
Is Text Search an Effective Approach for
Fault Localization: A Practitioners Perspective

Vibha Singhal Sinha, Senthil Mani and Debdoot Mukherjee
IBM Research – New Delhi, India

{vibha.sinha, sentmani, debdomuk}@in.ibm.com

Abstract
There has been widespread interest in both academia and in-
dustry around techniques to help in fault localization. Much
of this work leverages static or dynamic code analysis and
hence is constrained by the programming language used or
presence of test cases. In order to provide more generically
applicable techniques, recent work has focused on devising
text search based approaches that recommend source files
which a developer can modify to fix a bug. Text search may
be used for fault localization in either of the following ways.
We can search a repository of past bugs with the bug de-
scription to find similar bugs and recommend the source files
that were modified to fix those bugs. Alternately, we can
directly search the code repository to find source files that
share words with the bug report text. Few interesting ques-
tions come to mind when we consider applying these text-
based search techniques in real projects. For example, would
searching on past fixed bugs yield better results than search-
ing on code? What is the accuracy one can expect? Would
giving preference to code words in the bug report better the
search results? In this paper, we apply variants of text-search
on four open source projects and compare the impact of dif-
ferent design considerations on search efficacy.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: [Debugging aids]

General Terms Experimentation,Measurement

Keywords Empirical Study, Bug-Solving

1. Introduction
Identifying buggy code fragments can be particularly time-
consuming and tedious; statistics suggest that over half of
the total time in any software project is spent in locating

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1563-0/12/10. . . $10.00

and fixing bugs [16, 19]. To address this problem, many
automated fault-localization techniques based on static and
dynamic program analyses have been developed. The most
widely researched approach in the area is based on pro-
gram slicing (e.g., [3], [4], [10], [14]); other approaches
include statistical debugging (e.g., [7, 13, 15]) and delta de-
bugging [23, 24].

A different class of debugging techniques, based on text
analysis, uses the text in the bug report to recommend source
files that potentially need to be fixed. Given the bug report
for a new bug, one may search the project’s bug repository
for similar bugs resolved in the past to get a better under-
standing of the problem and a potential resolution of the
bug-at-hand (e.g., [5, 8]). If source files were fixed to re-
solve similar bugs, then these may be recommended for the
new bug as well. Yet another way to apply text-search is to
directly search on the code repository with the text of the
bug report taken as a query (e.g., [1, 11, 20]). The underly-
ing principle here is that the bug report often contains refer-
ences to code terms—class names, function names, variables
etc. Also, comments in the code are written as free flowing
text, so it is likely that we may find common words between
bug reports and code comments.

The text-search based approaches can be applied more
generically than the rigorous program analysis techniques
since they are not restricted by the programming language
used in the application or limited by the presence of test
cases to reproduce the fault. However, they may suffer in
case: (1) there is a low overlap between the vocabulary of
the bug report used to query and that of the search repository.
Enslen et. al. [2] suggest a way to increase vocabulary over-
lap between bug reports and code through identifier splitting,
whereby all code terms are converted to their componentized
words. For example, the code word TextfieldTool would be
translated to three words: text, field, tool. (2) the bug repos-
itory does not record linkages to code fixes necessary to re-
solve bugs. However, increasingly project teams are realiz-
ing the benefits of preserving this linkage and adopting bug
management systems such as Jira or Rational Team Concert,
which allow linkage with version management repository.
In these tools, the developer can link a bug with the code

159

change set that was committed in the version management
system to fix the bug.

