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Abstract
Software has spent the bounty of Moore’s law by solving
harder problems and exploiting abstractions, such as high-
level languages, virtual machine technology, binary rewrit-
ing, and dynamic analysis. Abstractions make programmers
more productive and programs more portable, but usually
slow them down. Since Moore’s law is now delivering mul-
tiple cores instead of faster processors, future systems must
either bear a relatively higher cost for abstractions or use
some cores to help tolerate abstraction costs.

This paper presents the design, implementation, and eval-
uation of a novel concurrent, configurable dynamic analy-
sis framework that efficiently utilizes multicore cache archi-
tectures. It introduces Cache-friendly Asymmetric Buffer-
ing (CAB), a lock-free ring-buffer that implements efficient
communication between application and analysis threads.
We guide the design and implementation of our framework
with a model of dynamic analysis overheads. The framework
implements exhaustive and sampling event processing and is
analysis-neutral. We evaluate the framework with five pop-
ular and diverse analyses, and show performance improve-
ments even for lightweight, low-overhead analyses.

Efficient inter-core communication is central to high per-
formance parallel systems and we believe the CAB design
gives insight into the subtleties and difficulties of attaining it
for dynamic analysis and other parallel software.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments
General Terms Experimentation, Performance, Measurement

Keywords Dynamic Analysis, Profiling, Multicore, Instrumentation
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1. Introduction
Dynamic analysis is a base technology for performance op-
timization [1, 10, 26], debugging [16, 22, 25], software sup-
port [14, 32], and security [19, 23]. Binary rewriting systems
and Just-In-Time (JIT) compilers in managed runtimes need
dynamic information about the program to optimize it. They
often employ techniques for reducing the overhead, such as
sampling, that trade accuracy for performance. However, dy-
namic analyses used for debugging, software support, and
security often require fully accurate analysis. The overhead
of more expensive analyses limit their use.

Multicore architectures offer an opportunity to improve
the design and performance of dynamic analysis. As the
number of cores on commodity hardware continues to in-
crease and application developers are struggling to paral-
lelize application tasks, exploiting unused processors to per-
form dynamic analysis in parallel with the application be-
comes an increasingly appealing option.

This paper explores the design and implementation of
a dynamic analysis framework that exploits under-utilized
cores by executing analysis concurrently with the applica-
tion. In the framework, an application produces events, such
as paths executed or memory operations performed, and a
separate concurrent analysis thread consumes and analyzes
them. Figure 1 compares sequential and concurrent dynamic
analysis. Whereas traditional dynamic analysis is performed
sequentially when the application produces one or a group
of events, in our framework, the application queues events
in a buffer, and a concurrent analysis thread dequeues and
analyzes them.

The ability to communicate data efficiently from one core
to another is critical to the success of a concurrent dynamic
analysis implementation. Unfortunately, the complexity and
variety of multicore architectures and memory hierarchies
pose substantial challenges to the design of an efficient com-
munication mechanism. We found that a number of vari-
ables influence performance, such as hardware variation,
communication cost, bandwidth between cores, false shar-
ing between caches, coherence traffic, and synchronization
between the producer and consumer threads.
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Figure 1. Generic sequential dynamic analysis versus con-
current dynamic analysis.

This paper’s main contribution is a new buffering design
that we call Cache-friendly Asymmetric Buffering (CAB),
which provides an efficient mechanism for communicating
event data from application threads to analyzer threads on
multicore hardware. CAB is asymmetric because we bias the
implementation to minimize impact on the application; the
application rarely synchronizes with the analysis thread. The
design is cache friendly because it exploits shared caches,
carefully limits synchronization, and avoids coherence traf-
fic and contention on shared state between private caches.

We present the design and implementation of a concur-
rent dynamic analysis framework that uses CAB as its com-
munication mechanism between the application and analy-
sis. We implement the framework in Jikes RVM [1], a high
performance research Java Virtual Machine and perform ex-
periments on three Intel processors with very different cache
organizations: Pentium 4, Core 2 Quad, and Core i7. We
show that compared to two highly optimized state-of-the-art
alternative buffering mechanisms: N-way buffering [33] and
FastForward concurrent lock-free queues [13], that CAB re-
duces overhead for path profiling on average by 8 and 41%
respectively.

To evaluate the framework, we implement a variety of
popular dynamic analyses: method counting, call graph pro-
filing, call tree profiling, path profiling, and cache simula-
tion. We build and compare sequential and concurrent ver-
sions of these analyses.

We demonstrate the framework in an exhaustive mode,
for analyses that require fully accurate event records, and in a
sampling mode for analyses that can trade accuracy for over-
head via sampling. Experimental results for exhaustive mode
demonstrate that this framework provides performance im-
provements for dynamic analysis when the analysis work is
greater than the buffering overhead, such as for call graph,
call tree, and path profiling. For example, compared to se-

quential profiling, we reduce the overhead of exhaustive call
tree and path profiling between 10 to 70%, depending on the
architecture. In sampling mode, the framework reduces over-
head even further. For example, sampling achieves greater
than 97% accuracy at a 5% sampling rate, while reducing
the overhead by more than half for call graph and path pro-
filing with hsqldb.
In summary, the contributions of this paper are as follows.
• The design, implementation, and evaluation of CAB, a

novel efficient communication mechanism that is easily
tuned for various multicore processors.

• The design, implementation, and evaluation of a novel
framework for concurrent dynamic analysis using CAB
for exhaustive and sampling analyses. The framework is
analysis-neutral and it is easy to add analyses.

• A demonstration of the framework with a range of anal-
yses: method counting, call graph profiling, call tree pro-
filing, path profiling, and cache simulation.

• A cost model that characterizes dynamic analyses amen-
able to concurrent implementation and that guides the
performance analysis.

We believe that the design issues addressed here transcend
the framework as these same issues and solutions are appli-
cable more generally to software design for multicore hard-
ware. The CAB design, which carefully manages communi-
cation, coherency traffic, false sharing, and cache residency,
offers a building block to future software designers tasked
with parallelizing managed runtime services and applica-
tions with modest to large communication requirements.

2. Related Work
Since there is a lot of research on dynamic analysis, we focus
on differences with the most closely related research, which
exploits parallelism to reduce dynamic analysis overhead.

PiPA (Pipelined Profiling and Analysis) describes a tech-
nique for parallelizing dynamic analysis on multicore sys-
tems and uses multiple profiling threads per application
thread [33]. PiPA is implemented in a dynamic binary trans-
lator and collects execution profiles to drive a parallel cache
simulator. PiPA uses symmetric N-way buffering and locks
to exchange buffers between producers and consumers.
Their buffering overhead grows with respect to the size of
the buffer, and a small buffer size, e.g., 16KB, achieves the
lowest overhead. However, some of their profiling clients
require larger buffers for high frequency events. As we show
in the results section, CAB is on average 8% faster and up to
16% faster than this organization, and the overhead is con-
sistently low with a large buffer. In our work, the analysis
is concurrent (runs in parallel with the application) and par-
allel (multiple analysis threads run at the same time), but is
different from PiPA in that we currently support at most one
analysis thread per application thread. This configuration is
just for our current implementation, and is not a fundamental
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limitation of CAB. This paper focuses on efficiently trans-
ferring data between cores, and we believe that PiPA would
benefit from using CAB.

FastForward is a software-only concurrent lock-free que-
ue implementation for multicore hardware [13]. It uses a
sentinel value (NULL) to avoid concurrent access of the queue
head and tail indices, and forces a delay between the con-
sumer and producer to avoid cache line thrashing. While
their design is reasonable for a general purpose queue, CAB
is more suitable for use in concurrent dynamic analysis for
two reasons. First, CAB’s enqueueing code is more effi-
cient for handling a large number of events, such as those
produced by dynamic instrumentation. Second, CAB’s de-
queueing operation spins only at the beginning of each
chunk while FastForward dequeueing operates at a finer
granularity, spinning on single events (i.e., one memory lo-
cation). It thus synchronizes with the producer much more
frequently than is necessary with CAB. We compare CAB
to FastForward queueing and show that CAB improves per-
formance by 41% on average, and up to 117%.

Shadow Profiling and SuperPin are profiling techniques
that fork a shadow process, which runs concurrently with
original application process [24, 30]. The shadow process
executes instrumented code, while the original application
runs uninstrumented. Currently, these approaches are limited
to single-threaded applications, because implementations of
fork on most thread libraries only fork from the current
thread. Unlike our framework, the shadow processes cannot
cover the whole program execution, because events around
fork and unsafe operations may be lost.

