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Abstract
Model-driven development (MDD) is widely used to de-
velop modern business applications. MDD involves creating
models at different levels of abstractions. Starting with mod-
els of domain concepts, these abstractions are successively
refined, using transforms, to design-level models and, even-
tually, code-level artifacts. Although many tools exist that
support transform creation and verification, tools that help
users in understanding and using transforms are rare. In this
paper, we present an approach for assisting users in under-
standing model transformations and debugging their input
models. We use automated program-analysis techniques to
analyze the transform code and compute constraints under
which a transformation may fail or be incomplete. These
code-level constraints are mapped to the input model ele-
ments to generate model-level rules. The rules can be used
to validate whether an input model violates transform con-
straints, and to support general user queries about a transfor-
mation. We have implemented the analysis in a tool called
XYLEM. We present empirical results, which indicate that
(1) our approach can be effective in inferring useful rules,
and (2) the rules let users efficiently diagnose a failing trans-
formation without examining the transform source code.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—Debugging aids; F.3.2
[Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis

General Terms Algorithms, Experimentation

Keywords Model-driven development, model-to-model
transform, model validation, transformation comprehension,
precondition analysis
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1. Introduction
Model-driven development (MDD) is a paradigm of soft-
ware development that is based on the use of software mod-
eling as the primary form of expression [10, 24]. It enables
application design in terms of high-level “domain” concepts
(from the problem space) instead of low-level “program-
ming” concepts. A model is specified in a well-defined no-
tation referred to as the metamodel. A model instance de-
scribes an actual system and conforms to the grammar of the
metamodel. A transform1 takes an instance of a model and
converts it into another model (model to model transforma-
tion) or into code (model to code transformation). Typically,
projects that follow an MDD methodology create a series
of models at various levels of abstractions—that are suc-
cessively refined—before actual code is created. As an ex-
ample, a business analyst outlines the application work-flow
as process models, which are captured in notations such as
UML. The UML models are used to generate code skeletons
to which developers add application logic. The conversion
of a high-level model to a lower-level model or code can be
done either manually or using automated transforms.

There are many factors that determine the effectiveness
and efficiency of MDD. First, given a model transform, it
must be verified that, for a valid input model, it generates
the correct output model. To address this problem, existing
research has developed many techniques for verifying and
validating model transforms (e.g., [1, 3, 9, 12, 16, 20]). Sec-
ond, even if a transform is correct, the user of the transform
might have to spend significant effort in creating a valid in-
put model that does not violate transform assumptions. Un-
like the first problem, the second problem has mostly been
overlooked; this is the problem that we address in this paper.

1.1 Illustration of the Problem

Consider the ECORE2 metamodel shown in Figure 1(a). The
metamodel declares an element type Attribute, which has

1 In this paper, we follow the terminology introduced by Baxter [2]. A
transform is a function, or a program, that maps one model to another
model (or text). A transformation is the application, or the execution, of
a transform on a model instance.
2 http://www.eclipse.org/modeling/emf
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two features—name and type—neither of which is manda-
tory, as indicated by lowerBound = 0. Figure 1(b) presents
an example model based on this metamodel. A Java trans-
form is used to convert this model to a UML class; an excerpt
of the code is shown in Figure 1(c). A user of this trans-
form could potentially face the following problems while
executing the transform with the input model illustrated in
Figure 1(b).

EXAMPLE 1. Transformation failure. The transformation
fails with a null-pointer exception at line 5, leaving the
transform user with the task of going over the transform
code to debug the failure. Going backwards from line 5,
we see that type src is assigned from attr.getType() at
line 4 and attr is assigned from source at line 1. There-
fore, by manual inspection of the code the user can infer
that source.getType() should not be null. Further, based
on knowledge of the framework used to create the trans-
form, it is possible to infer that execute() is invoked only
for model object instances of type Attribute. Therefore, the
actual violated rule is that Attribute.getType() should not
be null. The user fixes the problem by adding type = "" to
the model, as shown in Figure 1(d). Moreover, to avoid this
failure again with other input models, the user can add a rule
to the metamodel to specify that type is a mandatory fea-
ture. For this example, the constraint is specified by adding
lowerBound = 1 to the type feature in the metamodel, as
shown in Figure 1(f). �

EXAMPLE 2. Incomplete output model. After the input
model is fixed, the transformation runs to completion. How-
ever, in the generated output model, the UML property in-
stance for the first Attribute instance does not have the
type attribute. Once again, by manually inspecting the
source code, the user determines that prop.setType() on
line 7 generates the type attribute on the output Property
instance—but only if the condition on line 5 evaluates true.
Thus, the user infers the rule

Attribute.getType().equals("String") ∧
UMLUtilities.findType(...) �= null

Applying this rule, the user modifies the Attribute instance
to have type = "String" as shown in Figure 1(e). �

As illustrated in these examples, the user has to inspect
manually the transform source code to identify the violated
constraints that cause the transformation to fail or be in-
complete. However, the source code of a transform is of-
ten not available for inspection by the transform user; or, if
available, the users would prefer not to examine the code
(which is usually written by someone else). Therefore, a
debugging technique that supports users in understanding
why a transformation failed or generated an incomplete out-
put model, without requiring them to examine the transform
source code, would be very useful.

Depending on the metamodel used to specify the input
model, some of the simpler constraints could be specified

(a) Example metamodel definition

<eClassifiers xsi:type="ecore:EClass" name="Attribute">
<eStructuralFeatures name="name" lowerBound="0" .../>
<eStructuralFeatures name="type" lowerBound="0" ... />

</eClassifiers>

(b) A model defined using the metamodel

<Model>
1: <Attribute name="id" />
2: <Attribute name="name" type="String"/>

</Model>

(c) A Java transform for the metamodel

public void execute( EObject source, EObject target ) {
1. Attribute attr = (Attribute)source;
2. Property prop = (Property)target;
3. PrimitiveType ptype = null;
4. String type_src = attr.getType();
5. if (type_src.equals("String"))
6. ptype = UMLUtilities.findType(...);
7. if (ptype != null) prop.setType(ptype); }

(d) First correction to the model

<Model>
1: <Attribute name="id" type="" />
2: <Attribute name="name" type="String"/>

</Model>

(e) Second correction to the model

<Model>
1: <Attribute name="id" type="String" />
2: <Attribute name="name" type="String" />

</Model>

(f) Enhanced metamodel

<eClassifiers xsi:type="ecore:EClass" name="Attribute">
<eStructuralFeatures name="name" lowerBound="0" .../>
<eStructuralFeatures name="type" lowerBound="1" ... />

</eClassifiers>

Figure 1. An example metamodel, model, and Java transform.

in the metamodel definition by the transform author. More
complex constraints could be documented in plain text or
using a constraint language, such as OCL.3 However, in ei-
ther case, it is up to the transform author to maintain the
constraints manually; a manual approach can cause the con-
straints to be incomplete, incorrect, and become outdated as
the transform code evolves. Therefore, automated inference
of transform constraints and mapping of constraints to rules
is essential for developing a practical and effective debug-
ging technique.

1.2 Overview of our Solution

In this paper, we present a new approach for assisting users
in diagnosing the cause of a failed or an incomplete transfor-
mation. Overall, our goals are to support

• Model validation. We infer rules that state the conditions
on the input model under which a transform fails; this
addresses the problem illustrated in Example 1.

• Transform comprehension. We infer rules that state the
conditions on input models under which a transform gen-
erates an incomplete output model; this addresses the
problem illustrated in Example 2.

3 http://www.omg.org/technology/documents/formal/ocl.htm
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Figure 2. Overview of our solution.

Our approach consists of three steps; Figure 2 presents an
overview of the steps.

In the first step, we analyze the transform code to extract
automatically exception constraints, which can cause the
transform to terminate with a runtime exception, and output
constraints, which can cause the transform to generate an
output model element. Because we are interested in only
those constraints that can be mapped back into the input or
output model, we first identify the variables in the transform
code that map to the input and output model. For example in
Figure 1(c) in the method:

public void execute(EObject source, EObject target)

source and target map to root elements in the input and
output model, respectively. These entry points are manually
identified and provided as inputs to our analysis.

At a potential exception-generating statement in the
transform code, we identify the postconditions from which
we derive the exception constraints. For example, at line 5
in Figure 1(c), we generate the postcondition 〈type src =
null〉, which is the condition under which a null-pointer
exception will occur. Starting from this postcondition, we
compute weakest preconditions using a backward, interpro-
cedural analysis. The preconditions generated are

〈source �= null〉 ∧ 〈source.getType() = null〉
Finally, we check that the preconditions are “rooted” in
the input model element (source in this example) before
accepting them as valid exception constraints.

At each code point where the output model data structure
is modified, we identify the postconditions from which we
derive the output constraints. In Figure 1(c), for example,
at line 7, we generate the postcondition 〈ptype �= null〉,
which is the condition under which prop.setType(ptype)

executes. Applying pointer and escape analysis [21], we
further determine that prop.setType(ptype) “writes” to
prop.type, which is an alias of target.type. Thus, a post-

condition for an output constraint is the condition under
which the transform code writes to an access path that is
rooted in the target. The preconditions generated are

〈source.getType().equals("String")〉 ∧
〈UMLUtilities.findType(. . .)�=null〉

In the case of output constraints, we accept all precon-
ditions that are rooted in input or output model elements
(source, target respectively in this example). Preconditions
containing other method calls with parameters that are in
turn rooted in source, target, are also accepted.

All other constraints get filtered out. In practice, we also
take as input a set of user-provided filters to remove unin-
teresting constraints. Constraints that do not fall into this
pattern may be reported to the transform author as potential
bugs in the transform code.

In the second step, we map the code-level constraints to
metamodel-level rules. This is possible as all the constraints
are rooted at the source or target elements, which are the
elements that have been identified in step 1 as entry points
into the input or output models. The mapping step basically
raises the abstraction level of the code-level constraints so
that they are stated in the language of the input metamodel
and, therefore, are easier for the transform user to compre-
hend. A user-provided mapping file is used to translate the
constraints to rules: exception constraints are mapped to val-
idation rules, whereas output constraints are mapped to com-
prehension rules. Depending on the framework being used to
write the transform, the generation of the mapping file can
be automated to varying degrees.

In the third step, the metamodel-level rules may be used
to construct a validity checker and a querying tool. The va-
lidity checker, given an input model for a transform, checks
whether a model violates any of the validation rules. The
querying tool can help the user understand the conditions on
the input model elements under which an output model el-
ement is created; thus, the user can diagnose the cause of
missing output-model elements.