Most of the existing work in applying text-search based
techniques has been evaluated on small subjects only. In De-
bugAdvisor [5], the authors use a proprietary Microsoft ap-
plication as their subject and search on a repository of past
bugs. They evaluated the precision and recall of search for 50
bug queries. Rao and Kak [20] used the iBUGs dataset (291
bugs), which primarily has bugs from AspectJ and Rhino.
They search on source code, which is pre-processed using
identifier splitting. Others [1, 18] have reported results of
searching on the code repositories of Mozilla, Eclipse, Rhino
and JEdit. However, the number of bugs used in these eval-
uations are very low—5 to 15 bugs. Prior art [1, 11, 20]
studies the search performance of different language models
(e.g., Unigram, Vector Space Model, Latent Semantic Index-
ing) in great depth. In fact, Rao and Kak [20] empirically
study (using a test suite of 291 bugs) that simple language
models such as VSM provide equivalent to the more com-
plex models such as LDA.

One of the biggest drawbacks of the existing works is that
because of the small test suite size, it is difficult to make
a judgment on general applicability of the technique. For
example, in [1], the authors reported when they searched
for 3 Eclipse bugs on the code repository they were able to
find a correct file recommendation in top 2 search results.
They used the LDA language model for search and claimed
that it worked better than LSI, which returned the correct
match for each of these three bugs in top 7 search results.
However, when we applied VSM model on 815 bugs from a
sub-project in Eclipse, we found a correct file returned only
for 10% (80) bugs in the top 7 results. Considering [20]
already showed that VSM provides equivalent efficacy to
LDA, this makes us believe that the 3 eclipse bugs evaluated
in [1] were not indicative of the general population of bugs.
The aim of this paper, is to provide practitioners a truer
picture of both lower and upper bound efficacies of text
search, by doing an empirical study on large number of bugs
from multiple subjects.

Another gap in the existing published literature is that
none of the efforts perform a comparative study on the two
variants of the search approach–searching on past bugs and
searching on code. Also, no prior work discusses the effect
of pre-processing techniques (e.g., identifier splitting) or bug
characteristics (e.g. size of bug, number of files modified
to fix the bug etc) on the effectiveness of the text search
recommendations.

In this paper, we address these issues through an exten-
sive empirical study of four large open-source projects -
BIRT, Eclipse-Datatools, Hadoop and Derby. Overall, we
have a test data-set comprising of 1177 bugs. Our goal is
to establish statistically grounded empirical evidence about
the impact of different design criteria (for the search ap-
proach) on the productiveness of search-based recommen-

dations for bug solving. We believe that such a study is nec-
essary to make the idea of using text-search for bug solving
more widely acceptable. It also helps us better understand
the available design options in terms of their benefits and
tradeoffs. Our empirical study aims to study the following.

• We compare the efficacy of three techniques, each of
which search over a different kind of search repository
- (1) the collection of all bugs resolved in the past, (2) the
code base, and (3) a version of the code base processed
through identifier splitting. In all the three cases, the
complete text of the bug report, comprising of the title
and the description, is taken as a query. We determine
whether the accuracies of these techniques are better than
chance and whether they are similar or complementary in
terms of their recommendations. We find that there is no
clear winner between searching on code and searching
on past bugs. When the search result set size is taken
to be 5, the precision varies from 4% to 13% across our
four subjects while searching over bug repository versus
4% to 5% while searching over code. For comparing
different techniques, we introduce a new metric called
Bug Coverage defined as the percentage of bugs where
the approach returns at least one correct file match for
a given search result size. The bug coverage varies from
30% to 54% across our subjects.

• We analyze the possibility of combining the results of
the three techniques to make more effective recommen-
dations, more consistently. Athough, the efficacy of an
average search over past bug repositories is similar to that
over code repositories, we find that the techniques are
complementary because one technique may score over
another for certain bugs, and the other may prove to be
superior in certain other cases. We experiment with dif-
ferent ways to combine the search results from these tech-
niques in order to form a better final result set (improve-
ment in bug coverage varying between 1% and 46%).

• We study the impact of various query construction strate-
gies (boost to title words, code terms etc.) on search per-
formance. We find that giving a preference to words in
the title improves the bug coverage from 1.6% to 7.8%
across our subjects for a search result size of 5. Further,
we note the correlation between coverage and other phys-
ical features of a bug report such as total number of words
in a bug report, number of code words and title words.