Aftersight decouples profiling at the virtual machine layer
using record and replay technology [11]. During one execu-
tion of the application, Aftersight uses VM recording to re-
play execution and then performs profiling on subsequent
replayed executions. The profiling executions can be per-
formed concurrently with the recording run, or offline at a
later time. In our framework, the application and analysis
are decoupled, but the application is executed only once and
dynamic analysis is performed online.

Recent work suggests hardware support for low-overhead
dynamic analysis. HeapMon uses an extra helper thread to
decouple memory bug monitoring [28]. The idea of offload-
ing the data to another thread is similar to our framework.
However, HeapMon achieves low-overhead because of hard-
ware buffering and instrumentation support. The hardware
support is specifically for heap memory bugs. We achieve
performance without any special support, and we assume
less about the class of analysis.

iWatcher leverages hardware assisted thread-level spec-
ulation to reduce the overhead of monitoring program lo-
cations [34]. The platform offers general debugging analy-
sis, but low-overhead is only guaranteed with hardware sup-
port. Current multicore processors do not support thread-
level speculation.
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Figure 2. Cache-friendly Asymmetric Buffering (CAB) in
a concurrent dynamic analysis framework.

Our dynamic analysis framework supports both exhaus-
tive and sampling analysis of events. Prior work presented
designs for low-overhead sampling of instrumentation [2, 3,
8, 18], where sampling logic is executed in the application
thread to determine when a sample should be taken. These
approaches are orthogonal and complimentary to our work;
our framework could perform sampling in the application
thread to reduce the amount of data sent to another core.
However, our framework also enables a new methodology
for sampling, where data is written into a buffer exhaustively
and is then optionally consumed (sampled) by the analyzer
thread(s). By enabling concurrent execution of the analyzer
and the application thread, our technique is likely to out-
perform traditional sampling techniques when a higher sam-
ple rate is used and time in the analyzer increases. However,
even with low sample rates this new approach can be bene-
ficial because it moves the sampling logic off the fast path
(out of the application thread) and into the analyzer thread.
Thus, this new approach is likely to be beneficial if a pro-
filer’s communication cost between cores is less than the cost
of the sampling logic. CAB reduces communication costs,
making this form of sampling more viable.

3. Concurrent Dynamic Analysis Framework
As shown in Figure 1, dynamic analysis systems include
an event producer (the instrumented application), an event
consumer (an analyzer), and an event handling mechanism,
which links the first two. The application and analyzer may
be folded together to execute within the same thread, or they
may be distinct, executing concurrently in separate threads.
We focus on the design and implementation of a generic
event handling mechanism that supports concurrent dynamic
analysis on multicore platforms. The goal of this framework
is to exploit underutilized computational resources and fast
on-chip communications to minimize the observed overhead
of dynamic analysis.

Figure 2 presents the overview of our framework and the
CAB event handling mechanism. An application thread and
a dynamic analyzer thread execute on separate cores. The
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application produces analysis events at injected instrumen-
tation points, and CAB transfers the events to the analysis
thread. Since CAB is generic and yet cache-friendly, the
analysis writer is: a) freed from low-level micro-architectural
optimization concerns when offloading the event, and b) can
implement the analysis logic independently of the applica-
tion instrumentation.

By constructing a framework, many analyses may reuse
the highly tuned mechanisms. The framework is flexible
and general. It supports an exhaustive mode that collects
and analyzes all events, and a sampling mode, in which the
analysis samples a subset of the events.

3.1 CAB: Cache-friendly Asymmetric Buffering
CAB provides a communication channel between applica-
tion and analysis threads. Two objectives guide the design of
CAB: 1) minimizing application instrumentation overhead,
and 2) minimizing producer-consumer communication over-
head. We use three tactics to address these goals: a) we bias
the design toward very low overhead enqueueing, b) we use
lock-free synchronization, and c) we partition access to the
ring buffer to avoid costly micro-architectural overheads due
to cache contention.

At the center of CAB is a single-producer, single-con-
sumer lock-free ring buffer, in which an application thread
produces events and an analysis thread consumes them.
Since each CAB has only one producer and consumer pair,
we can optimize for fast, lock-free, access to this shared
buffer. Our approach is asymmetric. The application views
the buffer as a continuous ring into which it enqueues indi-
vidual events. By contrast, the analyzer views the buffer as
a partitioned ring of fixed sized chunks, and each dequeue
operation yields an entire chunk.

3.1.1 Lock-free Synchronization

The special case where a communication buffer is shared by
just a single producer and a single consumer has the distinct
advantage of avoiding intra-producer and intra-consumer co-
ordination, and is well-studied for general purpose concur-
rent queue implementations [12, 13, 20]. Specifically, the
common case enqueue and dequeue operations can be im-
plemented without locks, as wait-free operations [17]. Of
course, the operations are not actually wait-free if the desired
semantics require that the producer block on a full buffer and
that the consumer block on an empty buffer. However for
dynamic analysis, the common case is high frequency en-
queueing and dequeueing, so blocking is exceptional with a
reasonable sized buffer. Although requiring CAB to be sin-
gle producer, single consumer is restrictive, the simplicity
and performance of the lock-free implementation it yields is
attractive given the importance of minimizing perturbation
of the application. However, this does not preclude building
a multiple producer or consumer system on top of the lock-
free CAB, as discussed in Section 3.3.

1 while (*bufptr != CLEAR) {
2 if (*bufptr == MAGIC)
3 bufptr = &buffer; // wrap back to start
4 if (*bufptr != CLEAR)
5 block(); // busy, back off
6 }
7 *bufptr++ = data; // enqueue data

(a) Enqueueing events in application code

1 block() {
2 spin_wait();
3 pollptr = SKIP(bufptr, CHUNK_SIZE * 2);
4 while (*pollptr != CLEAR) {
5 if (isInvokedGC())
6 thread_yield(); // must cooperate
7 else
8 sleep(n);
9 }

10 }

(b) Blocking the application

1 while (isApplicationRunning()) {
2 /* keep distance of 2 chunks from producer */
3 index = ((chunk_num + 2) * chunk_size)
4 % buffer_size;
5 while (buffer[index] == CLEAR)
6 spin_or_sleep();
7 /* consume & clear entire chunk */
8 consume_chunk(chunk_num);
9 chunk_num = next(chunk_num)

10 }

(c) Dequeueing events in analysis code

Figure 3. Enqueueing and dequeueing pseudo-code.

3.1.2 Queue Operations

CAB can be used for both exhaustive and sampled event col-
lection. We start by describing queuing operations for ex-
haustive mode. In exhaustive mode, every event is enqueued,
dequeued, and analyzed.

Enqueueing The detailed design of CAB’s enqueueing
operation is guided by three goals: 1) the design should min-
imally perturb the application; 2) it needs to accommodate
dynamically allocated and dynamically sized event buffers;
and 3) if an enqueue operation causes an application thread
to block, it must cooperate with the garbage collector and
any other scheduling requirements to prevent deadlock.

To minimize perturbation of the application thread, the
common case for enqueueing must be fast, and the injec-
tion of enqueueing operations should minimally inflate the
total code size. Figure 3(a) shows the pseudocode for the en-
queueing operation. The common case for enqueueing con-
sists of just two lines (1 and 7). When there is space in the
buffer, the test at line 1 evaluates to false and execution falls
directly through to line 7. The exceptional case may occur
either because the end of the buffer has been reached or be-
cause the buffer is full. These cases are dealt with by lines 3
and 5 respectively. If the buffer is full, the blocking code in
Figure 3(b) is executed via a call. Note that all of this code
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is lock-free, and that in the common case, just a single con-
ditional branch is executed (line 1 of Figure 3(a)). As shown
later in Figure 6(a) and Figure 6(b), the compiler or binary
translator can push lines 2–6 out of the hot code block, keep-
ing the code small and the length of the critical path short.

The control flow in the enqueueing operation depends
only on *bufptr and two constants: CLEAR and MAGIC (lines
1, 2 and 4 of Figure 3(a)). This design is very efficient
while also supporting variable sized, dynamically allocated
buffers. Dynamic allocation is essential since the number
of buffers is established at run-time, and dynamic sizing
is valuable since the system may respond to the particular
requirements and resource constraints of a given application.