Assumptions and Requirements Transforms can map a
model to another model or to text (e.g., code). They can be
implemented in an imperative manner or using declarative
or rule-based languages. Our approach is applicable only
to model-to-model transforms implemented in an imperative
style. Our current implementation analyzes transforms writ-
ten in the Java language. Our analysis works on the assump-
tion that the entire input (and output) is captured in a single
data structure that is mapped to the input (output) model.
The input / output object may be passed in as a parameter or
be constructed within the transform.

Our approach requires the identification of failure points
in the code (for inferring exception constraints), and points
at which output model elements are generated (for inferring
output constraints). For Java, these program points can be
identified automatically by identifying instructions that can
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throw runtime exceptions, such as NullPointerException,
or instructions that define the output object.

1.3 Contributions

The main benefit of our approach is that it provides auto-
mated support for diagnosing the cause of a failing or an in-
complete transformation, without requiring an examination
of the transform code.

Our analysis is similar to the computation of weakest
preconditions (e.g., [6, 8]). However, we apply the analysis
to the domain of MDD, in which the inferred constraints
are mapped to metamodel-level rules. Alternatively, such
rules could be provided manually by the transform developer
and used to annotate the model elements using a constraint-
specification language. These rules could then be used to
construct validity checkers. However, manual computation
of rules may be time-consuming and error-prone [5].

Another important aspect of our work is the mapping
of code-level constraints to metamodel-level rules, which
has been recognized as an important feature affecting the
usability of automatically inferred constraints [5]. Our tool
partially automates these tasks, thereby reducing the burden
on transform developers.

We implemented the solution for Java transforms and per-
formed empirical evaluation using real applications. Our re-
sults indicate that, for the subjects considered, our approach
can infer a significant number of useful rules. To validate
this, we conducted a user study, in which we compared the
efficiency of users in identifying and fixing problems with
incorrect input models to a transform. In the study, all the
users performed the debugging tasks much faster when they
were guided by the inferred rules than when they were not.

The main contributions of the paper are

• The presentation of a static-analysis-based approach for
inferring rules from model-to-model transforms and ap-
plying the rules to support model validation and transfor-
mation comprehension

• An implementation of the approach for transforms writ-
ten in Java and models specified in EMF2

• Results of empirical studies, conducted using different
types of models and transforms, that illustrate the benefits
of the approach

The rest of the paper is organized as follows. In the
next section, we introduce an example transform that we
use to describe our solution in the remaining sections. In
the subsequent three sections, we present the steps of our
approach: constraint inference, rule generation, and valida-
tion/comprehension. Section 6 presents the empirical evalu-
ation of our work. Section 7 discusses related work; finally,
Section 8 summarizes the paper and lists directions for fu-
ture research.

E = {DataModel, Artifact, ContextArtifact,
Attribute, Annotation, ThisPackage}

R = {C: contains, I: inheritsFrom}
P = {name, type, value, multiplicity, isSimple}
δr : DataModel �→ {((C,Artifact),artifacts,many),

((C,ContextArtifact),contextArtifacts,many),
Artifact �→ {((C,Attribute),attributes,many)}
ContextArtifact �→ {((C,Attribute),attributes,many)}
Attribute �→ {((C,Annotation),annotations,many)}
Annotation �→ ∅
ThisPackage �→ {((I,Annotation),NA, NA)}

δp : DataModel �→ {name}
Artifact �→ {name}
ContextArtifact �→ {name}
Attribute �→ {name, type, isSimple, multiplicity}
Annotation �→ {name, value}
ThisPackage �→ {name, value}

et
r = DataModel

Figure 3. The input metamodel for INFOTRANS.

2. Definitions and Example
In this section, we present definitions and introduce an exam-
ple model transform that we use to illustrate our approach.

2.1 Example

To illustrate the concepts described in this paper, we use
an application called INFOTRANS4 that takes as input a
domain-specific information model, converts the model to
a database schema, and creates a set of services that let users
interact with the data. A domain subject-matter expert is ex-
pected to provide the input information model using a pre-
defined metamodel. INFOTRANS converts the information
model to a UML class model, using the model-to-model
transformation framework provided by the Rational Soft-
ware Architect (RSA).5 Next, the class model is converted,
using model-to-text transforms, to create a database-schema
definition file and Java classes that implement the data ser-
vices. For the purpose of this paper, we focus only on the
model-to-model transformation part of INFOTRANS.

2.2 Metamodels and Models

A metamodel describes the structure or the abstract syntax
of a model in terms of the types of elements and relations
that the model may be constructed from.

DEFINITION 1. (Metamodel) A metamodel M is a tuple
(E ,R,P , δr, δp, et

r). E a set of element types. R is a set of
relation types. P is a set of properties. δr : E → (R ×
E , String, cardinality) maps an element type to its related
element types, where String is used as the representative
name to declare the relationship; cardinality (‘one’, ‘many’,
or ‘NA’) represents the allowed number of related element
instances of that type. δp : E → P(P) maps an element
type to its associated properties. et

r ∈ E is the unique root
element type.

4 INFOTRANS is a modified version of a real application that was developed
in the context of a project at IBM Research.
5 http://www-01.ibm.com/software/awdtools/architect/swarchitect
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Figure 5. Mapping of some of the input model elements to output model elements (created by the transform for INFOTRANS).

<DataModel>

<artifacts name="Gap">

<attributes name="name" isSimple="true"

type="String"/>

<attributes name="resolution" isSimple="false"

type="GapResolution">

<ThisAnnotation name="current"/>

</attributes>

</artifacts>

<contextArtifacts name="GapResolution">

<attributes name="description" isSimple="true"

type="String"/>

</contextArtifacts>

</DataModel>

Figure 4. An input model (an instance of the metamodel shown
in Figure 3) for INFOTRANS.

Examples of some commonly used schema languages for
defining metamodels include ECORE,2 XSD,6 and MOF.7

These languages serve the purpose of specifying the syntax
of models, and thus, are analogous to language grammars
that define the syntax of programming languages.

Figure 3 shows the INFOTRANS input metamodel.8 Ar-

tifact, Attribute etc. are examples of element types declared
by the metamodel. The metamodel allows for two different
types of relationships between object types; inheritance and
containment. The function δr maps each element type to its
relationship with other element types. The result of the map-
ping is a 3-tuple consisting of a pair of relation type and an
element type, a name, and a cardinality. Artifact can contain
multiple elements of instance Attribute and the relationship
is identified with the name attributes. Except for the rela-
tionship between Annotation and ThisPackage, all other rela-
tionships are containment relations. Similarly, δp maps each
element type to the properties associated with the element.
For example, an Artifact can have a property called name.

DEFINITION 2. (Metamodel access path) Let (E ,R,P , δr,
δp, e

t
r) be a metamodel. Let e〈n〉 be the element with name

n. A metamodel access path πmodel is a sequence derived
from the grammar
6 http://www.w3.org/XML/Schema

7 http://www.omg.org/technology/documents/formal/mof.htm

8 This is a representation of the metamodel for the purposes of the paper
only. The actual on-file representation varies, based on the framework used.
For example, the ECORE syntax would look as shown in Figure 1(a).

πmodel ::= et
r.π

π ::= n.π |πrec.π |n | p | c |m(params)
πrec ::= n.πrec | (πrec)+ |n
params ::= param, params | param
param ::= const |πmodel

where e〈n〉 ∈ E ; p ∈ P ; ni.nj : e〈nj〉 ∈ δr(e〈ni〉);
n.p : p ∈ δp(e〈n〉); c is an integer constant; and m is an
external method that takes as input a list of parameters that
may be constants or access paths.

A metamodel access path is a sequence of containment
relations that starts at the root element type and ends at

• An element name: DataModel.contextArtifacts.attributes

• A property type: DataModel.artifacts.attributes.isSimple

• An integer constant: DataModel.artifacts.0

• An external method:
DataModel.contextArtifacts.name.equals(”Current”), or
UMLUtilities.findType(DataModel.contextArtifacts.name)

where, equals is a standard external method from the Java
API, UMLUtilities is a method from transform code that
the user did not want to analyze.

Further, an access path can represent recursive model ele-
ments. Suppose, for example, in the metamodel of INFO-
TRANS, Attribute contained an Artifact called fact. Then, the
metamodel could have a recursive access path that contains
one or more occurrences of attributes.fact as follows:
DataModel.artifacts.(attributes.fact)+

Given a metamodel M, a model can be constructed by
creating instances of the element types, relations, and prop-
erties specified in M. Figure 4 shows an input model, an
instance of the metamodel (Figure 3), for INFOTRANS. The
model has DataModel as the root element (et

r), which, in
turn, contains instances of Artifact and ContextArtifact, iden-
tified by the relationship names artifacts and contextArtifacts,
respectively. The Artifact instance with the property name

whose value is Gap further contains an element of type At-

tribute, identified by the relationship name attributes. An
Attribute instance has the following properties: name (with
value resolution), type (with value GapResolution), and isSim-

ple (with value false).
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public void execute1( EObject source, EObject target ) {
1. Attribute attr = (Attribute)source;
2. Property prop = (Property)target;
3. PrimitiveType ptype = null;
4. org.eclipse.uml2.uml.Package umlprimitives =
5. UMLUtilities.loadPackage(URI.createURI(
6. Constants.UML_LIBRARY));
7. String type_src = attr.getType();
8. if (attr.isIsSimple()) {
9. if (type_src.equals("String"))

10. ptype = UMLUtilities.findType(umlprimitives,"String");
}

11. if (ptype != null)
12. prop.setType(ptype);

}
private void handleComplexType( Class cls, Iterator attrItr ) {

13. Attribute attr = null;
14. Property prop = null;
15. Association assoc = null;
16. while (attrItr.hasNext()) {
17. attr = (Attribute) attrItr.next();
18. if (!attr.isIsSimple()) {
19. ThisPackage annotation =
20. (ThisPackage)attr.getAnnotations().get(0);
21. if (annotation != null) {
22. prop = UMLUtilities.findProperty(cls, attr.getName())
23. prop.setType(cls.getType());

}
public void execute2( EObject source, EObject target ) {

24. DataModel sourceModel = (DataModel)source;
25. Model targetModel = (Model)target;
26. Iterator artifacts = sourceModel.getArtifacts();
27. while (artifacts.hasNext()) {
28. Artifact artifact = (Artifact)artifacts.next();
29. Class cls = UMLUtilities.findClass(artifact.getName());
30. handleComplexType(cls, artifact.getAttributes());

... } }

Examples of potential runtime exceptions:
1. line 9 null-pointer exception if type src is null
2. line 20 class-cast exception if the first element in the list returned

by getAnnotations() is not an
instance of ThisPackage

3. line 20 array-index exception if getAnnotations() returns
an empty list

Example of output statement:
4. line 12 prop.setType defines an output model element if ptype is

not null, and the predicates in lines 8 and 9
evaluate true

Figure 6. Three methods from the Java transform code for INFO-
TRANS; three potential runtime exceptions that can occur, and the
execution condition for an output statement.