The main contributions of the paper are: (1) An empiri-
cal evaluation of text-search based fault localization on four
open source projects. We compare various search design cri-
teria of index creation and query construction. (2) A novel
way of combining search-over-bug-history and search-over-
code-base, that achieves greater bug coverage than the indi-
vidual techniques themselves. (3) An evaluation of whether
different bug features correlate with search efficacy.

160

Figure 1. Search Approach. The framework contains four core modules: (1) Query Creator, (2) Index Creator, (3) Search
Module, (4) Results Collator. The implementations of these modules is pluggable. A module can have more than one
implementation depending on the choice of design considerations.

Rest of the paper is organized as follows. In the next
section, we outline the search framework we developed for
our experimentation. In Section 3, we present the results
of empirical evaluation of the various search considerations
on four open source projects. Section 4 outlines the related
work in the area of debugging and fault localization. Finally,
in Section 5 we summarize our findings.

2. Approach
Figure 1 outlines the search framework implemented for our
evaluation of the different text-search methods that recom-
mend relevant source files for an incoming bug. It is com-
posed of: (1) an index creator with a pluggable search repos-
itory, which processes documents to create indices [17] that
make searching easier1; (2) a query creator, which processes
the text in the incoming bug report to form a query with plug-
gable design variant; (3) a search module, which fetches doc-
uments from the indices that are similar to the query. When
searching over the code base, the source files returned in the
set of search results can be the recommendations from our
system. However, a search over the corpus of bug reports
yields a set of bug reports and the recommendations are the
source files associated with these bug reports. (4) a result
collator, which combines the results returned from the dif-
ferent repositories to increase the relevance of recommenda-
tions. We choose the Vector Space Model (VSM) to design
our search system. Rao and Kak [20] have shown that VSM
works no worse than other models of information retrieval
(e.g., Latent Semantic Indexing, Latent Dirichlet Allocation)
that have greater sophistication.

Index Creation: We experiment with three kinds of in-
dices: (1) Bug Index (BI) indexes terms extracted from past
bug reports; (2) Code Index (CI) indexes the source code
files (taken as-is); and (3) Meta Index (MI) indexes a pro-
cessed version of the source files–making them closer to nat-

1 A document is any text file in the repository being searched. In our case,
the repository may be a code base (either as-is or processed) or a collection
of past bugs. An index is a mapping of words (a.k.a terms) to the locations
in the documents where they are present.

ural language text. In MI, we store documents created from
the code terms and comments present in each source file.
The code terms include names of packages, classes, class
variables, methods, formal arguments and method variables.
Further, identifier splitting [20] is applied to each code term
in order to convert the term to its constituent words. For ex-
ample, the code term getName is translated to get and name,
and the code term com.xxx.foo.TestClass is translated to the
words com, xxx, foo, test and class. The splitting is done by
separating words based on camel case rules. Note that code
terms might also occur as part of comment text and these are
not split. The extracted code terms are also stored separately
as the code dictionary, which is later used during the query
creation phase.

Query Creation: We create a query vector from the terms
present in the title and description of the bug report. As a
pre-processing step, we remove the stops words such as to,
is, and etc and Java keywords such as java, package, class
etc. Then, we compute TF-IDF scores for all query terms and
create the query-vector. This is our first querying strategy -
All (A). For fine tuning search performance, we employ two
more querying strategies, Code Boost (CB) and Title Boost
(TB). In the CB querying technique, each term in the query is
matched against the code dictionary. The weight of matching
terms is given a boost relative to others. Similarly, in TB, we
update the query vectors by increasing the weight of terms
that come from the bug title.