The idea is that the producer will only ever write into
buffer fields which have been cleared by the consumer: the
producer guards in line 1 of Figure 3(a), and the consumer
sets the sentinel CLEAR when it consumes the chunk in line 8
of Figure 3(c). By using a special sentinel value (MAGIC) to
mark the end of the ring buffer, a single test for CLEAR in line
1 will guard against both the end of the buffer being reached
(line 2) and a full buffer (line 4). When the end of the buffer
is reached, bufptr is reset to point to the start of the buffer,
&buffer (line 3). The buffer address is only required in line
3, and is held in a variable. Furthermore, the code path has no
explicit test against the buffer size or end of buffer, which is
implicitly identified via the MAGIC marker. We can therefore
dynamically allocate and size the buffer. This design requires
that CLEAR and MAGIC are illegal values for analysis events.
In practice, it is easy to choose CLEAR and MAGIC suitably to
avoid imposing on the needs of the analyzer.

The exceptional case where the producer thread must
block because the buffer is full (line 5) is handled out of
line (Figure 3(b)). In general, when the producer thread
blocks, it must remain preemptible, otherwise it could lead
to deadlock. Specifically, if the consumer invoked a garbage
collection while the producer thread was blocked, and the
producer thread were unpreemptible, deadlock would ensue.
For this reason, the producer thread spins briefly (line 2 of
Figure 3(b)) before re-testing whether the buffer is full (line
4) and yielding to GC (line 6) or sleeping (line 8). Note that
the code checks the contents of pollptr, a point two chunks
ahead of bufptr (pollptr is set in line 2). By doing this, we
effectively back off the producer, giving the consumer time
to work and ensuring that upon return there will be at least
two chunks of free space available in the buffer.

Dequeueing The design of CAB’s dequeueing operation
is guided by two goals: 1) the design should minimize
producer-consumer communication overhead, and 2) sim-
ilar to enqueueing, it needs to accommodate dynamically
allocated and sized buffers. We address the second goal by
avoiding any static reference to the buffer address or buffer
size, as we described above for enqueueing. To meet the first
goal, the analysis thread synchronizes at a coarse grain by
consuming a large number of events at once (i.e., a chunk).

Furthermore, the design does not induce unnecessary cache
coherence traffic on shared or private caches, because CAB
never accesses the chunk into which the producer is writing.

CAB prevents the producer and consumer from access-
ing the same cache lines at once by logically partitioning
the ring buffer into large fixed-size chunks, and then ensur-
ing that the consumer remains at least one complete chunk
behind the producer (line 5 of Figure 3(c)). The size of a
chunk is a dynamically configurable option (chunk_size in
Figure 3(c)). Recall that the producer is largely oblivious to
this partitioning of the ring buffer; it enqueues events regard-
less of chunk boundaries. However, if the buffer becomes
full, the producer waits until there are at least two empty
chunks available to it (lines 3 and 4 of Figure 3(b)).

In this design, the consumer minimizes overhead and
synchronization by dequeueing and processing one chunk
at a time (line 8 of Figure 3(c)), reducing spinning and
checking without affecting the fine-grained producer activ-
ity. The analysis happens in the call to consume_chunk() at
line 8. If the analyzer itself is multi-threaded, it may dis-
patch analysis events to multiple threads. The analyzer clears
the buffer immediately after it processes each event as part
of consume_chunk(). Clearing is essential, since it commu-
nicates to the producer that the buffer is available (line 1
of Figure 3(a)). Clearing immediately after processing each
event maximizes temporal locality. In the special case when
the producer terminates, it is usually desirable for the con-
sumer to process the remaining entries. Since the consumer
normally may not read from the same chunk as the producer,
we include in our API the facility for the producer to explic-
itly flush residual events to the consumer.

3.1.3 Optimizing CAB For Multicore Processors

We tune CAB’s chunk-based ring buffer design to reduce mi-
croarchitectural side-effects due to producer-consumer con-
tention. However, we make only minimal assumptions about
the multicore architecture. We assume that the hardware can
execute multiple software threads simultaneously on sepa-
rate cores or on the same core. We do not require any spe-
cific cache hierarchy. The design works for both private and
shared cache designs, but benefits from shared lower level
caches. For example, Figure 4 shows three Intel hardware
generations, which comprise our experimental platforms.
(Section 6 has more details on each.) These designs are quite
different, yet CAB works well with all of them.

The CAB design ensures that 1) the producer and con-
sumer never access the same cache line simultaneously, 2)
the producer and consumer can exploit a shared cache, and
3) the producer and consumer exhibit spatial locality that is
amenable to hardware prefetching. The first two design goals
avoid cache thrashing, the second also minimizes memory
latency, and the third seeks to hide cache miss penalties.

To avoid cache thrashing when the producer and con-
sumer do not share an L1 cache, the chunk size should be
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Figure 4. Experimental processors data cache structure. Instruction or trace cache is omitted. Application and analyzer’s
mapping to the cores is idealized, and it is not a requirement.

large enough that by the time the producer is writing to
chunk n + 2, chunk n has been fully evicted from the pro-
ducer’s L1 cache. If we assume a strict LRU cache replace-
ment policy, this criteria is satisfied with a chunk size that is
greater than or equal to the L1 cache size. In practice, cache
replacement policies are not always strict LRU. Thus a larger
chunk size is better. Furthermore, since producer-consumer
synchronization occur on chunk boundaries, smaller chunks
are generally more expensive. Thus, when the producer
and consumer share an L1 cache, the synchronization over-
head of small chunks still outweighs any locality advantage,
which is why large chunks are effective on shared L1 caches
as well. This design easily generalizes for more levels of
private cache. Our evaluation uses a chunk size of four times
the L1 size.

If the runtime uses native threads, we control producer-
consumer affinity via the POSIX sched_setaffinity()

API. On the other hand, if the runtime employs a user-level
scheduler, we may require modest changes to the scheduler
(see Section 5.1). We do not require special operating system
support or modifications to the operating system’s scheduler.

By using a ring buffer, the producer and consumer’s
memory operations are almost strictly sequential (except
when the ring buffer infrequently wraps around). It is hard
to test directly the hypothesis that CAB addresses our lo-
cality objective, but we measured L1 and L2 miss rates and
found that they were not correlated with buffering overhead
when we varied the buffer size on both shared and private L1
cache architectures. We also experimented with special Intel
non-temporal memory operations but found they degraded
performance compared with our straightforward sequential
baseline. Worse, the current Intel implementations of non-
temporal store operations bypass the entire cache hierarchy,
forcing the consumer to go to memory rather than the shared
last level cache. CAB would benefit from previously pro-
posed hardware instructions, such as the evict-me, or some
other mechanisms that mark cache lines LRU [21, 31]. CAB
could then reduce its cache footprint and thus its influence
on the application, while still benefiting from sharing.

3.2 Sampling
If the analysis thread is unable to keep up with the appli-
cation, the buffer will eventually fill up and the application
thread will block (line 5 of Figure 3(a)). Depending on the
analysis, this application slowdown may be unavoidable. For
example, security analyses and cache simulation profilers
typically require fully accurate traces. Other analyses, such
as those designed for performance analysis, often tolerate re-
duced accuracy to gain reduced overhead. In such cases, the
profilers in CAB may sample to prevent the application from
blocking.

In our sampling framework, the producer still enqueues
all the events and then the consumer samples the buffer, an-
alyzing only a subset of the recorded data, skipping over
the rest. Other sampling designs, such as timer-based sam-
pling [3], reduce the number of events. However, client anal-
yses that are control-flow-sensitive (e.g., path profiling) and
context-sensitive analyses (e.g., call trees), must still insert
pervasive instrumentation and maintain their state even if
the instrumentation does not store the events. In contrast, our
sampling framework eases the burden of implementing these
more advanced forms of sampling because the sample deci-
sions are made in the analysis thread; the logic is off the fast
path of the application thread so it can be written in a high-
level language (rather than inlined into compiled code) and
with less concern over efficiency.

Enqueueing In sampling mode, the producer never checks
whether the buffer is full. If the consumer cannot keep up
with the producer, the producer simply continues writing to
the buffer and data is lost. This design obviously trades ac-
curacy for performance. Figure 5(a) shows pseudocode for
the application thread when in sampling mode, and should
be compared to Figure 3(a). The code consists of the min-
imal instructions required to insert an element into a CAB
buffer.