2.3 Model-to-Model Transform

DEFINITION 3. (Model-to-model transform) A model-to-
model transform τ : MI → MO is a program that given an
input model MI (an instance of metamodel MI) generates
an output model MO (an instance of metamodel MO).

For the INFOTRANS application, the input ECORE model
is converted to a UML class model using a transform. Fig-
ure 5 shows the input-to-output mappings for some of the
model elements. For example, for each Artifact in the input
model, the transform creates a Class, with a set of operations
and parameters, in the output model.

Imperative transforms can be written in general-purpose
programming languages (e.g., Java) or scripting languages
(e.g., XSLT). Some tools, such as RSA, provide specialized
transformation-authoringframeworks. The INFOTRANS trans-

form is implemented in Java using the RSA transformation-
authoring framework. Figure 6 shows the code fragments for
three of the transform methods for INFOTRANS.

The bottom part of Figure 6 lists three potential excep-
tions that can occur during the execution of the transform.
For example, if in the input model, an Attribute instance does
not have a type property, attr.getType() returns null at
line 7, which causes a null-pointer exception at the derefer-
ence of type src at line 9. Our approach infers such condi-
tions (validation rules) on input model elements under which
the transform can fail with an exception. The rules can en-
able a user to diagnose efficiently the cause of the failure
(i.e., invalid input model elements), without having to exam-
ine the source code.

The figure also illustrates an example of conditions under
which an output statement executes. Statement 12 defines an
output model element. It is reached if, in the input model, an
Attribute instance has property isSimple set to true and prop-
erty type set to “String.” Our approach infers such conditions
(comprehension rules) under which an output model element
is generated.

In the next three sections, we describe our solution in
detail. In Section 3, we describe how we generate code
constraints by analyzing the transform code. In Section 4,
we describe how the code-level constraints are converted
to metamodel-level rules. Finally, in Section 5, we describe
the usage of inferred rules for input model validation and
transformation comprehension.

3. Step 1: Constraint Inference
In Step 1 of our solution (Figure 2), we compute exception
and output constraints from the transform code. In this sec-
tion, we elaborate on the approach used to infer these con-
straints. The section is organized as follows. In Section 3.1,
we formally define exception and output constraints. In Sec-
tion 3.2, we present the algorithm for computing exception
and output constraints. The analysis has been built on top
of an existing tool XYLEM [22]. In Section 3.3, we explain
XYLEM and the enhancements required to generate these
constraints. In the following two sections, we explain some
other intricacies of the analysis: how our path- sensitive al-
gorithm overcomes the limitations of the pointer analysis
(Section 3.4); and how we handle recursive access paths
(Section 3.5). Finally, we discuss the soundness and com-
pleteness of our algorithm in Section 3.6.

3.1 Definitions

DEFINITION 4. (Code access path) A code access path
πcode is a sequence derived from the grammar

πcode ::= π|πcode .(π)+

π ::= vref |vref .π|m(params)|m(params).π
params ::= param, params | param
param ::= const |πcode
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γ ::= 〈πcode ≈ref null〉 | (1)
〈πcode ≈ref strConst〉 | (2)
〈πcode,1 ≈ref πcode,2〉 | (3)
〈πcode ≈ref true〉 | (4)
〈πcode,1 ≈int πcode,2〉 | (5)
〈πcode ≈int intConst〉 | (6)
〈type(πcode) ≈type T 〉 | *(7)
true (8)
¬γ (9)

≈ref ::= =
≈type ::= ∈
≈int ::= < | ≤ | =

Figure 7. Predicates tracked by the analysis. type(v) returns the
type of a reference variable v. T is a set of types.

Typically, in Java, a code access path is defined as a vari-
able or a variable followed by a sequence of field derefer-
ences (v.f1.f2...). In our analysis, a field may be replaced
by a method call—v.f1.mx(). This is similar to the access
path defined by Buse [4]. However, unlike Buse’s access
paths that can have only simple methods with no parameters,
in our analysis the method call could also have parameters,
where the parameters are either constants or access paths—
v1.f1.mx().my("const", v2.mz()). The method calls can
be nested to any level. An example of a code access path
with method calls is

source.getArtifacts().iterator().next().getName().equals(

source.getArtifacts().iterator().next().getType())

In our analysis, the code access path can also contain a set
of repeated field dereferences or method calls in the presence
of recursive model elements (explained in Section 3.5). An
example of a code access path with repeated method calls is

source.(getArtifacts().iterator().next())+.getName()

A predicate γ, is a condition on one access path (unary
predicate) or two (binary predicate) access paths. As shown
in Figure 7, predicates 1 and 2 are unary reference and pred-
icate 3 is a binary reference predicate; predicate 4 is a unary
boolean predicate, and 5 and 6 are binary and unary in-
teger predicates, respectively. Predicates 8 and 9 are stan-
dard nullary and negating predicates. Predicate 7 is a special
predicate—on types of variables—that indicates the set of
class types an access path may belong to. This is required
to perform the analysis for class-cast exceptions (explained
later in this section). A “unary” or a “binary” predicate may
actually have multiple access paths if the predicate contains
an access path with methods that have multiple non-constant
parameters. An example predicate is

¬〈source.getArtifacts().iterator().next().getName().equals(
source.getArtifacts().iterator().next().getType()) = true〉

An abstract state Γ is a conjunction of predicates.

DEFINITION 5. (Code constraint) Let paths(s) be the set
of paths from the entry statement se of a transform to state-
ment s. Let γ be a predicate on a variable used at s. For a

path, ρ ∈ paths(s), let C(ρ, γ) be the state Γρ at se such
that if the predicates in Γρ at se are true, then γ is true at
s. Let I = {i1, . . . , ik}, k ≥ 1, be the set of input variables
to the program. A code constraint CI(γ, s) is the disjunc-
tion

∨
ρ∈paths(s) Γρ[I], where Γρ[I] contains the predicates

in Γρ with respect to the variables in I.

A code constraint is a formula in the Disjunctive Normal
Form (DNF), where each disjunct represents one program
path from the entry of the program to the given statement
s. Each program path is in turn represented as a conjunct of
predicates that need to evaluate to true to be able to reach
statement s. Consider the following code constraint:

〈source.getName().equals(source.getType())〉 ∧
〈source �= null〉 ∧ 〈source.getName() �= null〉 ∧

〈source.getProp() = null〉
W

¬ 〈source.getName().equals(source.getType())〉 ∧
〈source �= null〉 ∧ 〈source.getName() �= null〉 ∧

〈source.getType() = null〉
Here, the first disjunct, represents the constraints obtained
along one path, whereas the second disjunct (after the ∨),
represents the constraints obtained along another path. In
general, there may be an exponential number of paths. How-
ever, we compute only a fixed number of paths (based on a
user-specified threshold) for each program point.

DEFINITION 6. (Exception constraint) An exception con-
straint is a constraint CI(ex)(γ, s), where γ represents the
condition under which a runtime exception can occur at s in
some execution of the program.

An exception constraint can only contain code access
paths rooted in the source model element (source). More-
over, for method calls in the access path, the parameters
should be rooted at the source element, be a method call,
or be a constant. An exception constraint whose access path
does not satisfy these criteria is filtered away.

DEFINITION 7. (Output constraint) Let v be an output
variable of a transform τ . Let se be the exit statement of
τ . Let rdefs(se, v) be the reaching definitions of v.9 An
output constraint Cout (v) is the disjunction

∨
d∈rdefs(v) =

CI(γcd , scd), where d is control dependent on (scd , L)10

and γcd is the predicate asserting that the condition at scd
evaluates to ‘L’, where L is either true or false.

An output constraint can contain code access paths rooted
in the source model element (source) and target model el-

9 A reaching definition defined for a statement–variable pair (s, v) is a
statement d such that d defines v and there exists a path from d to s in
the program such that no statement along the path (other than d) defines v.
10 A statement s is control dependent on a predicate (p, L), if there are
two branches out of p such that by following the branch labeled ‘L’, s is
definitely reached, whereas by following the other branch, s may not be
reached.
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algorithm TransformAnalysis

input τ transform
output CI (ex) exception constraints for τ

CI (out) output constraints for τ
global CI set of input constraints

begin
// Identify exception constraints for null-pointer exceptions

1. foreach statement s that dereferences v do
2. γ = 〈v = null〉; CI = ∅
3. ComputeConstraints(s, {γ}); add CI to CI (ex)

// Identify exception constraints for class-cast exceptions
4. foreach typecast statement s : x = (T)y do
5. γ = 〈type(x) � (subtypes(T ) ∪ {null})〉; CI = ∅
6. ComputeConstraints(s, {γ}); add CI to CI (ex)

// Identify exception constraints for array-index exceptions
7. foreach get statement s : c.get(intConst) do
8. γ = 〈c �= null〉; CI = ∅
9. ComputeConstraints(s, {γ} ∪ {〈c.size ≤ intConst〉})

10. if there is no statement on which s is directly/indirectly control
dependent and that checks c.size then

11. add CI to CI (ex)

// Identify output constraints
12. foreach output variable v do
13. foreach reaching definition d of v at the exit of τ do
14. Let d be control dependent on (scd , L)
15. Let γ be the predicate asserting that the condition at scd

evaluates to L (true or false)
16. ComputeConstraints(scd , {γ}); add CI to CI (out)

// post-process
17. remove non-input-variable predicates from CI (ex) and CI (out)

end

Figure 8. The analysis for computing exception and output con-
straints for a transform.

ement (target). Additionally, it can contain access paths
rooted in library method calls (standard JDK or user-defined
library classes). The method parameters could, in turn, be
code access paths that satisfy the above criteria or be con-
stants.

3.2 The Algorithm

Figure 8 presents the algorithm TransformAnalysis to com-
pute input and output constraints for a given transform. The
first step in the algorithm is the computation of appropriate
postconditions.

Postconditions We check for three types of exceptions—
Null Pointer Exceptions (NPE), Class Cast Exceptions
(CCE) and Array Index Exceptions (AIE). These might
generate exception constraints. However, the only exception
constraints we are interested in are those that occur because
of problems in the input elements. Additionally, we also
check for conditions under which an output model element
is written. These postconditions might generate an output
constraint. The code variables that map to the input and out-
put model elements are specified by the user as an input to
the analysis. For ease of exposition, all through this paper
we assume that the input model maps to a local parameter
source and the output model to target.