Search : We use Apache Lucene’s implementation of a
VSM based full text search engine to host our index cre-
ation and query creation strategies. We search each of our
indexed repositories CI, MI and BI separately by applying
the querying strategies A, CB and TB. For a given query vec-
tor, Lucene returns a similarity score for every document in
the chosen index. The scores indicate a relevance rank of the
document with respect to the query. For each query that is
run over CI and MI, the top X search results are returned as
recommendations. However in case of BI, the search results

161

Subjects Releases Total # of # of Bugs # of Files # of Bugs
Bugs in test-set in release in repository

2.5.0 6351
Birt 2.5.1 1777 815 6524

2.5.2 6633 21064
1.0 1925

Datatools 1.5 1130 93 2379
1.6 2968 2698

Derby 10.5.3.0 1687
10.8.1.2 242 136 1742 3492

Hadoop 0.20.0 837
0.21.0 191 133 1328 3879

Table 1. Details of the subjects used for our experiments

are bug reports; so we return all the source files fixed for the
top X similar bugs as our recommendations2

Result Collation : This module combines the results re-
turned from searching different repositories. The objective
is to combine the results optimally to increase the number of
bugs for which we return at least one correct recommenda-
tion without increasing the size of the recommendation set.
We present different heuristics to combine the recommenda-
tions in Section 3.3.2.

3. Experiments
We evaluate the different search indices and querying strate-
gies described in Section 2 on four open source projects. In
this section, we describe the experimental subjects and the
method used in our study. Next, we present the empirical
results and analyze them in order to answer the following
research questions:

• RQ1 (Effectiveness): How does searching on —Bug In-
dex (BI), Code Index (CI) and Meta Index (MI), fare in
terms of the effectiveness of the recommendations pro-
duced by them? Are they just as good as chance or any
better? Also, how do they compare with one another?

• RQ2 (Combination): How can we combine the sets of
recommendations from the three search indexes to in-
crease the bug coverage without sacrificing the accuracy
of the resultant recommendation set (as measured by F1-
score)?

• RQ3 (Feature Impact): How do different aspects of the
source code and the bugs available in a project impact the
effectiveness of search?

3.1 Experimental Data & Setup
We select our experimental data-set from four open source
projects, Birt 3 and Datatools4 of Eclipse and Derby5 and

2 If the search results return a bug, which in turn has greater than 10 files
modified, we do not include any files from that bug in our search results.
This was done to remove any un-toward positive bias in calculating efficacy
of BI.
3 http://www.eclipse.org/birt/phoenix/
4 http://www.eclipse.org/datatools/
5 http://db.apache.org/derby/

Hadoop6 of Apache. For each of these projects, we obtain
the list of fixed bugs from its bug management system and
code for those releases that record a high number of the bugs
relative to the project.

To create the experiment oracle (or ground truth), we
need to know the source files that were modified to fix the
bugs. The Apache based projects use a bug management sys-
tem called JIRA7, which keeps a record of the files fixed to
resolve a bug. For the Eclipse projects, we trace the linkages
from bugs to the buggy source files by mining their version
management systems. We study the version logs to define
regex patterns that are able to detect bug identifiers men-
tioned as part of comments inserted during code commits
(an approach followed in [8]); e.g, if the commit-comment
contains “#234561” or “Bug-234561”, then it indicates that
the code change is related to the bug – 234561.

For each of the four subjects, we prepare a test-set such
that it consists of only those bugs that are reported against
one of our chosen releases and has at least one source file as-
sociated with them. Table 3 gives details for each subject—
the selected code releases, the total number of bugs reported
for those releases, the number of bugs selected from to-
tal numbers of bugs available to create the test set, the to-
tal number of java files available per release and the total
number of fixed bugs in the project’s bug repository. The
total number of bugs in our test-set for our experiments
across all four subjects is 1177 bugs. This is 35% of the
total bugs available for the subjects across the 10 releases
that we consider (column (2) of Table 3). We ignore the re-
maining 65% as either they were not associated with any
changes to source (.java) files (for JIRA based bugs) or we
were not able to infer the association (for Eclipse projects
bugs). However, 1177 bugs can be considered to be a signif-
icantly large test data set in comparison to the same for prior
work [1, 5, 18, 20]. For each subject, the size of the test-data
is 3-4% of its corresponding bug repository.