Dequeueing Figure 5(b) shows pseudocode for dequeue-
ing in sampling mode. Compared to exhaustive mode de-
queueing (Figure 3(c)), there are two differences. First, each
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1 if (*bufptr == MAGIC) // end buffer
2 bufptr = &buffer;
3 *bufptr++ = data;

(a) Enqueueing pseudo-code for sampling mode.

1 while (isApplicationRunning()) {
2 /* keep distance of 2 chunks from producer */
3 index = ((chunk_num + 2) * chunk_size)
4 % buffer_size;
5 while (buffer[index] == CLEAR)
6 spin_or_sleep();
7 /* analyze some fraction of the chunk */
8 sample_chunk(chunk_num, sampling_rate);
9 /* clear only the first entry */

10 buffer[chunk_num*chunk_size] = CLEAR;
11 chunk_num = next(chunk_num)
12 }

(b) Dequeueing pseudo-code for sampling mode.
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(c) Bursty Sampling. The analyzer samples a burst from each
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Figure 5. Sampling mode. The application does not block
and the profiler may use bursty sampling.

chunk is sampled, according to the value of sampling_rate
(line 8). Second, only the first element in each chunk is
cleared (line 10), rather than the entire chunk. We now de-
scribe these points in more detail.

Consumers read events in bursts to maximize cache local-
ity, as shown in Figure 5(c). The size of the burst is arbitrary
within the scope of a chunk. However, L1 cache performance
is likely to benefit when the burst is cache line-aligned. Our
evaluation shows that sampling accuracy is maximized when
we keep the sample rate sufficiently low such that the con-
sumer keeps up with the producer, which avoids the producer
overwriting data before it can be sampled.

The consumer does not need to clear every element in the
chunk after it is read (line 10 of Figure 5(b)), because the
producer is no longer checking for CLEAR. The first entry of
each chunk still needs to be cleared by the consumer to allow
it to observe when a chunk has been refilled, and thereby
avoid re-processing old data.

Note that because the application thread logic no longer
checks for a full buffer, the application thread may catch
up and overwrite a chunk that the analysis is sampling,
causing accuracy to drop. An alternate design could make
the producer skip over a chunk if the analyzer is still working
on it. We instead keep the sampling rate low and use simple

chunk logic. Our evaluation shows that we can achieve high
accuracy with a very low sampling rate.

To reduce memory bandwidth requirements, even with
exhaustive event recording, a more sophisticated buffer as-
signment could reuse a chunk when the consumer is sam-
pling another chunk. It could also bias its choice to a chunk
that is still likely to be resident in cache. This design would
pay for the reduced memory bandwidth with increased
producer-consumer synchronization.

3.3 Impact of Single-Producer, Single-Consumer.
CAB’s lock-free design is predicated on each CAB having
a single producer and a single consumer. This design allows
for fast, low overhead queueing, but has a number of conse-
quences, which we discuss in detail now.

Maintaining the single producer property implies allocat-
ing one CAB for each application thread. When application
threads are mapped directly to kernel threads (“1:1 thread-
ing”), we allocate the CAB in thread-local storage. For some
user-level thread models (“N:M threads” also called “green
threads”), true concurrency only exists at the level of un-
derlying kernel threads, so we allocate one CAB per ker-
nel thread and multiplex it among user threads. With this
model, user threads time-share CABs and may migrate from
CAB to CAB according to the user-level scheduler, but in
all cases, there is only one user thread mapped to a CAB
at any given time. With multiplexing, events from different
producer threads will be interleaved. Since some analyses
are context-sensitive, the producer must add special events
which communicate thread switches to the consumer, and
the consumer must de-multiplex the interleaved events to re-
gain the context that would otherwise be lost.

Our design explicitly supports dynamic sizing of CABs,
which should be sized according to the rate of event produc-
tion and the available memory. Presently we configure CAB
sizes via the command line. We leave to future work extend-
ing the framework to adaptively size each CAB based on its
usage characteristics at run-time. The framework could use
small buffers for threads that produce very few events and
larger ones for prolific threads. Thus the total space require-
ments for all CABs in a system would scale with the total
event production rate in the system, rather than the absolute
number of threads.

The requirement of a single consumer per CAB does not
preclude either a single consumer thread from servicing mul-
tiple CABs, or the consumer thread from dispatching anal-
ysis work to multiple threads. In a setting with a low event
rate and lightweight analysis, a single analysis thread may
be able to service all CABs, processing them in a round-
robin fashion. By contrast, in a setting where analysis is very
heavyweight and the analysis is conducive to parallelization,
multiple threads can perform the analysis. However both
scenarios observe the requirement that a given CAB is only
ever accessed by one consumer thread, satisfying the pre-
condition of our lock-free implementation.
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4. A Model For Analysis Overhead
The performance benefit of offloading dynamic analysis
work in a separate thread depends on a number of factors,
such as the amount of time spent in the application versus
the analysis code, and the amount of data the application
must transfer to another core for processing. If the amount
of time spent transferring data far exceeds the time spent
processing that data, the concurrent analysis is unlikely to
show significant benefit.

This section describes a basic cost model for overheads
in concurrent and single-threaded dynamic analysis systems.
The model provides a detailed look at which performance
characteristics determine the success of a concurrent imple-
mentation, and thus help identify the types of analysis for
which a concurrent implementation is beneficial.

The model presented below compares a single-threaded
scenario, where the application and analysis execute in the
same thread, to a concurrent scenario, where the application
and analysis execute in separate threads and communicate
through shared memory. We start with the following defini-
tions:

A Isolated application execution time.
P Isolated analyzer execution time.
Es Execution time with instrumentation and analysis

inline in the ssame thread as the application.
Ec Execution time with a concurrent analyzer.

and a simple model of overheads:

Ai Application overhead due to instrumentation
to produce events.

Iap Interference overhead due to application
and analyzer (profiler) running in
same thread (when single-threaded).

Aq Application thread overhead due to queueing
(when concurrent).

Pc Analyzer thread overhead due to communication
and dequeueing (when concurrent)

The event instrumentation overhead Ai is idealized, since
in practice it is hard to isolate the cost of instrumentation for
extracting events from the surrounding code which processes
those events. In a single threaded system, Iap is the indirect
overhead due to resource contention between the application
and the analyzer sharing common hardware. The effects
will depend on the nature of P and may include memory
contention, cache displacement, register pressure, etc. We
define Es, the cost of single-threaded analyzer as:

Es = A + Ai + P + Iap (1)

In a concurrent system, the queuing overhead Aq reflects
time spent by the application enqueueing items and blocking
on communication to the analyzer, plus the indirect effect
enqueueing has of displacing the application’s cache. Pc

reflects the cost to the analyzer of dequeueing events, which

includes the communication overhead of loading data from a
shared cache. Ai, Aq and Pc are each a function of the event
rate: the rate at which the application generates analysis
events. To define the cost of concurrent analysis, Ec, we start
with the cost of each of the two threads, EA

c and EP
c , and

consider each thread separately with the assumption that the
given thread is dominant (i.e. it never waits for the other).
When the application dominates:

EA
c = A + Ai + Aq (2)

and when the analyzer dominates:

EP
c = P + Pc (3)

Since the application EA
c and the analyzer EP

c are concur-
rent, one may dominate the other. For simplicity, we assume
that for a given analyzer, either the application or analyzer
will uniformly dominate. In practice, the application and an-
alyzer may exhibit phased behavior, but event bursts should
be somewhat smoothed by buffering. In any case, the sim-
plification helps illuminate the nature of the problem. Un-
der these assumptions, execution time for concurrent analy-
sis can be defined as:

Ec = max(EA
c , EP

c ) (4)

We now discuss the conditions that make concurrent analysis
worthwhile, looking at the two cases separately when either
the application or analyzer dominates.