• For null-pointer exceptions, at the dereference of a vari-
able x, we define a postcondition 〈x = null〉 (lines 1–3)

procedure ComputeConstraints
input s statement to start backward analysis from

γ stating predicate at s
output CI constraints on input variables
global CS call stack of methods

σ(s,Γ) summary information at a call site s that maps an
incoming state Γ to a set of outgoing states

begin
1. initialize state Γ to {γ}; initialize worklist with (s,Γ)
2. while worklist �= ∅ do
3. remove (s,Γ) from worklist
4. foreach predecessor sp of s do
5. if sp is not the entry and not a call then
6. compute Γ′ for the transformation induced by sp

7. if Γ′ is consistent then
8. add (sp,Γ′) to worklist if not visited
9. else if sp is a call that invokes M then

10. Γmx = map Γ to the exit of M
11. Γme = σ(M,Γmx )
12. if Γme = ∅ then // no summary exists
13. push M onto CS ; analyze M with Γmx ; pop CS
14. Γme = states at the entry of M
15. add Γme to σ(M,Γmx )
16. Γ′ = map states in Γme to sp

17. add (sp,Γ′) to worklist if not visited
18. if CS = ∅ then // method not being analyzed in a specific context
19. if this is the entry method of τ then
20. CI = CI ∨ Γ // add path constraint to DNF
21. else foreach call site sc that calls this method do
22. Γ′ = map Γ to sc; analyze caller starting at sc with state Γ′

end

Figure 9. The new XYLEM analysis used to compute constraints
on input variables under which the given predicate γ evaluates true
at the given statement s.

• For class-cast exceptions, for a typecast statement x =

(T)y, we define a postcondition¬〈type(y) ∈ {subtypes(T)
∪ null}〉 which states that y is neither null nor of a type
that can be cast to T (lines 4–6)

• For array-index exceptions, for a statement c.get(const),
we define a postcondition 〈c �= null〉 (lines 7–11)

• For output constraints, we first determine each statement
s in the code where a field of target (or recursively,
any field of a field of target) is written. If this write
reaches the end of the transform (that is, the field is not
overwritten), we find all conditionals that s is directly
control dependent on. For each conditional C where s
is control dependent on the true branch, we generate a
postconditionC; similarly, for each conditional C where
s is control dependent on the false branch, we generate a
postcondition ¬C (lines 12–17)

After computing the postconditions, we call procedure
ComputeConstraints, which starts with the postcondition
and executes a fix-point computation of the path-sensitive
and context-sensitive analysis using XYLEM.

Fix-point computation and termination Given a predi-
cate γ and an input statement s, ComputeConstraints com-
putes the constraints on input variables under which γ eval-
uates to true at s. The algorithm for ComputeConstraints is
presented in Figure 9.
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Statement State transformation
(1) x = y Γ′ = Γ[x/y]
(2) x = r.f Γ′ = Γ[x/r.f ] ∪ {〈r �= null〉}
(3) if x op y Γ′ = Γ ∪ {〈x op y〉} (true branch)

Γ′ = Γ ∪ {〈¬(x op y)〉} (false branch)
(4) x = y op z Γ′ = Γ \ Γ[x]

*(5) x = new T Γ′ = Γ ∪ {〈x �= null〉, 〈type(x) ∈ {T}〉}
*(6) x = (T)y Γ′ = Γ ∪ {〈type(y) ∈ subtypes(T )〉}
*(7) x instanceof T Γ′ = Γ ∪ {〈x �= null〉,

〈type(x) ∈ subtypes(T )〉}
*(8) x = r.m() (ext) Γ′ = Γ[x/r.m()]
(9) x = r.m() (app) Γ′ = σ(r.m, Γ) ∪ {〈r �= null〉}

Figure 10. State transformations at some of the statements. Γ
represents the state following a statement; Γ′ represents the state
preceding a statement.

ComputeConstraints essentially starts at the given state-
ment s and works backward along the control flow graph
(CFG) and applies a state transformation on each statement.
The statement is followed by a consistency check to en-
sure that no conflicting predicates (such as, 〈x = null〉 and
〈x �= null〉) have been generated. In case of conflict, that
path is discarded.

ComputeConstraints abstracts away arithmetic expres-
sions, which bounds the number of predicates that can be
generated from arithmetic operations. The algorithm tra-
verses a loop until the state no longer changes from one itera-
tion to the next. Because, integer arithmetic over the loop in-
duction variable is abstracted away, the analysis of a loop is
bounded. The presence of recursive data structures can also
cause an unbounded number of predicates to be generated.
Our approach uses the standard method of k-limiting [17] to
restrict the number of access paths that can be generated for
recursive data structures. Section 3.5 illustrates in detail the
processing of recursive model elements.

State transformation The analysis uses back substitu-
tions to update state predicates. Figure 10 shows the state
transformations that occur at some of the statements. The
notation Γ[x/y] represents the state with each syntactic oc-
currence of variable x replaced with y.

Since we are particularly interested in deriving access
paths that are rooted in the source or target objects, the
state transformations are geared towards generating ex-
tended access paths. Consider the state transformation at
statement x = r.f. The updated state contains the predicates
in the incoming state, with each occurrence of x in a predi-
cate replaced with r.f, and predicate 〈r �= null〉. Since we
are substituting the left-hand-side of a computation by the
right-hand-side, the generated predicate is precise for the
given path except for recursive paths. This works correctly
as the analysis works on an SSA language representation
where each use of a variable has exactly one definition.

In Figure 10 transformation 8 is related to the code
access-path representation that can contain nested method
calls. At a statement x = m() that calls an external method,
the incoming state is updated by replacing occurrences of x

with the expression for the method call. This lets the analysis
identify conditions involving external method calls, where
the parameters of the method have dependences on input
variables.

Interprocedural path exploration To perform efficient
interprocedural analysis, the algorithm computes method
summaries. The summary σ for method M maps a state Γ
at the exit of M to a set of states Γ′

1, . . . ,Γ
′
n(n ≥ 1) at the

entry of M , where each Γ′
i represents the transformation of

Γ along a path in M .
When the analysis (Figure 9), reaches a call site to M ,

it maps Γ to the exit of M (state Γmx ) and reuses a sum-
mary if it exists (line 16). If not, the algorithm descends
into the called methods to analyze them (line 13). It uses a
call stack to ensure a context-sensitive processing of called
methods.11 After analyzing the called method, the algo-
rithm saves the summary information for reuse in subsequent
traversals (lines 14–15).

On reaching the entry of the method that is not being an-
alyzed in a specific context (line 18), the algorithm ascends
to all call sites that call the method (lines 21–22). If the en-
try of the transform is reached, the algorithm adds the state
predicates as a disjunct to the input constraints (lines 19–20).

Example 4 gives an example of how to generate access
paths across method boundaries.

Null-pointer exceptions To compute constraints for po-
tential null-pointer exceptions, TransformAnalysis pro-
cesses each statement in the transform that dereferences a
variable to check whether a null-pointer exception could
occur at that statement (lines 1–4). For a dereference of
variable v at statement s, the algorithm initializes γ to
〈x = null〉; then, it calls procedure ComputeConstraints,
which computes the conditions on input variables under
which γ evaluates true at s.

Class-cast exceptions To identify class-cast exceptions,
TransformAnalysis keeps track of predicates on types of
reference variables. For a reference variable v, predicate
〈type(v) ∈ T 〉 asserts that v points to an instance of one
of the types in the set T ; the negation of this predicate,
¬〈type(x) ∈ T 〉 asserts that the type of v is not in the set T .

State transformations 5–7 shown in Figure 10 are rele-
vant for the analysis of class-cast exceptions. For example,
transformation 7 (that occurs at a statement x instanceof

T) adds two predicates to the incoming state Γ: the first pred-
icate asserts that x cannot be null because, in the Java se-
mantics, a null is not an instance of any type; the second
predicate constrains the type of x to be a subtype of T. Trans-
formation 6 is similar, but it does not add 〈x �= null〉 to the
state because, in Java, a null can be cast to any type.

11 A context-sensitive analysis propagates states along interprocedural paths
that consist of valid call–return sequences only—the path contains no pair
of call and return that denotes control returning from a method to a call site
other than the one that invoked it.
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Exception Constraint Validation Rule
1. 〈source.isIsSimple() = true〉 ∧ 〈source.getType() = null〉 (DataModel.artifacts.attributes.isSimple = true) ∧

(DataModel.artifacts.attributes.type = null)
=⇒ NPE

(DataModel.contextArtifacts.attributes.isSimple = true) ∧
(DataModel.contextArtifacts.attributes.type = null)

=⇒ NPE

2. 〈source.getArtifacts()*.getAttributes()*.isIsSimple() 	= true〉 ∧ (DataModel.artifacts.attributes.isSimple 	= true) ∧
〈type(source.getArtifacts()*.getAttributes()*.getAnnotations(). (type(Datamodel.artifacts.attributes.annotations.0) 
 {ThisPackage})
get(0)〉 
 {ThisPackage}) =⇒ CCE

3. 〈source.getArtifacts()*.getAttributes()*.isIsSimple() 	= true〉 ∧ (DataModel.artifacts.attributes.isSimple 	= true) ∧
〈source.getArtifacts()*.getAttributes()*.getAnnotations(). (Datamodel.artifacts.attributes.annotations.size ≤ 0)
size≤ 0〉 =⇒ AIE

Output Constraint Comprehension Rule
4. 〈source.isIsSimple() = true〉 ∧ (DataModel.artifacts.attributes.isSimple = true) ∧

〈source.getType().equals("String") = true〉 ∧ (DataModel.artifacts.attributes.type.equals("String")
〈UMLUtilities.findType(...) 	= null〉 =⇒ ∃ Model.classes.properties.type

(DataModel.contextArtifacts.attributes.isSimple = true) ∧
(DataModel.contextArtifacts.attributes.type.equals("String")

=⇒ ∃ Model.classes.properties.type

Table 1. The exception and output constraints and the corresponding validation and comprehension rules inferred for the three exceptions
and output statement in the INFOTRANS code fragment (Figure 6). The first constraint causes two transform rules to be generated, whereas
the other constraints result in one rule each. The “*” in the exception constraints represents “.next()”.

Given two type predicates on a variable v, they are re-
solved as
〈type(s) ∈ T1〉 ∧ 〈type(s) ∈ T2〉 =

if T1 ∩ T2 = ∅, if (T1 ∩ T2) �= ∅
conflict, otherwise

EXAMPLE 3. Consider the program fragment
public class A {}

public class A1 extends A {}

public class A2 extends A {}

public class A21 extends A2 {}

public class A22 extends A2 {}

[1] A a = new A1();

[2] if ( a instanceof A2 ) {

[3] A21 a21 = (A21)a;

To determine whether a class-cast exception can occur at
line 3, the procedure ComputeConstraints is invoked with
predicates 〈a �= null〉 and ¬〈type(a) ∈ {A21}〉. State-
ment 2 generates the predicates 〈a �= null〉 and 〈type(a) ∈
{A2,A21,A22}〉. The resolved set of predicates now consists
of γ1 = 〈a �= null〉 and γ2 = 〈type(a) ∈ {A2,A22}〉. Then,
statement 1 generates predicate 〈type(a) ∈ {A1}〉, which is
inconsistent with γ2. Therefore, the path (1, 2, 3) is infeasi-
ble and, consequently, no class-cast exception can occur at
line 3. �

Array-index exceptions We perform a limited analysis of
statements, such as statement 20 in the INFOTRANS code
(Figure 6), that retrieve a value from a collection using an
integer constant as the index value. At such a statement s:
c.get(intConst), if the size of collection c is less than or
equal to intConst, an array-index exception is thrown. We
compute the conditions on input variables under which (1) s
is reached with 〈c�=null〉, and (2) and there is no condition
that checks the size of c on which s is directly or transitively
control dependent.