Further, we index all bugs in the subject’s bug repository
to create three different search indices –BI, CI and MI (as
explained in Section 2). For each bug in the test-set for
the subject, we create three different queries following the
strategies—A, CB and TB.

Depending on the research question to be answered, we
execute different search techniques—combinations of an
indexing technique and a querying strategy. For example,
the search technique {MI:TB} means applying the querying
strategy TB to search the index MI. The source files returned
in the recommendation sets produced by a search technique
are matched against the actual fixed files (ground truth) in
order to compute the following measures:

• Bug Coverage: The percentage of bugs in the test set for
which the search returns at least one file in the recom-

6 http://hadoop.apache.org/
7 http://www.atlassian.com/software/jira/

162

mendation (BT) set matching the ground truth.

BC =
BT

n
∗ 100 (1)

where n is number of bugs in the test data set.
This metric is same as the “Rank” metric used in [1, 20]
which is defined as, the number of queries/bugs for which
the relevant source files are retrieved with ranks rlow<=
R <= rhigh where rlow = 1 and rhigh is configurable.
We vary rhigh from 1 to 30, for the purposes of our
experiments.

• Average Precision, Recall and F1-Score: For each bug
in the test set, we calculate the traditional measures of
precision, recall and F1-score.

As part of answering RQ1 in Section 3.2.1 we discuss
why the traditional measures of precision and recall are not
good to compare the efficacy of the search techniques under
investigation.

3.2 Effectiveness of the Indexing Techniques
In this study, we try to answer RQ1 by evaluating the effec-
tiveness of the three search techniques {MI:A}, {CI:A} and
{BI:A}. First, we present and discuss the efficacy of the three
search techniques through the metrics PA,RA, F1−ScoreA
and BC. Then, we statistically test whether the techniques
are any better than chance.

3.2.1 Efficacy of the Search Techniques
For each bug in the test-set we perform the search over the
indices 10 times, varying the size of the search results from
1 through 30. Figure 2 plots the average precision (PA),
recall (RA) and F1-Score (F1 − ScoreA) as line graphs
across search techniques MI:A, BI:A and CI:A. Graphs in
each columns plot the metrics PA, RA and F1 − ScoreA
while each row represents these metrics calculated for each
search technique.

In Figure 2, we observe that, across all subjects and
search techniques, the average precision decreases and re-
call increases with increase in the size of the search result
set. In contrast, the F-Score graphs shows a slight increase
early on and then a steady decline. Beyond the search result
size of 3, the precision decreases drastically as we return
more results and the increase in recall does not compensate
enough for the drop in precision. Usually, there are not too
many files fixed in a bug (the mean being around 3 files per
bug), so a large number of results are necessarily spurious
when the size of the search results increases beyond a point.
Interestingly, precision and recall for Hadoop are the high-
est amongst all techniques upto a search result size of 5. The
F1-Score increases slightly as we move from a search result
size of 1 to 3 and then drops steadily for all subjects.

The scale of the graphs indicate that the maximum values
for precision, recall and F1-Score, across all subjects and

techniques, are 0.3, 0.6 and 0.28 respectively. The low in-
crease in bug level recall indicates that text-search based
techniques are not effective when the aim is to find all or
most of the files to be modified for a bug. Based on these
observations about precision and recall, it seems that these
are not good metrics to compare efficacy of various search
techniques because all the numbers are very low. From an
end user perspective, given a bug, text search should be used
to find a file that can start the debugging investigation. So
even if the search is able to return one correct result, it should
be considered useful. Hence, we have chosen to use Bug
Coverage as a comparison metric in rest of the paper.