Application Thread Dominates. The application domi-
nates when EA

c ≥ EP
c , i.e., the application takes longer

than the analysis:

A + Ai + Aq ≥ P + Pc (5)

For concurrent analysis to improve performance in this sce-
nario, it must maximize Es − EA

c :

Es − EA
c = P + Iap −Aq ≥ 0 (6)

P + Iap ≥ Aq (7)

Concurrent analysis will improve performance as long as the
application queuing costs, Aq, are small relative to analysis
costs, P + Iap. As we show in Section 6.2, Aq is typically
small. Iap is a function of P , and thus a very lightweight ana-
lyzer, where P +Iap is smaller than Aq, will not benefit from
concurrent analysis. We show this case holds for method
counting, but in all the other cases we tested, which includes
the only slightly more expensive call graph construction, the
cost of P + Iap is greater than Aq, and the framework pro-
vides performance benefits. However, because the benefit
Es − EA

c = Iap + P −Aq, and from Equation 5,

P −Aq ≤ A + Ai − Pc (8)

in the case the application dominates, the benefit of concur-
rent analysis is limited.
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Profiler Thread Dominates. In scenario 2, where EA
c <

EP
c , waiting for the analyzer becomes the bottleneck. For a

concurrent analyzer to improve performance, it must maxi-
mize: Es − EP

c :

Es − EP
c = A + Ai + Iap − Pc ≥ 0 (9)

A + Ai + Iap ≥ Pc (10)

Concurrent analysis will improve performance as long as
the communication cost is small relative to the application
thread and associated overhead (A + Ai + Iap). Note that
once the analyzer dominates, the performance improvement,
Es − EP

c , is independent of the analyzer’s execution time,
P . The speedup of the concurrent analyzer is determined
by the analyzer’s buffering and communication costs Pc; an
analyzer with higher cost P does not provide more incentive
for a concurrent implementation.

Extensions and Lessons. We can draw a number of lessons
from the analysis above. When the application thread dom-
inates and EA

c ≥ EP
c , the performance improvement from

concurrent analysis is limited by the single-threaded ana-
lyzer cost P + Iap. When the analyzer thread dominates, the
performance improvement from concurrent analysis is lim-
ited by time spent in the application thread and associated
overhead (A + Ai + Iap).

In all cases, communication performance (Aq and Pc) is
key because it determines whether the theoretical improve-
ments of concurrent analysis can be realized in practice. The
goal of CAB is to reduce these communication costs as far
as possible, thus allowing concurrent analysis to be effective
for a wider class of analyzers than is possible today.

The model assumes that the analysis is executed con-
currently with the application, but is not itself parallelized
(subdivided into multiple worker threads). Once an analy-
sis adopts a concurrent model, parallelizing the analysis be-
comes relatively easier and has the potential to significantly
improve performance when analysis time dominates applica-
tion time. We do not investigate parallelizing the analyzers
themselves here because this process is is highly dependent
on the particular analyses. Instead, we focus on minimizing
communication overhead as part of a general framework.

5. Implementation
We next discuss implementation details that are specific to
our particular environment, and then we briefly describe
each of the five dynamic analyses that we implemented in
our framework.

5.1 Platform-Specific Implementation Details
We implemented our framework in Jikes RVM [1]. Jikes
RVM is an open source high performance Java Virtual Ma-
chine (VM) written almost entirely in a slightly extended
Java. This setting affected our implementation only in that
we needed to take care to ensure the enqueueing operations
avoid locking out the garbage collector.

We implement our framework using two threading mod-
els: N:M and native, which we describe below. While we
were developing this concurrent analysis framework, re-
searchers changed from N:M threads implemented in Jikes
RVM 2.9.2 to native threads implemented in Jikes RVM
3.1.0. This transition was imposed upon us, but it serves as
an opportunity to demonstrate the generality of CAB with
respect to fundamentally different threading models.

Native threads improve average performance over N:M
threads and is therefore preferable. Jikes RVM version 3.1.0
however improves over 2.9.2 in many other ways as well,
which makes it difficult to compare their performance di-
rectly. For example, biased locking has reduced thread syn-
chronization overhead, the Immix garbage collector im-
proves locality and garage collection times [5], and the com-
piler generates better code.

We implemented our framework in Jikes RVM 2.9.2
with N:M threads and then ported it to native threads in
Jikes RVM 3.1.0. Except for the changes in how we map
the analysis thread and the user threads, which we describe
below, our instrumenting and analysis code remained the
same. We have not yet however ported our experimental
infrastructure, which teases apart the different overheads
and reports cache behaviors to explain our results. We thus
report overall performance results for all the client analyses
for both N:M and native threading models, but a detailed
breakdown analysis is presented for N:M threads only. The
trends are the same for both models.

N:M Threading Version 2.9.2 of Jikes RVM uses an N:M
threading model (also known as “green threads”), which
multiplexes N user-level threads onto M virtual processors
via a simple timer-based scheduler that the system triggers
at yield points in the application. The Jikes RVM compil-
ers inject yield points in method prologues, epilogues, and
control-flow back edges. Each of the M virtual processors
maps directly to a single native thread that the operating sys-
tem manages. Jikes RVM chooses M to match the number
of available hardware threads. Jikes RVM uses a Processor

data structure for per-virtual-processor state.
Since true concurrency only exists among the M virtual

processors, we implemented CABs at this level, associat-
ing one CAB with each Processor. Many user threads may
share a given virtual processor, but only one thread can ever
be executing on a virtual processor at any time. The sched-
uler may migrate user threads among virtual processors as
it schedules them. We modified Jikes RVM’s scheduler to:
a) prescribe the affinity between virtual processors and the
underlying hardware, b) prevent the migration of application
threads onto analysis virtual processors, and c) record thread
scheduling events in the CAB. We use the first two modifi-
cations to schedule producer and consumer threads in pairs
on distinct cores with a common last level cache. The pro-
ducer uses the third modification to inform the consumer of
the changing affinity between producer threads and CABs.

163



1 mov eax $BUFPTR[esi]
2 cmp [eax], CLEAR
3 jne B
4 A: mov [eax], $DATA
5 add eax, 4
6 mov $BUFPTR[esi], eax

(a) Precise Mode (Fast Path).

1 B: cmp [eax], MAGIC
2 jne C
3 mov eax, $BUFADDR[esi]
4 cmp [eax], CLEAR
5 jeq A
6 C: call block()
7 jmp A

(b) Precise Mode (Slow Path).

1 mov eax $BUFPTR[esi]
2 cmp [eax], MAGIC
3 jne A
4 mov eax, $BUFADDR[esi]
5 A: mov [eax], $DATA
6 add eax, 4
7 mov $BUFPTR[esi], eax

(c) Sampling Mode (Slow path is just line 4).

Figure 6. x86 assembly code for CAB enqueueing oper-
ations. The esi register is used as a base register for the
Processor object in Jikes RVM, and eax is a register allo-
cated by the compiler.

Native Threading Version 3.1.0 of Jikes RVM uses a
native threading model, which maps each user and VM
thread onto one operating system thread (also known as a
“pthread”). Jikes RVM does not control the thread schedul-
ing. It instead relies on the operating system scheduler.
Timer-based sampling may still trigger thread yield points,
as in N:M threads. The OS may migrate the user thread to
different cores transparently to Jikes RVM. Therefore, this
implementation does not control the affinity between the
user and analysis threads.

Unlike in the N:M implementation, with native threads
the framework takes the number of analysis threads as a pa-
rameter. The framework assigns each user thread a thread-
local CAB buffer and an analysis thread. When the user
thread terminates, the framework processes any remaining
chunks by moving them to a pending buffer queue on the
associated analysis thread for processing. We assume that
thread creation and termination is infrequent and thus syn-
chronize accesses to the pending queue.

Instrumentation and Enqueueing Each dynamic analysis
in our implementation has four parts: 1) program instrumen-
tation that produces an event, 2) enqueueing operations, 3)
dequeueing operations, and 4) analysis. Parts 1) and 4) are
analysis-specific and are described below in Section 5.2. We
use a straightforward implementation of part 3) from the de-
sign section. The remainder of this section presents further
details on our enqueueing implementation.

Figure 6 shows x86 assembly code for enqueueing in
both exhaustive and sampling modes. Note the simplicity of
the common case code (Figures 6(a) and 6(c)). In sampling
mode, the slow path comprises just a single instruction (line
4). The rest of this section describes how we implement
the call to block() (line 6 of Figure 6(b)) to avoid locking
out other threads and to avoid introducing unsafe thread
switches.

In exhaustive mode, the producer may block while the
consumer catches up. It is essential that this blocking ex-
hibits correct scheduling behavior and does not: a) lock out
other threads, or b) allow garbage collection to occur at un-
safe points.