EXAMPLE 4. For the call to get() at statement 20 in Fig-
ure 6, the analysis calls ComputeConstraints with the initial

state containing γ1 = 〈attr.getAnnotations() �= null〉
∧ 〈attr �= null〉. At statement 18, it picks up predicate
γ2 = 〈attr.isIsSimple() �= true〉. Statement 17 updates
both the predicates by replacing attr with attrItr.next().
Next, at statement 16, the analysis adds the predicate γ3 =
〈attrItr.hasNext() = true〉. At line 13, 〈attr = null〉 is
not added as it conflicts with 〈attr �= null〉.

At the entry of handleComplexTypes(), the analysis as-
cends to the call site at line 30 of execute2(). Using, the
actual-to-formal parameter matching, it updates the predi-
cates by replacing attrItr with artifact.getAttributes().
Thus, at this point γ1 is

〈artifact.getAttributes().next().getAnnotations()
�= null〉 ∧ 〈artifact.getAttributes() �= null〉
Continuing in the same manner through statements 28, 27,
26, and 24, the analysis computes γ1 at entry as

〈source.getArtifacts().next().getAttributes().
next().getAnnotations()�= null〉 ∧ . . .

Predicate γ2 and γ3 are updated similarly.
Next the algorithm checks if statement 20 is control de-

pendent on any statement v.size op intConst where v is an
alias of getAnnotations() and op is one of {<,≤,=}. The
algorithm does not analyze how v.size is actually updated in
the program—for example, by statements that add elements
to the collection. Thus, for array-index exceptions, the anal-
ysis computes constraints on unchecked access to an array
location. To aid in rule generation, we now convert γ1 into
the more meaningful predicate

〈source.getArtifacts().next().getAttributes().
next().getAnnotations().size()≤ 0〉

We filter out predicates like 〈source.getArtifacts() �=
null〉 that are implicit. �

Column 2 of Table 1 shows the constraints inferred for
the three INFOTRANS exceptions (Figure 6). For brevity, we
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have replaced occurrences of “.next()” in the constraints
with “*” in the table.

Output constraints Intuitively, an output constraint cap-
tures the conditions on input variables under which an out-
put element is generated. However, once the postconditions
have been identified, the rest of the computation is similar to
that of exception constraints.

EXAMPLE 5. Consider statement 12 in the INFOTRANS

code fragment (Figure 6), which defines the property type
in the target object. For the output variable corresponding
to property type, statement 12 is one of the reaching defini-
tions. The analysis starts at the control dependence of this
statement—statement 11—with a predicate 〈ptype �= null〉.
At statement 10, ptype is replaced with the external method
call to UMLUtilities.findType(...). Next, the analysis
picks up predicate 〈type src.equals("String") = true〉
at statement 9 and 〈attr.isIsSimple() = true〉 at state-
ment 8. After processing the assignments at statements 7
and 1, the analysis identifies the following conditions at the
entry of the method

〈source.isIsSimple() = true〉 ∧
〈source.getType().equals("String") = true〉 ∧
〈UMLUtilities.findType(...) �= null〉 �

Constraint Filtering Our approach uses filters to improve
the accuracy of the computed constraints. The filters con-
sist of “invalid constraints” and “bug constraints.” The first
category filters predicates that cannot be true because of
constraints imposed by the transformation-authoring frame-
work. For example, if EMF were used to serialize the input
model file into a Java object, any list accessed from such ob-
jects and corresponding iterators cannot be null. Thus, at a
dereference list.f of such a list, predicate 〈list �= null〉
need not be generated. Our studies (Section 6.1) indicate that
the use of only a few framework-specific filters can improve
the results of the analysis significantly by removing many
false predicates. Moreover, the filters need to be specified
only once, and, in our experience, can be identified with lit-
tle effort.

The second category filters out constraints that indicate
potential bugs in the transform code. Such constraints, al-
though relevant for the transform author, are uninteresting
from the transform user’s perspective. In fact, the transform
author would either fix the potential bugs or filter out the
constraints before computing the transform rules.

EXAMPLE 6. Consider the following example
[1] x = null;

[2] if ( getTransformType().equals("f1") )

[3] x = new T("1");

[4] else if ( getTransformType().equals("f2") )

[5] x = new T("2");

[6] x.foo()

The dereference of x at line 6 is a potential null-pointer
exception. However, the transform author may know that

getTransformType() always returns "f1" or "f2". In this
case, we need to add a filter so as not to generate an unnec-
essary rule. If getTransformType() may return other strings,
it is the author’s responsibility to fix the bug. �

3.3 Implementation over XYLEM

To compute the constraints, we leverage the null-dereference
analysis implemented in the XYLEM tool [22]. The goal of
the XYLEM analysis is to identify a program path along
which a dereferenced variable can be null. Starting at a
statement sr that dereferences variable v, XYLEM performs
a backward, path-sensitive and context-sensitive analysis to
identify such a path.

While the basic infrastructure of backward, path-sensitive
and context-sensitive analysis remains the same, the driver
of the analysis is completely new. The current analysis drives
the paths through library methods and tries to reach the top
of the call graph. The older analysis used heuristics to handle
library methods and aimed to stop at any appropriate method
boundary.

The statement transformations have also been modified
to support generation of access paths. So rather than use
symbolic heap locations, we build the entire access path by
concatenating individual access paths. Since this may gener-
ate an exponential number of paths, we limit the number of
paths we explore using a user-defined threshold.

In addition, we made several extensions and enhance-
ments to the original analysis: (1) the analysis computes a
form of access paths that can contain nested method calls
and parameters to those method calls; (2) in addition to iden-
tifying null-pointer exceptions, the extended analysis iden-
tifies potential class-cast exceptions and (limited forms of)
array-index exceptions; and (3) instead of identifying one
feasible path (to a null dereference), the analysis identifies
constraints on input variables along all paths.

3.4 Pointer Analysis and Aliasing

The accuracy of pointer analysis affects the number of com-
puted constraints: a less accurate analysis would cause more
spurious constraints to be computed, which could affect the
usefulness of the approach. Our implementation uses a flow
and context-sensitive pointer analysis [21]. The lack of path-
sensitivity in the pointer analysis is made up for by the
path-sensitive XYLEM propagation. To illustrate the effects
of pointer analysis, consider program (a) below:
[1] if ( src.type.val ) [1] !<src.type.val>

[2] x = src.attr.prop1; [2]

[3] else [3]

[4] x = src.attr.prop2; [4] <src.attr.prop2.g1 =

null>

[5] if ( src.type.val ) [5] !<src.type.val>

[6] y = x.g2; [6]

[7] else [7]

[8] y = x.g1; [8] <x.g1 = null>

[9] y.foo(); [9] <y = null>

(a) (b)
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Figure 11. Example to illustrate the processing of recursive model elements by our approach. The figure shows the order in which the
predicates are generated, starting at statement 7.

A path-sensitive pointer analysis would identify that at
line 6, x can point to src.attr.prop1 only, whereas at line 8,
x can point to src.attr.prop2 only. Using such precise
points-to information, our analysis would compute two con-
straints for the dereference of y at line 9

(〈src.type.val = true〉 ∧ 〈src.attr.prop1.g2 = null〉) ∨
(〈src.type.val = false〉 ∧ 〈src.attr.prop2.g1 = null〉)

However a path-insensitive pointer analysis does not
take into account branch correlation and assumes that at
lines 6 and 8, x may point to either src.type.prop1 or
src.type.prop2. This less accurate points-to information
combined with the older XYLEM analysis would cause our
analysis to compute two additional, spurious constraints

(〈src.type.val = true〉 ∧ 〈src.attr.prop2.g2 = null〉) ∨
(〈src.type.val = false〉 ∧ 〈src.attr.prop1.g1 = null〉)

There are two factors that help make our analysis precise—
(1) we generates constraints on extended access paths rather
than on precomputed points-to information, and (2) the pred-
icate propagation is path sensitive. By the first criterion, we
build access paths by replacing the left-hand-side of a com-
putation by the right-hand-side—which makes it precise for
the given path; and by the second criterion, we ensure that
only valid paths are traversed. Thus, in the example above,
the analysis ensures that if the predicate 〈src.type.val =
true〉, then the path traversed is through the lines 1, 2, 5, 6, 9
and similarly for 〈src.type.val = false〉, then the path
traversed is through the lines 1, 4, 5, 8, 9 and thus computes

only the correct constraints. Part (b) of the figure above
shows the predicates generated along the path through the
lines 9, 8, 5, 4, 1.

3.5 Recursive Model Elements

To illustrate the processing of recursive model elements,
consider the transform code shown in Figure 11. The input
model of the transform has recursive elements, as shown by
the following containment relations

Model 	→ {(C,Artifact,rootArtifact,one)}
Artifact 	→ {(C,Attribute,attributes,many)}
Attribute 	→ {(C,Artifact,fact,one)}

The program contains a recursive method transform()

(line 5), which is called at line 4 from the entry method
execute() and recursively at line 12. The right side of the
figure shows the state predicates that are propagated by the
analysis. The numbers next to the predicates indicate the
order in which the predicates are generated.

Suppose that the dereference of name at line 7 could cause
a null-pointer exception. The analysis starts at line 7 with
predicate 〈name = null〉. Using the standard back substitu-
tion, the predicate gets transformed to 〈src.getName() = null〉
at line 6. At the entry of transform(), the predicate is prop-
agated, after mapping to actual parameters, to call site 4, and
finally to the entry of execute() (as predicate 4).

At call site 12, the mapped predicate becomes 〈srcAttr.
getFact().getName() = null〉 (predicate 5). Statements 10
and 8 transform the predicate to 〈src.getAttributes().
iterator().next().getFact().getName() = null〉 (pred-
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icate 7), which reaches the entry of transform(). This is the
end of iteration 1 of the algorithm.

