that resides on two or more geographically dispersed
cores.

The Design Framework defines synchronization
constructs that can be used to specify the synchronization
mechanism of an interaction between two distributed
blocks. For example, an interaction of two distributed
blocks can be set to asynchronous. At simulation runtime,
we will simulate the appropriate behavior corresponding to
an asynchronous request. Further, this request can be set to
a timeout limit or can be set to unlimited timeout. In this
case, it is important to note the possibility of race
conditions and deadlocks. As part of our tool
implementation, we aim to provide a design analysis tool
that can capture such conditions before the design model is
ready for simulation.

3. Integrated Visual Simulation-based Design
Environment

In order to provide the required tools for software design
using our DF, we propose an Integrated Visual Simulation-
based Design Environment (IVSDE). Within IVSDE, there
are a number of tools (as depicted in Figure 1) that assist
the designer in producing the final work product. Guided
by the DF, a designer uses a tool called Visual Software
Designer to describe the design. This tool uses a graphical
modeling language based on the DF with the appropriate
GUI to capture the design. Once the designers specified the
design, it will be fed into the next tool called Design
Analyzer. The tool's task is to perform static analysis on the
design and look for possible structural errors. That is
related to the appropriate use of the graphical modeling
language as well as the integration of the design in general.
At this stage we also look for race conditions and possible
deadlocks that may appear as a result of using network-
centric and parallel conceptual constructs.

When various kinds of analyses are performed on the
design, if the design is approved and free of errors, we
proceed with the design towards Visual Simulation Model
Generator. This tool uses automated code generation
techniques to produce the executable visual simulation
model. We aim to have minimal designer interference in
this process to make it more usable.

At the final stage, the executable visual simulation
model is given to the Software Design Simulator (SDS).
This tool is our simulation runtime. It uses designer
specified parameters to run the simulation model. The
simulation will be in a visualized format. The designer can
see the flow of data and the execution of the specified logic

during the runtime. Further, the designer can ask the SDS
to provide current system information at specific
checkpoints provided with a pause or continue option. This
enables a convenient way of debugging the model at the
runtime.

Using the SDS, the designers can perform dynamic
analysis on the design and further refine it as needed.
Among possible analyses are:

• “What if” analysis
• Feasibility of the design
• Correctness and completeness of the design
• System performance examination

Figure 1. High-level view of IVSDE.

4. Related Work
Existing work on simulation and execution of software
design is centered on UML diagrams. Some of previous
works have discussed executable UML diagrams [4–6, 10–
13, 15, 20, 25]. In fact, Object Management Group
describes execution semantics for a subset of UML (called
fUML) that is considered to be generic enough [21].
Working on enabling execution out of UML diagrams is
valuable due to wide usage of UML diagrams as an
industry standard in the area of software design.

Another interesting modeling language is called
Coloured Petri nets [16] (a variation of the Petri nets [23]).
Coloured Petri nets are used to model concurrent and
distributed systems and can be simulated [2, 19]. There has
also been an attempt to translate UML 2.0 state diagrams
into Coloured Petri nets [9].

Fundamental Modeling Concepts (FMC) provides a
complement to UML for modeling concurrent and
distributed aspects of a system [18, 24]. It introduces the
idea of virtual locations and agents interacting with a
system. A separation of behavior and compositional
structure is emphasized in this work. However, we believe
that for the purpose of modeling parallelization and
providing a rich executable environment, UML and FMC
do not provide the needed ground.

Other works explicitly mention simulation and
modeling of UML diagrams [3, 8, 17]. Similar to execution
of UML diagrams, simulation of these diagrams can be
quite valuable and provide a basis for our framework.

Behavior tree is a modeling formalism, which
automates the process of generating a software design out
of requirements expressed in natural language [7]. These
trees can also be simulated.

5. Future Work
This work is part of a broader project for developing a
complete design framework with automatic simulation
capabilities. We are trying to improve the design
framework to include more necessary design elements and
support it with a clear formalism.

In our research, we plan to focus on supporting
parallel software design realizing the multicore technology.
We also plan to emphasize on defining appropriate
abstractions to capture the network-centricity, which is an
essential part of today's complex systems.

Our objective is to have a design framework that is
capable of acknowledging widely used design
methodologies. That helps the framework to be applicable
in a wider range of applications.

The IVSDE is at its conceptual development stage.
We have not yet developed a prototype to show the actual
capabilities of our framework and our vision in terms of the
way a design model will be executed. Our target is a
prototype tool that can generate visual simulation models
and provides complete support for our design framework.

References

[1] Balci, O. and W. Ormsby (2006), “Quality Assessment
of Modeling and Simulation of Network-Centric Military
Systems,” In Modeling and Simulation Tools for Emerging
Telecommunication Networks, Springer-Verlag, Berlin,
Germany, 365-382.

[2] Breton, E. and J. Bzivin (2007), “Towards an
Understanding of Model Executability,” In Proceedings of
the 2001 International Conference on Formal Ontology in
Information Systems, ACM, New York, NY, pp. 70-80.

[3] Campbell, L., B. Cheng, W. McUmber and R. Stirewalt
(2000), “Automatically Detecting and Visualizing Errors in

UML Diagrams,” Requirements Engineering Journal 7,
264-287.