It is only correct (i.e., safe) to perform garbage collection
when the runtime system can correctly enumerate all the
pointer references into the heap. These references reside
in the statics, registers, and stack locations. To reduce the
burden on the compiler, which generates this enumeration,
a garbage collection (GC) safe point is typically a subset
of all possible instructions in the program. In Jikes RVM,
each method call, method return, loop back edge, allocation,
and potentially exception generating instruction is a GC safe
point. The Jikes RVM compiler guarantees that all compiled
code will reach reach a GC-safe point in a timely manner by
injecting conditional yield points on each loop back edge and
method prologue, and a map that can enumerates references
at each one of these points.

Thus if a producer does not yield to GC when blocked,
the garbage collector will not be able to proceed, and then all
application threads will block waiting for GC the next time
they try to allocate a new object, leading to deadlock. For
this reason, our producer, rather than simply spinning, calls
the block() method (line 6, Figure 6(b)), which explicitly
checks whether a GC yield is necessary (line 5, Figure 3(b)).
This protocol ensures that a blocked producer does not lock
out other threads.

However, if an analysis requires instrumentation on an
instruction that is not a GC safe point, it may block at a GC
unsafe point. For example, cache simulation requires instru-
mentation at every load and store, which are not, in gen-
eral, GC safe points. We address this problem by using a
non-blocking enqueue (Figure 6(c)) for instrumentation at
non-GC safe points. We add checks at each loop back edge
and method prologue to ensure there is sufficient memory
in the buffer before the next GC safe point for any poten-
tial enqueues. Our current implementation uses the gener-
ous heuristic of ensuring that there is a full chunk available
at each check. While this heuristic works very well in prac-
tice, it cannot guarantee correctness since it does not count
the maximum number of potential enqueues. An industrial
strength solution would not be particularly difficult to en-
gineer; the compiler could estimate the number of potential
enqueues and compare with the buffer size, or guarantee a
fixed limit by enforcing a maximum on the length of non-
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GC-safe paths by injecting occasional safe-points (at the ex-
pense of generating the appropriate GC maps). However, we
leave such an implementation to future work.

5.2 Dynamic Analyses
To evaluate our concurrent dynamic analysis framework, we
prototyped five popular profiling algorithms taken from the
literature: method counting, call graph profiling, call tree
profiling, path profiling, and a cache simulator. In each case,
we instrument the application and implement the event pro-
cessing logic, and bind the two with our dynamic analy-
sis framework providing the event handling glue. All in-
strumentation is performed after inlining, so inlined method
calls are not instrumented. Path profiling produces 64 bit
event records, whereas the other clients produce 32 bit event
records. In each case, we implement a sequential and con-
current version of the analysis for comparison.

Method counting On entry to each method, the method
counting instrumentation writes a 32 bit method identifier
into the event buffer. The analysis uses an array of method
indexes initialized to zero. For each entry in the event buffer,
the profile thread reads the entry and increments the corre-
sponding method counter. The single-threaded version sim-
ply increments the appropriate element in the array upon
each method entry.

Call graph profiling On entry to each method, call graph
profiling instrumentation produces a 32 bit profile event
which includes the current method and its caller. To identify
the caller, the instrumentation must walk up the stalk, which
requires three memory loads in Jikes RVM. We are able to
pack both the caller and callee into 32 bits since 16 bits is
sufficient to identify all methods in our programs (as well as
many larger ones). Thus, the profile event rate is exactly the
same as for method counting. The analysis reads the events,
computes a hash, and increments the corresponding hash
table entry indexed by the event. The single-threaded imple-
mentation performs a hash table look-up and increment on
each method entry.

Call tree profiling Call tree profiling is a dynamic analysis
tool to classify a user program’s behavior for automated
support [14]. It summarizes a subtree of depth two in the
dynamic call tree to represent the software execution. To
reduce the overhead of call tree profiling, Ha et al. used a
bit vector on the stack to mark the set of the calls. Unlike
their implementation, we construct the dynamic call tree on
the analysis threads using the trace of method calls sent over
the CAB to capture the subtree pattern. The instrumentation
is exactly the same as call graph profiling, which is necessary
to construct the dynamic call tree.

This design is an interesting use of the concurrent dy-
namic analysis, because it makes the heavy-weight optimiza-
tion for the instrumentation unnecessary, it simplifies the im-

plementation the analysis code, and yet it achieves good per-
formance.

Path profiling We inject full path profiling instrumenta-
tion into the application [4]. Path profiling assigns a unique
number to all possible acyclic paths through a method and
stores each executed path during execution. We adapt Bond
and McKinley’s basic implementation from the Jikes RVM
research archive [8]. This version does not include optimiza-
tions that: a) eliminate increments to the path register on
some edges and b) use arrays instead of hash tables when
methods are small, which is much more efficient. While a
production implementation would include these optimiza-
tions, they are not key to our evaluation.

The application instrumentation for path profiling is the
most invasive of all the clients. On entry to each method,
the path profiling instrumentation clears the path register.
On each branch, it increments the path register by some
value. On each back-edge and method exit, the instrumen-
tation stores the path number in the profile event buffer and
resets it to zero. Path profiling uses a 64 bit record since
the path numbers are often larger than 32 bits in Java [8].
For each path number, the profile thread computes a hash
and increments the corresponding entry in the hash table.
The single-threaded version performs this same work, but
on each back-edge and method exit.

Thus, path profiling is more invasive, produces more and
larger entries, and uses a larger hash table to store its entries
compared to method counting, call graph profiling, and call
tree profiling. Prior work finds, and our results confirm,
that sequential exhaustive path profiling can add overheads
ranging from 20% to over 100% of execution time.

Cache simulation We also implement a set associative
cache simulator, which is similar to dcache implemented
in Pin [22]. For each load and store instruction, the applica-
tion instrumentation writes the 32 bit address into the buffer,
using the low order bit to indicate whether the operation
was load or store. Because these addresses are already in
registers, this instrumentation, while prolific, is cheap. It
does have a very high event rate, and therefore stresses the
communication mechanisms in our framework. The analysis
thread consumes each entry, computing a new state for the
cache. It stores cache state in arrays. For our experiments,
the cache simulator models a 32KB 4-way set associative L1
and a 512KB 8-way set associative L2. The L1 and L2 have
a line size of 64B, are inclusive and have an LRU policy. In
the single-threaded implementation, the analysis code calls
out to a routine that updates the cache state at every load and
store. Fully accurate cache simulation is expensive; it adds
overheads ranging from 200 to 4500% to application time.

These five clients thus insert a wide range of types of instru-
mentation and perform light to heavy weight analysis.
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Figure 7. Performance of N-way buffering [33] and FastForward [13] relative to CAB. We use N:M threading on an Intel Core
2 Quad. The Y-axis is normalized to CAB’s execution time.

6. Evaluation
We next describe our benchmarks, hardware, operating sys-
tem, experimental design, and data analysis methodology.
Section 6.1 compares CAB to other buffering mechanisms.
Section 6.2 presents experimental results for our five anal-
yses in our concurrent framework and compares them to a
sequential implementation that does not write event data to a
buffer. Section 6.3 evaluates buffer size scalability and Sec-
tion 6.4 evaluates sampling mode. Finally, Section 6.5 ex-
plores the importance of modern shared cache architectures
to concurrent dynamic analysis.

Benchmarks. We use the SPECjvm98 benchmarks [29]
and 9 of 11 DaCapo Java (v. 2006-10-MR2) benchmarks [6].
The DaCapo suite is a recently developed suite of substantial
real-world open source Java applications. The characteristics
of both are described elsewhere [7]. mtrt in SPECjvm98
and hsqldb, lusearch, and xalan in DaCapo benchmark
suite are multi-threaded benchmarks. Due to a problem in
our cache simulation implementation, we omit xalan on the
Core 2, and luindex, lusearch, and xalan on the P4 in
the cache simulation results. We omit chart and eclipse

from DaCapo in all our results because the older version of
Jikes RVM we use does not always run them correctly.

Hardware and Operating System. We evaluated the frame-
work on three generations of Intel processors depicted in
Figure 4. The Intel Pentium 4 has a single core with 2 hard-
ware threads that share an 8KB data cache, and a 12kuops
trace cache. The Intel Core 2 Quad has 4 cores on two dies,
each core has 8-way 32KB L1 data and instruction caches.
The pair of cores on each die share a 4MB 16-way L2 cache,
for a total of 8MB of L2 cache. The Intel Core i7 has 4 cores,
each of which has 2 simultaneous multi-threading (SMT)
threads, a private 32KB L1, and 256KB L2 cache. All of the
cores share a single 8MB L3 cache.