In the next iteration, predicate 8 is propagated to call
sites 4 and 12. At call site 12, the mapped predicate 10 is
propagated to line 10, where predicate 10 is transformed to
〈srcIter.next().getFact().getAttributes().iterator().
next().getFact().getName() = null〉 (predicate 11). Fi-
nally, at line 8, the analysis computes predicate 12, whose
access path has the repeating sub-sequence getAttributes().
iterator().next().getFact(), illustrated in the figure by
the shaded portion of predicate 12.12 We mark off the recur-
sive parts of the access path and propagate only the folded
structure. Thus, the recursive sub-sequence is folded to gen-
erate predicate 〈src.getAttributes().iterator().next().
getFact().getName() = null〉, which is the same as predi-
cate 7 that was computed at line 8 in the previous iteration.
Thus, the analysis finds no new predicates and hence termi-
nates.

3.6 Soundness and Completeness

We now evaluate the soundness and completeness of our
analysis for computing code constraints. Recall from Def-
inition 5 that a code constraint CI(γ, s) is a disjunction of
constraints along the paths to statement s.

An incomplete analysis could either fail to compute
CI(γ, s), or fail to compute a disjunct (i.e., a path con-
straint) for CI(γ, s), for statement s. The first type of in-
completeness can occur because our current implementation
analyzes only three types of runtime exceptions; a trans-
form could fail because of a runtime exception type, such as
ArrayStoreException, not currently handled by the analy-
sis. The analysis handles only limited forms of array-index
exceptions. Moreover, a transform could fail because of ex-
ceptions thrown by calls to external (e.g., JDK API) meth-
ods; our implementation does not compute constraints for
such exceptions. The second type of incompleteness can
occur because the analysis along a path can abort. Our algo-
rithm uses three parameters to bound the analysis: the time
required to analyze a path, the state size, and the number of
paths through a method [22]. If the upper bounds for these
parameters are reached, the algorithm can miss computing
some path constraints. However, in our empirical studies
(Section 6.1), this did not occur for any of the subjects.

An unsound analysis could compute spurious input con-
straints for a statement (i.e., constraints that cannot be satis-
fied in any execution). The sources of unsoundness include
limitations of static analysis in processing loops and arith-
metic expressions; and, as illustrated earlier, imprecision in
points-to analysis.

Related to the discussion of soundness and completeness
is whether a path constraint in CI(γ, s) represents a neces-

12 To identify a recursive sub-sequence in an access path, we ignore the
actual parameters of any method calls that appear in the path; we use only
the signatures of these methods.

[RULEPREDICATE]
ψ ::= [πmodel ≈ref null] |

[πmodel ≈ref strConst] |
[πmodel ≈ref true]
[πmodel .size ≈int intConst] |
[πmodel ≈type T ] | T ⊆ E

≈ref ::= = | �=
≈int ::= < | ≤ | = | �= | > | ≥
≈type ::= ∈ | �

[TRANSFORMRULE]
Ψ ::= ψ1 ∧ . . . ∧ ψk =⇒ result k ≥ 1
result ::= excp | ∃(πmodel )
excp ::= NPE | CCE | AIE

Figure 12. Rule predicates defined with respect to metamodel
access paths (top). Transform rules defined with respect to a pair
of input and output metamodels (bottom).

sary and/or sufficient condition (or neither). The factors that
introduce unsoundness can also cause a path constraint to
not be a sufficient condition. However, a path constraint is a
necessary condition: if an input object does not satisfy a path
constraint to a statement s, the relevant behavior (failure or
output generation) cannot occur at s along the path.

4. Step 2: Rule Generation
Step 2 of our approach (Figure 2) converts code-level con-
straints to model-level rules.

DEFINITION 8. (Rule predicate) A rule predicate ψ, de-
fined with respect to an access path in a metamodel M, is a
predicate of the form shown in Figure 12.

A rule predicate is defined in terms of a metamodel access
path, and specifies constraints on the path. For example, for
INFOTRANS, DataModel.artifacts.attributes.type = null is a
rule predicate. A transform rule is defined over a conjunction
of rule predicates.

DEFINITION 9. (Transform rule) A transform rule Ψ de-
fined with respect to a transform τ : MI → MO is a rule,
of the form shown in Figure 12. The left-hand side (the an-
tecedent) is a conjunction of rule predicates. The right-hand
side (the consequent) , which states the result of the rule, is
either an exception or the creation of an output metamodel
element or property (defined as an access path).

Table 1 shows the transform rules generated for the three
exception constraints and one output constraint for INFO-
TRANS. For example, the first rule states that if the isSim-

ple property of DataModel.artifacts.attributes is true and the
type property is null, a null-pointer exception occurs in the
transform. Exception constraints are mapped to validation
rules, whereas output constraints are mapped to comprehen-
sion rules.

Note that whereas a code constraint is a DNF formula (a
disjunction of conjunctions) over predicates, a transform rule
is a conjunction of rule predicates. The rule generator trans-
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lates each conjunct (or, a path constraint) in a code-level con-
straint to a transform rule. Thus, an input constraint with n
path constraints leads to the generation of n transform rules.
We define rules as a conjunction, instead of a DNF formula,
because it enables the identification and elimination of dupli-
cate rules. For example, an exception constraint may cause
null-pointer exceptions at several statements in the trans-
form. The code analysis will compute the same constraint
for each of these statements. Consequently, the rule set will
have multiple rules that have the same antecedent and the
same consequent (NPE); such duplicate rules are removed
during rule generation.

The constraint-to-rule translation requires converting a
code predicate γ to a rule predicate ψ, which, in turn, es-
sentially involves converting a code access path πcode to a
metamodel access path πmodel . Thus, the core of the rule-
generator component is the access-path translation step. Re-
call from Definitions 4 and 2 that πcode is a sequence of
dereferences of variables or method return values, whereas
πmodel is a sequence of containment relations that is com-
posed of metamodel element names and method names and
possibly ending with a property. For each reference variable
v or method m() in πcode , the rule generator has to identify
the metamodel element to replace v or m() with.

For example, consider the first exception constraint and
its corresponding transform rule in Table 1. To perform the
translation, the rule generator has to replace variable source

with metamodel access path DataModel.artifacts.attributes,
method isIsSimple() with property isSimple, and method
getType() with property type.

To do the translation, our approach uses a mapping file;
Figure 13 shows a partial XML representation of the map-
ping information for INFOTRANS.13 A mapping file, in gen-
eral, links metamodel element names and properties to enti-
ties in the transform inputs. For INFOTRANS, this requires
linking the input ECORE metamodel element names and
properties to Java methods and fields.

In the representation shown in Figure 13, each meta-

ModelElement entry maps a metamodel element name or
property type to Java method names. (Although not illus-
trated in this example, the mapping file represents meth-
ods by their signatures, which can accommodate over-
loaded and overridden methods.) For example, property
isSimple maps to method isIsSimple() in the input Java
class. Similarly, the element type named artifacts maps to
method getArtifacts(). Each methodName entry in the
file states the metamodel access paths for the inputs and
outputs of a “main” method in the transform—a method
that is invoked to perform a transformation. (In the RSA
transformation-authoring framework, a transform can have
multiple main methods; this may not be true for other
frameworks.) For example, method execute1() takes as

13 Figure 13 presents only the information that is required for mapping the
exception and output constraints shown in Table 1 to transform rules.

<mapping>
<metaModelElement name="isSimple">

<method name="isIsSimple"/>
</meta-model-element>
<metaModelElement name="type">

<method name="getType"/>
<method name="setType"/>

</meta-model-element>
<metaModelElement name="artifacts">

<method name="getArtiacts"/>
<method name="setArtifacts"/>

</meta-model-element>
<metaModelElement name="attributes">

<method name="getAttributes"/>
<method name="setAttributes"/>

</meta-model-element>
<metaModelElement name="annotations">

<method name="getAnnotations"/>
<method name="setAnnotations"/>

</meta-model-element>

<methodName name="execute1()"/>
<source name="DataModel.artifacts.attributes"/>
<target name="Model.Class.Property"/>

</methodName>
<methodName name="execute1()"/>

<source name="DataModel.contextArtifacts.attributes"/>
<target name="Model.Class.Property"/>

</methodName>
<methodName name="execute2()"/>

<source name="DataModel"/>
<target name="Model"/>

</methodName>
</mapping>

Figure 13. Mapping file used for translating the INFOTRANS

exception and output constraints to transform rules.

input a Java class that corresponds to the metamodel ac-
cess path DataModel.artifacts.attributes or the path Data-

Model.contextArtifacts.attributes; its output Java class cor-
responds to the access path Model.classes.properties in the
output UML metamodel. An input or output class can corre-
spond to more than one access paths. Similarly, for method
execute2(), the input Java class maps to access path Data-

Model, whereas the output class maps to access path Model.
Using this mapping information, the rule generator can

perform the constraint-to-rule translation by mapping code
access paths to metamodel access paths.

EXAMPLE 7. Consider the constraints and transform rules
shown in Table 1. For the code access path of the first
exception constraint, the rule generator creates two meta-
model access paths, and, therefore, two transform rules. It
replaces source (the input Java class name of execute1())
with DataModel.artifacts.attributes in the first rule, and Data-

Model.contextArtifacts.attributes in the second rule. Next, it
replaces method name isIsSimple() with property isSimple

in the first rule, and getType() with property type in the sec-
ond rule. Thus, the exception constraint for the null-pointer
exception is translated to two validation rules. �

EXAMPLE 8. Consider the access path for the predicate on
types in the second constraint in Table 1. For this constraint,
the relevant entry method is execute2(); therefore, using
the parameter-mapping information for execute2(), the rule
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generator translates source to DataModel. Next, using the
third mapping rule in Figure 13, the rule generator replaces
getArtifacts.* with artifacts. In general, an access of an el-
ement in a collection (e.g., c.next()) in πcode corresponds
to a metamodel element with cardinality ‘many’ in πmodel .
Similarly, the generator translates getAttributes().* and
getAnnotations.*. Finally, the generator replaces get(0)

with 0 to compute the translated metamodel access path. In
general, the rule generator replaces a method that retrieves a
collection element using a constant index with the constant
index value in the metamodel access path. �

For a library method in a rule, we make no assumptions
about any side effects that it may cause. We simply output
the library method in the generated rules. If the consumers
using the rules (i.e., a validity checker or a transform user
or a transform author) know the side-effects of this method,
they may choose to keep the rule; otherwise discard it.

The extent to which the generation of the mapping file
can be automated depends on the transformation-authoring
framework and the representation of the input and output
models that are being used. For example, if the models are
represented using EMF, the mapping of metamodel elements
to methods can be generated automatically, with no man-
ual intervention by the user. However, in other standard or
custom model-transformation frameworks, less automation
may be possible, which would require the transform author
to provide the information manually. Similarly, in the RSA
framework, the information about method to source/target
mapping can be generated automatically. In other frame-
works, such automation may not be possible.

5. Step 3: Model Validation and
Transformation Comprehension

The transform rules inferred in Step 2 of our approach can be
used to support model validation and transformation com-
prehension. Because the rules are stated in the metamodel
vocabulary, they can be used in a straight-forward manner to
support these tasks.