[4] Crane, M. and J. Dingel (2008), “Towards a Formal
Account of a Foundational Subset for Executable UML
Models,” In Proceedings of the 11th International
Conference on Model Driven Engineering Languages and
Systems, Springer-Verlag, Berlin, Germany, pp. 675-689.

[5] Curtis, D. (2006), “SPARK Annotations Within
Executable UML,” In Proceedings of the 11th Ada-Europe
International Conference on Reliable Software
Technologies, Springer-Verlag, Berlin, Germany, pp. 83-
93.

[6] Dobrzanski, C. and L. Kuzniarz (2006), “An Approach
to Refactoring of Executable UML Models,” In
Proceedings of the 2006 ACM Symposium on Applied
Computing, ACM, New York, NY, pp. 1273-1279.

[7] Dromey, R. G. (2003), “From Requirements to Design:
Formalizing the Key Steps,” In Proceedings of the 1st
International Conference on Software Engineering and
Formal Methods, IEEE Computer Society Press,
Washington, DC, pp. 2-11.

[8] Ermel, C., K. Holscher, S. Kuske and P. Ziemann
(2005), “Animated Simulation of Integrated UML
Behavioral Models Based on Graph Transformation,” In
Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, IEEE
Computer Society Press, Washington, DC, pp. 125-133.

[9] Fernandes, J. M., S. Tjell, J. B. Jorgensen and O.
Ribeiro (2007), “Designing Tool Support for Translating
Use Cases and UML 2.0 Sequence Diagrams into a
Coloured Petri Net,” In Proceedings of the 6th International
Workshop on Scenarios and State Machines, IEEE
Computer Society Press, Washington, DC, pp. 2-11.

[10] Flint, S., H. Gardner and C. Boughton (2004),
“Executable/Translatable UML in Computing Education,”
In Proceedings of the 6th Conference on Australasian
Computing Education, ACM, New York, NY, pp. 69-75.

[11] Fuentes L. and P. Sanchez (2007), “Towards
Executable Aspect-Oriented UML Models,” In
Proceedings of the 10th International Workshop on Aspect-
oriented Modeling, ACM, New York, NY, pp. 28-34.

[12] Fuentes L. and P. Sanchez (2008), “Execution and
Simulation of (Profiled) UML Models Using Populo,” In
Proceedings of the 2008 International Workshop on
Models in Software Engineering, ACM, New York, NY,
pp. 75-81.

[13] Golfarelli, M. and R. Stefano (2008), “UML-Based
Modeling for What-If Analysis,” In Proceedings of the
10th International Conference on Data Warehousing and
Knowledge Discovery, Springer-Verlag, Berlin, Germany,
pp. 1-12.

[14] Gorton, I., J. P. Gray and I. Jelly (1995), “Object-
Based Modeling of Parallel Programs,” IEEE Parallel and
Distributed Technology: Systems & Applications 3, 52-63.

[15] Hansen, H, J. Ketema, B. Luttik, M. Mousavi and J.
van de Pol (2010), “Towards Model Checking Executable
UML Specifications in mCRL2,” Innovations in Systems
and Software Engineering 6, 1, 83-90.

[16] Jensen, K., L. M. Kristensen and L. Wells (2007),
“Coloured Petri Nets and CPN Tools for Modeling and
Validation of Concurrent Systems,” International Journal
on Software Tools for Technology Transfer 9, 213-254.

[17] Ji, Y., K. H. Chang and P. O. Bobbie (2004),
“Interactive Software Architecture Design with Modeling
and Simulation,” In Proceedings of the 42nd Annual
Southeast Regional Conference, ACM, New York, NY, pp.
305-306.

[18] Keller, F. and S. Wendt (2003), “FMC: An Approach
towards Architecture-Centric System Development,” In
Proceedings of the 10th IEEE International Conference
and Workshop on Engineering of Computer-Based Systems,
IEEE Computer Society Press, Washington, DC, pp. 173-
182.

[19] Kristensen, L. M., S. Christensen and K. Jensen
(1998), “The practitioner’s Guide to Coloured Petri Nets,”
In International Journal on Software Tools for Technology
Transfer, Springer-Verlag, Berlin, Germany, pp. 98-132.

[20] Mooney, J. and H. Sarjoughian (2009), “A Framework
for Executable UML Models,” In Proceedings of the 2009
Spring Simulation Multiconference, Society for Computer
Simulation International, San Diego, CA, Article No. 160.

[21] Mellor, S. J. and M. Balcer (2002), “Executable UML:
A Foundation for Model-Driven Architectures,” Addison-
Wesley, Boston, MA.

[22] Object Management Group (2010), “Introduction
to OMG’s Unified Modeling Language (UML),”
http://www.omg.org/gettingstarted/what is uml.htm.

 [23] Reisigs, W. and G. Rozenberg (1998), “Informal
Introduction to Petri Nets,” Lectures on Petri Nets I: Basic
Models, Lecture Notes in Computer Science 1491, 1-11.

[24] Tabeling, P. (2002), “Multi-level Modeling of
Concurrent and Distributed Systems,” In Proceedings of
the 2002 International Conference on Software
Engineering Research and Practice, CSREA Press, Las
Vegas, NV, pp. 94-100.

[25] Waheed, T., M. Iqbal and Z. Malik (2008), “Data Flow
Analysis of UML Action Semantics for Executable
Models,” In Proceedings of the 4th European Conference
on Model Driven Architecture Foundations and
Applications, Springer-Verlag, Berlin, Germany, pp. 79-93.