We run a 2.6.24 Linux kernel with Pettersson’s perfor-
mance counter patch [27] on all of the processors. We used

PAPI for performance counter measurements [9]. We have
4GB of physical memory in all systems.

Experimental Design and Data Analysis. Jikes RVM’s
timer-driven adaptive optimization system results in non-de-
terministic compiler and garbage collection activity. We use
Jikes RVM’s replay system to control this non-determinism
(see Blackburn et al. for the detailed methodological justifi-
cation [6]). In order to reflect steady state performance, be-
fore running any experiments, we first execute each bench-
mark fifteen iterations within the same invocation of the VM,
and record a compiler advice file. The file specifies the opti-
mization level and profile information, e.g., method and edge
frequencies, for each method. We repeated this five times
and chose the best performing run. Later, when the VM is
run in replay mode, it immediately optimizes each method to
its final optimization level based on the profile. This both de-
livers determinism and short circuits the normal code warm-
up. Thus all methods are optimized to their final level by the
end of the first iteration of a benchmark. Before starting the
second iteration, we perform a full heap garbage collection.
We report timing measurements for the second iteration. For
each experiment we report the average of 30 runs to elimi-
nate noise. Our default configuration uses 2MB buffer size
and 128KB of chunk size. We set the heap size to 4 times the
minimum required for the uninstrumented benchmark.

6.1 CAB versus Other Buffering Mechanisms
We start by comparing CAB with conventional N-way
buffering and FastForward’s concurrent lock-free queue [13].
We carefully optimized both algorithms for a fair compar-
ison. For FastForward, enqueueing and dequeueing do not
split the buffer into chunks, instead they operate on individ-
ual event records, which is equivalent to CAB using a chunk
size of one event. We set their dangerous distance parameter
to two cache lines: when the consumer becomes this close
to the producer, the consumer waits. Once there is a safe
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Figure 8. Exhaustive mode overhead with performance break-down, averaged over all benchmarks (N:M threading model).

distance of six cache lines, the consumer begins processing
events again. We use the same algorithm and parameters as
specified in the FastForward paper [13].

Our implementation of N-way buffering improves in two
ways over PiPA [33]. First, we removed semaphores for
buffer switching to lock-free synchronization as in CAB.
Second, the buffer size is aligned to a power of two such that
the end of each buffer is evaluated by a modulo operation
and test instruction. For fair comparison with CAB, we do
not pin the buffer into a fixed memory location which would
remove a memory load, since a fixed memory location is
incompatible with multi-threaded analysis. Note that a buffer
in N-way buffering is essentially the same as a chunk in
CAB, but they are accessed differently; CAB’s operation is
asymmetric while N-way buffering is symmetric.

Figure 7 compares the performance of these buffering
mechanisms to CAB on two representative analyses: call
graph and path profiling. Call graph analysis requires far
less communication compared to path profiling; the commu-
nication overhead of these clients are discussed in detail in
Section 6.2. The performance of N-way buffering and Fast-
Forward queue is reported relative to CAB’s execution time,
where higher than zero means worse than CAB. For dynamic
analyses that perform less communication, like call graph
profiling, there is no significant difference between the three
buffering designs. However, for path profiling where the data
sharing cost is high, CAB outperforms FastForward by a sig-
nificant margin. The FastForward queue is well designed as a
general purpose queue, but the absence of chunks and batch
processing causes significant overhead when used for con-
current dynamic analysis. CAB performs better than heavily
optimized N-way buffering by ∼8% on average, and up to
16%. The performance improvements of CAB are most sig-
nificant on benchmarks that produce events more frequently,
such as jython and hsqldb.

The results show that CAB is more efficient in transfer-
ring events from one thread to another than other buffering
designs, especially when there is significant data communi-
cation between the producer and consumer. This result sug-

gests that existing dynamic analyses that use buffering can
achieve a speed-up transparently by using CAB.

6.2 Exhaustive Mode Overhead
We now examine the performance of CAB in more detail,
starting with exhaustive mode. Figure 8 shows the exhaus-
tive mode overhead for each concurrent analyzer and proces-
sor combination with N:M threading. The results report the
average over all benchmarks. Results for individual bench-
marks are in the appendix. All measurements are relative to
the application without any instrumentation or analysis, i.e.,
the application time A from our model in Section 4. Lower
bars are better. We break down the overhead as follows.

In each set of bars, the fourth white bar (“concurrent ana-
lyzer”) shows CAB in exhaustive, concurrent analysis mode.
The fifth black bar (“sequential analyzer”) is the same anal-
ysis, but the instrumentation and analysis are inline in the
same thread as the application (Es). The differences between
the fourth bar and the fifth bar show the performance benefit
of a concurrent implementation using CAB compared to se-
quential analysis. The first to third bars break down the over-
head of the concurrent analysis. The first bar (“instrumenta-
tion”) is pure instrumentation overhead; the application pro-
duces the event and writes it to a single word in memory,
but the analyzer thread is not running. The second bar (“en-
queue”) is the enqueueing overhead where the application
enqueues to the buffer, but the analyzer thread is still not
running. The third bar isolates the communication overhead;
the application thread performs full CAB functionality while
the analyzer dequeues and writes to a single word, but does
not process the event. Thus, data is transferred through the
cache, but not analyzed.

Method counting (Figure 8(a)) is very lightweight with
minimal analysis overhead and is thus not a compelling can-
didate for a concurrent implementation. In spite of its min-
imal analysis, concurrent method counting performs nearly
as well as sequential method counting. Leveraging reduced
memory latency in recent multicore hardware, the concur-
rent method counting is only slower by 0.1% and 1.2% on
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Figure 9. Exhaustive mode overhead, average over all benchmarks (native threading model).

the Core i7 and Core 2 respectively, while it was 7% slower
on the hyper-threaded Pentium 4.

Call graph profiling performs only slightly more analy-
sis computation than method counting, yet the concurrent
call graph performs better than the sequential version. Con-
current call graph profiling has approximately half the over-
head of the sequential implementation in Core i7 and Core 2.
For call graph profiling, and the other heavier-weight clients,
concurrent execution on the P4 shows benefit, but less than
the other architectures, because the application and analyzer
share the core, and thus there is less true concurrency.

Call tree profiling has the same amount of communica-
tion as call graph profiling, but performs more analysis. This
analysis time is still less than the application time, and thus
concurrent dynamic analysis improves further over sequen-
tial. For example, concurrent call tree profiling’s overhead is
60% less than sequential profiling on the Core i7.

Path profiling has more communication overhead than
call graph profiling, but the computation required for each
record is similar (updating a hash table). This increase re-
sults in a higher relative enqueueing cost (second bar) com-
pared to the other analyzers. On the P4, path profiling time
often dominates application time, which limits performance
improvements, as our model predicts, but concurrent analy-
sis still reduces overhead by on average 17%. On the Core
2 and Core i7, concurrent path profiling decreases the over-
head by about half compared to sequential profiling. These
results show that CAB is efficiently offloading the profile
data to the other core.

The cache simulator is an extreme case of heavy-weight
analysis. The analyzer itself is an order of magnitude slower
than the application. Thus, even if all the event data were
transferred to the other core with zero overhead, the bene-
fit of the concurrent cache simulator is limited to a 100%
reduction, i.e., eliminating the application execution time.
However, we measured faster critical path execution because
CAB offloads load and store data from the critical path. CAB
thus sometimes reduces the overhead by more than the ap-
plication time. Our results show that concurrent cache sim-

ulator was faster by 73% on the Core i7, and 110% on the
Core 2, and 193% on the Pentium 4.

Native threading Figure 9 presents the average concurrent
analysis overhead using our native thread implementation.
These results show similar overheads compared to the N:M
threading results discussed above. The native thread imple-
mentation is relative to a better baseline; without concur-
rent analysis, native threads and other enhancements im-
prove performance over the Jikes RVM version with N:M
threading by 15 to 20%. Our native thread implementation
of concurrent analysis improves over the N:M thread ver-
sion for method counting and call graph profiling, and is a
bit slower for path profiling and cache simulation. These re-
sults confirm that the threading model is not central to our
results.

Exhaustive Mode Summary Our concurrent dynamic anal-
ysis framework improves performance on three generations
of hardware, from the Pentium 4 to the Core i7. All of our
results, except for cache simulator on Core i7, show that
newer generation multicores yield the largest improvements.
This trend supports our contention that concurrent dynamic
analysis will be more important for future architectures, and
that our framework can be the basis for this and other appli-
cations that require offloading work to other cores.