Our approach distinguishes validation rules from query-
ing rules. In a validation rule, the consequent is an excep-
tion that can be thrown if the antecedent is satisfied. In a
querying rule, the consequent is an existential quantifier on
an output metamodel access path; such a rule states that if
the antecedent is satisfied, an element or property is created
in the output model. The validation rules are used for check-
ing whether a model is a valid input to a transform, whereas
querying rules are used for supporting general transforma-
tion comprehension. We illustrate both of these use cases.

5.1 Model Validation

Given a set of validation rules Ψ for a transform τ : MI →
MO and an input model MI , a validity checker returns a
subset of the rules in Ψ that are satisfied by MI . If none

of the rules are satisfied, MI is a valid instance that the
transform can be executed on. However, if at least one of
the validation rules is satisfied, MI is not a valid input to
the transform; the transform can fail with an exception when
executed on MI . To check whether a rule ψ ∈ Ψ is satisfied
by MI , the validity checker finds the matching instances
for the metamodel access path in the antecedent of ψ, and
applies the condition stated in the antecedent rule predicate
to the instances. If the condition is satisfied, MI is an invalid
input model to τ .

The validity checker can be used in a batch mode, in
which it flags a list of matching rules and corresponding
problematic input model elements. Alternatively, the validity
checker can be used in an interactive mode; in this mode,
while the user is creating an input model, the validity checker
flags the problematic input model elements that could cause
exceptions. The rules can be translated to a model constraint
language such as OCL, for which a validity checker can be
constructed by leveraging existing tools or frameworks such
as Naomi14 and EMF Validation Framework in Eclipse.15

5.2 Transformation Comprehension

A querying rule can be used to support user queries in a
comprehension tool. For example, if an element that was ex-
pected in the output model is missing, the querying rules
can be searched to find the ones that determine the creation
of the missing element in the output model. These rules in-
dicate the dependences of the missing output element to the
input model elements. The user can then identify the cause
by examining the input model elements to see whether they
satisfy the rules, and correct the input model appropriately.

6. Empirical Evaluation
To evaluate the feasibility and usefulness of our approach,
we conducted two empirical studies. In the first study, we
evaluated the accuracy of the analysis in terms of inference
of useful constraints and transform rules. The second study
was a user study, in which we investigated whether the use
of transform rules can help users in diagnosing the causes of
failing and incomplete transformations more efficiently.

6.1 Feasibility Study

In the first study, we evaluated the feasibility of our approach
in terms of whether the approach can infer enough useful
rules to support validation and comprehension tasks.

6.1.1 Experimental setup

We implemented the algorithm shown in Figure 8 using
XYLEM. XYLEM uses the WALA analysis infrastructure16 to
construct the call graph and the CFGs. XYLEM performs the

14 http://mocl.sourceforge.net/

15 http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.
emf.validation.doc/tutorials/oclValidationTutorial.html

16 http://wala.sourceforge.net
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Exception Positives Filtered Unique Rule Predicates Access-path Len

Type Subject Total Neg Total NonSrc Src Constraints Rules Rules Min Max Avg Min Max

Null-Pointer Subject-1 1125 1032 193 106 87 79 609 80 1 5 2 2 10
exception Subject-2 321 280 41 8 33 19 1008 29 2 6 3.3 3 5

Subject-3 1301 1222 79 35 44 40 4576 174 1 6 2.6 2 8
Subject-4 688 639 49 21 28 21 34 23 1 1 1 4 9

Class-cast Subject-1 185 130 55 20 35 11 17 12 1 2 1.2 3 8
exception Subject-2 30 27 3 1 2 2 36 2 2 2 2 4 4

Subject-3 198 180 18 2 16 8 96 37 1 4 1.7 3 6
Subject-4 71 49 23 16 7 6 12 9 1 1 1 4 8

Array-index Subject-1 12 4 8 6 2 2 2 1 1 1 1 5 5
exception Subject-2 2 0 2 0 2 2 36 2 1 1 1 4 4

Subject-3 10 10 0 0 0 0 0 0 0 0 0 0 0
Subject-4 3 1 2 2 0 0 0 0 0 0 0 0 0

Table 3. Inferred exception constraints and validation rules.

Bytecode
Subject Classes Methods instructions Time

Subject-1 41 280 4904 285.5s
Subject-2 13 77 1212 15.7s
Subject-3 48 399 5340 280.5s
Subject-4 29 157 2449 33.08s

Table 2. Subjects used in the empirical evaluation.

analysis in two steps. In the first step, it performs points-to
analysis, escape analysis, and control-dependence analysis.
In the second step, it uses the results of the first step and com-
putes exception constraints; we are currently implementing
the computation of output constraints.

We used four experimental subjects; Table 2 lists these
subjects along with information about the number of classes,
methods, and bytecode instructions in each subject. The last
column lists the time taken to execute XYLEM on these sub-
jects. These subjects are real model transforms that have
been developed as part of ongoing research projects in IBM.
All of the subjects was developed using RSA model-to
model transformation framework. Subject-1 and Subject-4

transform a SOMA Service Model [26] to an application-
specific ECORE model; these were intermediate models that
were eventually transformed to different types of code arti-
facts. Subject-2 is the INFOTRANS transform introduced in
Section 2.1. Subject-3 transformed a SOMA Service Model
to an RSA Software Services Model.17

6.1.2 Goals and method

The goals of the study were to investigate (1) the number
of constraints and rules identified by our approach, (2) the
effectiveness of filters in removing uninteresting constraints,
and (3) the extent to which duplicate rules are computed.

To compute the results, we ran XYLEM twice on each
subject to compute exception constraints. After the first run,
we asked the transform authors to examine the computed
constraints and identify filters that would remove invalid
and bug constraints. We used the filters in the second run

17 http://www.ibm.com/developerworks/rational/library/05/510 svc/

of XYLEM. We wrote a simple Java program to translate
filtered exception constraints to validation rules and remove
duplicate rules. For Subject-1 and Subject-2, the final rule
set was examined by the transform authors to determine the
validity of the rules. All reported validation rules were found
to be valid rules.

6.1.3 Results and analysis

Table 3 presents the results of the study. We show the data for
the three types of exceptions separately, so that usefulness of
each analysis is illustrated. Column 3 shows the total number
of traversals performed by XYLEM. The maximum number
of traversals were performed for null-pointer exceptions.
This is expected because dereference statements occur much
more frequently in Java programs than typecast statements
or statements that access of collections.

Column 4 shows the number of negatives—that is, the
number of traversals that XYLEM determined could not re-
sult in a null-pointer exception, a class-cast exception, or an
array-index exception. Column 5 is the number of true pos-
itives and is divided into two categories: Column 7 shows
the number of positive constraints that were rooted in the
source and, therefore, are potential candidates for rules; Col-
umn 6 shows the number of positive constraints that were not
rooted in the source and, hence, could not be mapped back
to the model. For example, SolutionUtils.specialchars
= null is a “local” predicate that cannot be mapped into the
input model and target.eContainer().getRole()=null is
rooted in the target model and has no mapping into the
source model.

Some of the constraints in Column 7 get filtered out dur-
ing post-processing. Column 8 gives the number of con-
straints left after the filters have been applied. For example,
source.eContainer().getPackage()=null gets filtered out
since we know that getPackage() can never return null. For
our subjects, we have a set of 30 filters that have been man-
ually specified.

The data illustrate that filters are effective in removing
many uninteresting constraints. On average over all subjects
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and exceptions, the number of constraints was reduced by
over 23%, from 247 initial constraints to 190 constraints, af-
ter filtering. The maximum reduction—over 38%—occurred
for Subject-2.

Column 9 shows the number of validation rules that were
translated from the final constraints. As mentioned in Sec-
tion 4, the constraints are stated as a DNF formula over ab-
stract predicates, whereas rules are stated as a conjunction
of rule predicates. Thus, each disjunct, or path constraint,
in an exception constraint gets translated as a validation
rule. The data in column 9 indicate that the final constraints
contained a large number of path constraints. For example,
for Subject-3, 40 exception constraints for null-pointer ex-
ceptions resulted in 4576 rules—on average, 114 path con-
straints per exception constraint. There is a wide variation in
the number of path constraints for the subjects: on average,
Subject-3 had 97 path constraints, whereas Subject-4 had
only 2 path constraints, per exception constraint; Subject-1
and Subject-2 had 7 and 47 path constraints, respectively,
per exception constraint.

Column 10 illustrates that a very small percentage of the
rules were unique rules. For Subject-3, 4402 of the 4576
rules for null-pointer exceptions were duplicates; thus, after
the removal of duplicate rules, only 174 rules remained.
Over all subjects, the number of rules decreased from 6426
to 369 after the removal of duplicates—a reduction of over
99%.

Columns 11–13, show the minimum, maximum, and av-
erage number of rule predicates per transform rule. The data
show that, typically, the transform rules are fairly simple in
that the antecedent of the rules contains conjunctions of very
few predicates. None of the rules, over all subjects, had more
than six rule predicates in the antecedent.

Columns 14–15 show the minimum and maximum lengths
of the metamodel access paths for the rules. An access-
path length illustrates the chain of relations that occurs in
a model, and, thus, is an indicator of the complexity of
a metamodel. For our subjects, the maximum metamodel
access-path length ranged from four to 10.

6.1.4 Discussion

Our study reveals several trends that illustrate the benefits
of our approach. For our subjects, the approach inferred 369
useful rules, which is a significant number. The use of filters
is essential because it can remove many uninteresting con-
straints; by doing so, it improves the effectiveness of model
validation and transform comprehension. Moreover, many of
the validation rules were duplicates; thus, removal of dupli-
cate rules is an important step in our approach that is es-
sential for improving its usability. The number of path con-
straints per exception constraint varied widely among our
subjects—from 114 to two. The number of path constraints
depends on the structure of the program and complexity of
the input metamodel; therefore, the variation indicates that
our subjects are structured quite differently, in terms of the

number of program paths and the input metamodel. The data
also demonstrate the effectiveness of XYLEM in that it is able
to analyze many paths.

We manually analyzed the code base of INFOTRANS

(Subject-2) for each traversal that XYLEM reported to be a
negative (Column 4 of Table 3). For null-pointer exceptions,
we sampled 210 negatives. Of these, eight were found to be
false negatives. Therefore, at eight points in the transform
code, exceptions could be thrown because of null values
being passed in some input model element, but that were
ignored by our analysis. These eight constraints led to two
rules, one of which was already computed (by the analysis of
a difference dereference point); the other rule was missed by
the analysis. Similarly, for class-cast exceptions, we sampled
16 negatives, out of which one was a false negative and
would have led to a new rule being identified.