Figure 3 plots the bug coverage as line graphs for each
subject across the different sizes of search results and search
techniques. We observe that, unlike F-Score, the values for
bug coverage, across all subjects and techniques, increase
with increase in the search result set size. For a maximum
search result size of 30, at least one of the search techniques
attains a minimum bug coverage of 55% for all the subjects.
All the three techniques perform equally well for Hadoop
with minimum bug coverage of 30% to a maximum of 70%
across various search result sizes. In fact, Hadoop has sim-
ilar bug coverage as an industrial project analyzed in [5],
which reports a coverage of 68%. For Birt, searching over
past bugs (BI:A) clearly outperformed the other two search
techniques across all search result sizes. Interestingly, for
Datatools the bug coverage remained constant beyond the
search result size of 5 for the technique BI:A. A similar pat-
tern is also observed in precision, recall and F1-Score for
Datatools in Figure 2.

If we compare the different search techniques, BI:A and
CI:A work better than MI:A across all our subjects. The extra
effort in performing identifier splitting and other processing
on actual code repository does not seem to yield any extra
benefits as evident from the bug coverage observed for our
subjects. Based on these results, for our subjects, none of the
search techniques emerge as a clear winner (shown statisti-
cally in the later part of this section). However, the nature of
the subject does impact the effectiveness of text-based search
as observed for Hadoop.

3.2.2 Are the techniques any better than chance?
To objectively quantify that the search techniques are signif-
icantly better than chance, we compared their efficacy with
that of a user who randomly selects source files from the
code repository as the files to be fixed to resolve a bug. Sup-
pose, there were n files in the repository when a bug was
reported and f files were actually fixed to resolve the bug.
Then, the hypergeometric distribution gives the probability,
p, of getting at least x files that require a fix by choosing k
files at random from the repository. 8

8 Think of the code repository as a bin of black and white balls, where the
files that need fix for a bug resolution are considered to be white balls; rest

163

Figure 2. Average PA (left), RA (middle), and F1 − ScoreA (right) for MI:A, CI:A and BI:A across all subjects and search
result sizes. X axis represents 10 iterations of the experiment with varying search result sizes. Y-axis represents the metrics
value. Each line plots the scores across search result size for each subject.

p = 1−
x−1∑
i=0

fCi
n−f

Ck−i

nCk

Now, if a search technique returns x correct files in a set of
k search results shown for a bug, then p gives the probability
that one can get same or better results by drawing k files
purely through chance. Thus, we use p (p-value) to test
the null-hypothesis that a search technique is no better than
chance. Further, we conduct the hypothesis test for all bugs
(taken as queries) in our subject, which amounts to a case
of multiple testing of hypotheses. To maintain an overall
False Discovery Rate (FDR) of below 0.05, we lower the
individual p-values during the testings by the Benjamini-
Hochberg adjustment [6].

We tested the null-hypothesis for every bug in all our
subjects separately for each of the three search techniques
BI:A, CI:A and MI:A. Table 3.2.2 shows the percentage of
bugs that recorded a p-value of less than 0.05 and that passed
the FDR test for a search result size of 5. In general, the
numbers look very close to that of bug coverage; indicating
that even if one correct result is returned for a bug then
the result is usually significant. Again, a high percentage of
search results that are significant pass the FDR test too.

of the files are black balls. Now, the hypergeometric distribution gives the
probability of choosing white balls without replacement.

Datatools is an exception where many of adjusted p-
values miss the cut-off—in case of MI:A, almost half the
cases that pass the significance test at 0.05 end up failing the
FDR test. We traced the reason behind higher p-values to the
fact that bugs in Datatools have higher number of files (f)
associated with them. In two bugs as many as 491 files were
found to be fixed. On an average across the subjects Birt,
Datatools and Derby, 32% of the bugs analyzed for BI:A,
25% for CI:A and 21% for MI:A passed the significance test
with p < 0.05. However for Hadoop, an average of 60%
of bug reports passed across all techniques. Also, we record
the average number of files per subject that can make the
significance test fail (p = 0.05), in other words the number
of files in the repository when the techniques break even with
chance. The numbers range from 66 in Derby (MI:A) to 158
in Datatools (CI:A); suggesting that the techniques may not
be applicable when the repository contains any lesser files.

Summary for RQ1

• No single search technique emerges as a clear winner.