6.3 Buffer Size Scalability
One of the strengths of our concurrent dynamic analysis
framework is the scalability of the buffer size in CAB. The
particular benchmark and analysis together determine a min-
imal buffer size that is sufficient to minimize the overhead
that comes from a variable event rate. If large buffers cause
performance degradations, as reported for PiPA [33], the in-
creased headroom of the larger buffer will come at the cost
of degraded average performance.

Figure 10 presents buffer size scalability with path pro-
filing and shows L1 and L2 misses, as well as the cycles
blocked on the slow-path of the CAB enqueueing operation
for hsqldb, a representative benchmark. The appendix con-
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Figure 10. Performance as buffer size varies for path pro-
filing on DaCapo hsqldb (using N:M threading on an Intel
Core 2 Quad).

tains results for six more DaCapo programs. This experi-
ment is performed on a Core 2 Quad processor because it
has the most irregular memory latency of the three proces-
sors we evaluate. Each of the metrics is normalized to the
measurement with no analyzer. Since the application never
blocks without an analyzer, we normalize cycles blocked to
the slow-path with a 16KB buffer size.

L1 misses are high for small buffers because there are
more conflict misses between the application and analyzer
threads while the application is blocked. L1 misses drop near
the 128KB and 512KB buffer sizes, and grow again because
a larger buffer size increases the memory footprint of the
buffer. There are few L2 misses on small buffers because
they fit into the L2 cache, and L2 misses grow as the buffer
starts to contend with the application memory.

The execution time shows that the overhead is nearly con-
stant given a sufficiently large buffer size, demonstrating that
the overhead is not correlated to L1 or L2 cache misses and
that larger buffers do not degrade performance. This result
supports our hypothesis that the design of CAB allows the
hardware prefetcher and cache subsystem to hide overheads.

6.4 Sampling Mode Accuracy vs Overhead
Figure 11 reports the overhead and error rate of call graph
profiling and path profiling in sampling mode running on a
Core 2 Quad. The graphs on the left show sampling overhead
and the graphs on the right show accuracy.

For the overhead graphs, the y-axis shows percent over-
head, while the x-axis shows the sampling rate, expressed
as the percent of samples that are processed by the analyzer
thread. All sampling mode data was collected using a default
burst size of 64 bytes, which is equal to the cache line size
on each of the processors we evaluated. A sampling rate of
zero means that no samples were processed by the analyzer
thread, and thus represents the minimum overhead possible.
Note that a 100% sampling rate is not the same as exhaustive
mode. The analyzer does not intentionally discard any sam-
ples, but since the application does not block, it is possible

for the application to overwrite samples before they reach
the analyzer.

In the accuracy graphs, the y-axis reports the error rate,
which is the average error rate of each individual metric.
Each individual error rate is defined as follows:

Error Rate =

∣∣∣∣∣Actual Frequency − Sampled Frequency
Sampling Rate

Actual Frequency

∣∣∣∣∣
For example, in call graph profiling, an individual error rate
is the error rate of each caller and callee pair. The error
rate on the accuracy graph is the average accuracy of all
the individual error rates. This error rate treats low to high
frequency events equally so that it is not biased.

The overall performance trend is not surprising; overhead
increases linearly as the sample rate is increased. Sample
rates ranging from 5% to 20% offer a significant reduction
in overhead versus the same profile collected in exhaustive
mode (from Figure 8), yet still produce profiles with ex-
tremely high accuracy. The average overhead reduction rela-
tive to the exhaustive profile was 55% for both call graph and
path profiling at 5% sampling rate, and the error rate is less
than 3% (97% accurate). Depending on the use of the profile
data, this sampled profile may be indistinguishable from an
exhaustive mode profile.

For some benchmarks, the error rate begins increasing
rapidly when the number of samples taken increases past a
certain point, which is quite counter intuitive. More samples
usually results in a more accurate profile. This degradation
occurs when the analyzer thread cannot keep up with the ap-
plication thread and the CAB buffer overflows. At this point,
data is lost in large, non-random bursts, so the accuracy of
the sampled profile suffers. Path profiling is more expen-
sive, so increasing the sample rate leads to buffer overflow
sooner than with call graph profiling. To avoid this degrada-
tion, our algorithm could overflow by periodically sampling
the buffer head and tail, and scale back the sample rate ac-
cordingly. We leave this functionality to future work.

6.5 Shared cache and fine-grained parallelism
We now evaluate why concurrent analysis has become fea-
sible with recent multicore hardware. A concurrent dynamic
analysis is fine-grained parallelism where data sharing hap-
pens frequently, thus the performance is sensitive to the la-
tency and the bandwidth of inter-core communication. To
show how much benefit comes from the low-latency com-
munication, we changed the affinity of the analyzer thread
and the application thread to force them onto different dies
on the Intel Core 2 Quad processor. In this configuration,
they are much less likely to be on cores that share a cache
at any level. In this experiment, we use one application and
one profiler thread to avoid cache thrashing among appli-
cation threads. Figure 12 compares the performance of this
new configuration, called “no cache sharing”, to the original
shared L2, and single-threaded configurations. The figure re-
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Figure 11. Sampling overhead and error rate for call graph and path profiling (N:M threading on an Intel Core 2 Quad).
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Figure 12. The importance of shared caches. Path profiling overhead with and without sharing between analyzer and
application threads. Note that y-axis is the factor of overhead, and not a percentage.

ports overhead as a factor slowdown, not as percent. Since
in this configuration the threads must communicate through
memory instead of the L2, the overhead increases from an
average of∼ 50% to∼ 250%, confirming that in our setting,
cache-aware communication is critical to good performance.

7. Future Work
We believe that there are additional opportunities to reduce
space overhead without compromising performance by au-
tomatically and dynamically adapting CAB buffer sizes, as
well as the number of analysis threads. In particular, our na-

tive thread implementation keeps the CAB buffer in thread-
local storage, which makes the number of buffers propor-
tional to the number of threads. A more space-efficient de-
signs may be possible where the number of buffers are pro-
portional to the number of processors. These topics are being
left for future work.

In addition, our current implementation binds only one
analysis thread to each buffer. To speed up heavyweight
analyses such as cache simulation, we plan to explore paral-
lelizing the analysis logic itself and using multiple analysis
threads to process a single buffer.
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8. Conclusion
Managed languages have succeeded in part because the run
up in single processor speeds from Moore’s law more than
compensated for the cost of abstractions, such as managed
runtimes and dynamic analyses. To continue to give pro-
grammers current and future generations of powerful ab-
stractions, we will need to construct efficient mechanisms
that more carefully minimize their costs. This paper ad-
dresses the cost of dynamic analysis. We introduce a frame-
work that uses CAB, a new highly-optimized cache-friendly
asymmetric buffering mechanism, that outperforms the prior
state of the art, sometimes significantly. For extremely light
weight analysis (i.e., few events and little processing) our
framework is not beneficial, but for a wide class of dy-
namic analysis, we show that our framework improves per-
formance. This paper takes an important step towards reduc-
ing abstraction costs for dynamic analyses by utilizing other-
wise idle cores in multicore systems. We believe that our op-
timization lessons are broadly applicable, and can help opti-
mize more generic parallel programs with heavy inter-thread
communication.

A. Additional Results
Exhaustive Mode Overhead Figure 13 reports the per-
benchmark breakdown of CAB’s exhaustive mode overhead
with N:M threading executing on the Core 2 Quad processor.
Please refer to [15] for complete results on the other archi-
tectures (Core i7 and Pentium 4). Figure 8 in Section 6.2
summarizes this data for all architectures. Similarly, Fig-
ure 14 reports the per-benchmark exhaustive mode over-
heads for the native threading model. Figure 9 in Section 6.2
summarizes this data.
Buffer Size Scalability Figure 15 reports performance as
buffer size increases when performing path profiling, for
each of the remaining DaCapo benchmarks. Figure 10 of
Section 6.3 presented this data for the hsqldb benchmark.
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Figure 13. Per-benchmark exhaustive mode overhead on Core 2 (N:M threading).
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Figure 14. Per-benchmark exhaustive mode overhead (native threading).
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Figure 15. Performance as buffer size varies for each of the DaCapo benchmarks. Results are for path profiling using N:M
threading on an Intel Core 2 Quad.
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