The main source of the false negatives was the presence
of calls to external methods for which bytecode was not
available for analysis. For such method calls, XYLEM cannot
determine whether the return values may be null and hence
misses some positives.

Another source of false negatives was failures caused
by exceptions that are not analyzed by our implementation.
As discussed in Section 3.6, exceptions thrown by calls to
external methods cause the analysis to be incomplete. An
example of such a call that we found is

new Integer(source.getMultiplicity()).intValue()

If the string referenced by source.getMultiplicity()

were not a parsable integer, a NumberFormatException

would be thrown. Because our current implementation han-
dles only a limited set of exceptions, it cannot compute con-
straints for such statements.

6.2 User Study

Our second study was a user study, in which we tested the
following hypothesis:

A user can perform the task of identifying and fixing
bugs in an invalid input model more efficiently when
guided by the transform rules than without the rules.

6.2.1 Experimental Setup

To select participants with different degrees of expertise,
we identified the factors on which the expertise assessment
could be based. Familiarity with MDD concepts is a key fac-
tor. We used INFOTRANS as the subject, which is created
using the RSA transformation-authoring framework. Thus,
familiarity with the RSA capabilities for model creation,
model browsing, and transformtion authoring is another im-
portant factor. Finally, knowledge of code-navigation fea-
tures provided by tools, such as Eclipse, is a factor that de-
termines the efficiency with which a participant can navi-
gate the transform code to identify violated input model con-
straints. Based on these factors, we grouped the participants
into three categories: expert (one participant, referred to as
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Task T1: failing execution Task T2: incomplete output
Participant T(1,wr) T(1,r) T(2,wr) T(2,r)

E1 5 3 (60%) 2 1 (50%)
I1 7 4 (57%) 14 2 (14%)
I2 6 4 (67%) 8 3 (38%)
I3 13 5 (38%) 7 6 (86%)
N1 16 7 (41%) 14 7 (50%)

Table 4. Time taken by the participants to complete the tasks.

E1), intermediate (three participants, referred to as I1, I2,
and I3), and novice (one participant, referred to as N1).

We created two debugging tasks: Task T1, in which INFO-
TRANS fails with an exception, and Task T2, in which INFO-
TRANS generates an incomplete output model. For each of
the tasks, we created two subtasks, one in which the partici-
pants had to debug the problem without using the transform
rules (Twr ), and another in which the participants had to de-
bug the problem while guided by the rules (Tr ). To enable a
fair comparison of the effort required to complete the tasks,
we ensured that each pair of subtasks (T(1,wr), T(1,r)) and
(T(2,wr), T(2,r)) were of similar difficulty. We created four
input models accordingly with errors, one each for T(1,wr),
T(1,r), T(2,wr), and T(2,r).

For each task, the participants were asked to fix the input
models. For T(1,wr) and T(2,wr), the participants were given
access to the transform code and were also allowed to use
code-debugging features. For the T(1,r) and T(2,r), the par-
ticipants were allowed to use the rules only (with no access
to the transform code). Thus, we simulated the scenario in
which transform users have to debug their models without
needing to examine the transform source code. The trans-
form rules were created by running XYLEM on the INFO-
TRANS transform; the computed rules were augmented with
manually created querying rules for output constraints.

We measured the time each user took to complete the
tasks. During the study, the participants were allowed to ask
questions about usage of the tools, but not about the input or
output model instances.

6.2.2 Results and analysis

Table 4 lists the time taken by the participants to perform the
tasks. As the table illustrates, all users—irrespective of their
expertise levels—completed the tasks faster when they were
guided by the rules than when they were not. For example,
the expert participant took five minutes to complete the first
task without rules and three minutes when using rules. The
participants with intermediate expertise took, on average,
nine minutes to complete the first task without rules and only
four minutes to complete it with rules. The novice participant
took 16 and 14 minutes, respectively, to complete T(1,wr)

and T(2,wr), and seven minutes each to complete T(1,r) and
T(2,r). The maximum reduction (from 14 minutes to two
minutes) occurred for user I1 for task T2. The minimum
reduction occurred for user I3 for task T2.

Figure 14. Percentage of total time spent by the participants on
the four tasks.

Figure 14 presents a different view of the data: it shows
the percentage of time taken by each participant to complete
the four tasks. As shown in the figure, the participants spent
62% to 78% of the total time in fixing the models without
the rules, whereas they spent significantly less time (22% to
38%) in fixing the models using the rules.

In the feedback after the study, all participants mentioned
that the transform rules were very useful in identifying and
fixing the problems with the input models. They also felt
that debugging transforms was different from debugging
normal Java applications, as the inputs to transforms are
typically more complex and have more elaborate syntax and
semantics. Therefore, automated debugging support that is
customized for such applications can be useful; our approach
provides such support. The participants unanimously wanted
a visual representation of the rules for better usability. The
novice participant suggested that the visual representation
could return the matching input model elements for the rules
that explain a failing transformation. One of the participants
wanted a more interactive component that guides the user
during model creation. Another user mentioned that a “self
healing” or “recommendation” feature that suggested fixes
for the invalid model elements would be very useful.

6.2.3 Discussion

Although our study is limited in nature, the results support
our hypothesis that transform rules can enable a user to iden-
tify the cause of a failing transformation or an incomplete
output model more efficiently. All the users found the rules
useful, and each user performed the debugging tasks much
faster when guided by the rules than when the rules were not
used.

7. Related Work
There exists a rich body of work in the area of verification
and validation of model transformations. However, all of
the existing research focuses on checking the correctness of
transforms.

Giese et al. [12] present an approach, based on for-
mal specifications and theorem proving, for verifying the
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correctness of a model-to-code transformation algorithm.
Narayanan and Karsai [23] present a verification technique
that uses bisimulation to check whether the semantic prop-
erties of the input in a particular execution of a transform are
preserved in the output for that execution. Their approach fo-
cuses on transform implementations that are based on graph
transformations. Lano and Clark [18] present a constraint-
based technique for specifying and verifying transforms.
Unlike these approaches, our work does not focus on trans-
form verification. Instead, the goal of our work is to assist
users in creating valid input models to a transform and in
identifying problems with the input model for a failing or
incomplete transformation.

In addition to verification techniques, many researchers
have addressed problems that MDD poses for testing activ-
ities. Baudry et al. [1] present of overview of MDD charac-
teristics that can complicate different testing tasks. For ex-
ample, the complexity of input models can complicate test-
input generation, and the heterogeneity of transform imple-
mentations can make definition of test adequacy difficult.
Existing research has addressed many such testing prob-
lems, such as test-input generation (e.g., [3, 7]), test-oracle
construction (e.g., [20]), definition of test-adequacy criteria
(e.g., [9, 11]), assessment of test quality (e.g., [19]), and
definition of fault models (e.g., [16]). Our work addresses
an important testing-related task—debugging of failing and
incomplete transformations—that has largely been ignored;
therefore, it fills a gap in existing research.

Our analysis for computing constraints is similar to the
computation of weakest preconditions (e.g., [6, 8]). How-
ever, we apply the analysis to the domain of MDD, in which
the inferred constraints are mapped to rules that are stated in
the language of the input metamodel. Existing research has
not explored this application of precondition analysis.

Analysis for identifying input constraints has most com-
monly been used for generating test inputs. Compared with
such test-data generation techniques that use symbolic ex-
ecution to generate test inputs (e.g., [13, 14, 25]), our ap-
proach does not generate test inputs. Therefore, its effective-
ness is not dependent on the power of constraint solvers,
which despite recent advances, continue to have practical
limitations. For our application, the constraints are mapped
to model-level rules.

Buse and Weimer [4] present a static analysis for iden-
tifying exception conditions to assist with documentation.
Their approach locates exception-throwing statements and
symbolically tracks paths to those statements. The symbolic
execution generates predicates describing feasible paths, and
yields a boolean formula over program variables. This for-
mula is used to generate human-readable documentation. In
contrast, our approach computes exception and output con-
straints that are mapped to model-level rules and used for
model validation and transformation comprehension.

8. Summary and Future Work
In this paper, we presented an approach for assisting users
of model transforms in debugging their input models without
examining the transform code. The approach uses static code
analysis to compute constraints on the input model under
which a transform could fail with an exception (exception
constraints) or generate an incomplete output model (output
constraints). The computed constraints are abstracted from
code-level conditions to validation and comprehension rules
that are stated in the metamodel language. The rules are used
to support model validation and transformation comprehen-
sion: the validation rules can be used for checking whether a
metamodel instance is a valid input to a transform, whereas
the comprehension rules can help a user understand why an
incomplete output model is generated.

Our empirical results indicate that the approach can be ef-
fective in computing a significant number of useful rules. We
also conducted a user study to investigate how the inferred
rules could enable transform users to perform debugging and
comprehension tasks more efficiently. All the participants
in the study performed the debugging tasks faster with the
rules than without them. These results suggest that our ap-
proach can be used to improve model-transformation tools
by providing automated support for understanding transfor-
mations. There are several interesting problems that future
research could address.

Non-Java-based transforms In this paper, we focused on
model-to-model transforms that are written in Java. How-
ever, models are often represented using XML and XSLT is
frequently used in practice for writing transforms. Thus, fu-
ture research could extend our approach to handle transforms
implemented in XSLT (or, other transform-implementation
technologies).

Model-to-text transformations Model-to-model transfor-
mations are usually intermediate steps in MDD, with the end
objective being to generate code (Java code, HTML pages,
JavaScript code, etc.). Applying our approach to model-to-
code—or, more generally, to model-to-text—transformations
is an interesting direction for future research. Future work
could identify the salient features in model-to-text transfor-
mations and explore how the static-analysis approach needs
to be extended to generate useful rules.

Interfaces for improving usability In our current ap-
proach, the transform rules are presented as plain text to
end-users, who need to use simple or advanced search fea-
tures to browse through the rules. The usability and com-
prehension of these rules can be significantly improved by
developing intuitive graphical interfaces that are integrated
with model-browsing capabilities. Reference [15] presents
an interesting interactive debugging approach, in which a
developer can select questions about program output from
a set of “Why did?” and “Why did not?” queries that are
derived using static and dynamic analyses. A similar kind
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of interface could be developed for understanding why ele-
ments are generated in output models.

Improvements to code analysis The static analysis per-
formed by XYLEM could be improved to perform better
analysis of array-index exceptions, collection classes, and
include additional runtime exceptions. The analysis could
also be improved to compute better constraints in the pres-
ence of calls to external methods. Currently, the conditions
on return values from external method calls are inlined in
the constraints, if the parameters of those calls have depen-
dences on inputs. However, users might find such constraints
difficult to understand especially if the transform code is
not available for inspection. Future improvements could also
combine static analysis with dynamic information gathered
from transform executions to provide more accurate results
to users.
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