• Size of code repository should be taken into account when deciding
whether to use text search for fault localization or not. Break even score
should be calculated. If bug triaging is already happening at a module
level, then number of files in module should be considered to calculate
break even.

• None of the search variants returns search recommendations with high
precision, recall or bug coverage numbers and hence text search need to
be applied in projects with realistic expectations.

164

Figure 3. Bug Coverage for search techniques MI:A, BI:A and CI:A across the four subjects and search result sizes. X axis
represents the various search result size. Y-axis represents BC (%). Each line plots the BC across search results for a given
search technique.

BI:A CI:A MI:A
Subject < 0.05 FDR < 0.05 FDR < 0.05 FDR

Birt 35.1 35 19.75 19.14 17.9 17.4
Datatools 30.1 23.6 31.18 20.43 20.43 9.67

Derby 37.5 34.5 30.1 28.6 29.4 26.5
Hadoop 47.4 41.4 54.9 51.1 41.6 41.4

Table 2. Percentage of Search Results that passed the sig-
nificance test (p < 0.05) and the FDR test

3.3 Combining Search Techniques
In this study, we try to combine the results from the different
search techniques evaluated in the previous subsection (what
we call base techniques hereafter), in order to output more
effective sets of recommendations; and hence answer RQ2.
First, we check whether the results of the techniques are
subsumed in one another. If so, then combining them may
not be interesting at all. However, if the techniques turn
out to be complementary, then we can design methods that
synthesize a better set of recommendations by drawing from
the results of the base techniques.

3.3.1 Kappa Analysis
For each subject, we perform Fleiss’ Kappa [12] analysis
to measure the degree of agreement (κ) amongst the three
base techniques. Fleiss’ κ is a statistical measure of inter-
rater agreement or inter-annotator agreement for qualitative
(categorical) items for any number of raters / annotators.

Each of our techniques map to an annotator (rater) and the
categories are boolean–Yes indicates that the technique cov-

MI:A MI:A CI:A MI:A &
Subjects & & & CI:A &

CI:A BI:A BI:A BI:A
Birt 0.67 0.17 0.14 0.30

Datatools 0.67 -0.01 0.09 0.25
Derby 0.70 0.26 0.12 0.35

Hadoop 0.83 0.36 0.34 0.51

Table 3. Kappa Numbers for Search Result Size - 5

Combination
Subjects Max (MI:A, Rank Norm Aggregate Sample

CI:A, BI:A) Score Score Score Score
Birt 287 302 269 210 265

Datatools 30 44 40 32 42
Derby 52 58 57 47 60

Hadoop 73 74 78 70 76

Table 4. Comparison of Bug Coverage values between base
and combination of techniques for search result size 5

ers the bug (i.e., there is atleast one correct result returned),
and No indicates that the technique does not cover the bug.
With such an analogy, we setup a rater problem, where a
technique (rater) rates a bug as Yes or No. Next, we compute
the Kappa measure, κ, as:

κ =
P̄ − P̄e

1− P̄e
(2)

where P̄ − P̄e gives the degree of agreement actually
achieved above chance and 1− P̄e gives the degree of agree-
ment that is attainable above chance. κ = 1 indicates com-

165

plete agreement between the raters (techniques) and κ <= 0
points to no agreement. For further details on how these are
calculated please refer to [12].

As per the Kappa statistics (listed in Table 3.3.1), MI:A
and CI:A turn out to be quite similar with at least 60% agree-
ment. This is intuitive as both their indices are created from
code files. Also, code comments are common in both code
based index and meta index. However, both these techniques
exhibit a very low rate of agreement with BI:A; 36% in the
best case and -0.01% in the worst.

This analysis shows that bug based techniques and code
or meta based techniques are significantly different from
each other in terms of bugs that they address effectively.
Hence, there lies a possibility improving the overall effec-
tiveness of text-search (bug coverage) based fault localiza-
tion by suitably combining these distinct techniques.

3.3.2 Heuristics for Combining Search Techniques
The aim behind combining results from the different search
techniques is to improve the bug coverage. We apply the
following heuristics to synthesize stronger recommendation
sets by choosing from the results of the base techniques. (We
evaluated these heuristics for all search result set sizes, but
we present the data only for a search result size of 5 as a
similar trend is observed for all other sizes.)
• Rank based synthesis on score (RankScore): We rank all

the search results across the three base techniques on the
basis of their search similarity scores and choose the top
X search results from this ranked set.

• Rank based synthesis on normalized score (NormScore):
Same as the above heuristic, the only difference being
that the search scores are normalized (as a fraction of the
maximum score returned by its query) before they are
used for ranking.

• Rank based synthesis on aggregate score (AggregateScore):
For each file returned by a query, we sum up the similar-
ity scores assigned to it by the different techniques. Next,
we return the top X results from a ranked list prepared on
the basis of such an aggregate score.

• Sampling (Sample): We sample X search results for every
query by picking the top 2*(X/5) search results from the
results of {BI:A} and {CI:A}, and the remaining X/5
results from {BI:A}. Since, {BI:A} and {CI:A} are the
most complementary techniques (from Kappa Statistics),
we sample a higher number of results from them–striving
for greater diversity in the results.

Table 4 presents the average bug coverage of the recom-
mendations when we apply the different heuristics to com-
bine search results. RankScore technique works better than
the best of the individual techniques for all four subjects.
NormScore and SampleScore techniques work better in most
cases except for Birt. AggregateScore is the worst perform-
ing heuristic across all subjects and search result size.

The improvement in bug coverage due to RankScore
ranges from 1% (Hadoop) to 46% (Datatools).

Summary for RQ2

• Search over code repository and Search over past bug repository are
complementary. So, they can be combined to increase the bug coverage.

• RankScore heuristic provides consistent improvement in bug coverage
and is a feasible approach for combining search results stemming from
different search techniques.

3.4 Impact of bug and code features on search
techniques

In this study we explore the impact of different aspects of
bug and code on our text-search system in order to answer
RQ3. First, we evaluate whether biasing terms during query
construction improves the efficacy of search. Then, we in-
spect how the search performance is impacted by different
physical aspects of bug reports (size, number of code terms
etc.) and source code (lines of code, length of comments
etc.). Finally, we study the impact of external factors such
as the vocabulary overlap between bug queries and search
indices, and the number of files fixed per bug.

3.4.1 Biasing terms during query construction
The TF-IDF scheme assigns a weight to a term (or word)
such that it indicates the relative importance of the term in a
document or a query in the context of the search index. How-
ever, when the number of words in a query becomes large, it
may so happen that certain key terms do not get adequately
high weights in the query vector. In such a scenario, if we
have a good idea about the words in the bug report that may
be important from a search perspective, then we can adjust
the default TF-IDF weights in a query vector to direct greater
focus on those keywords.

Table 3.4.1 shows the size of queries created (in base
techniques) for each of our subjects–low, high, and mean.
It also lists the average number of words in the title—title-
words, and the average number of code terms present in
these queries—code-words. Note, that we remove the stop
words and Java specific keywords before calculating the
queries. The mean query sizes vary from 20 for Hadoop to
157 for Birt. The number of words in title and the number
of code terms are very less (4 to 17). To counter the ef-
fect of large query size, we evaluate the two query construc-
tion strategies—giving boost to title words, (TB), and giving
boost to code words, (CB); we compare their effectiveness
with that of the simple–All (A) strategy.

Bug coverage results of the different search techniques
formed with TB and CB, are compared with those of the
base techniques in the Figure 4. The graph is plotted only for
search result size of 5. X- axis represents the subjects and y
- axis represents the bug coverage (%). Per subject there are
9 vertical bars. The first three bars corresponds to the MI in-
dex, the next three corresponds to BI index and the last three
are for CI index. This segregation is indicated by a vertical
line in the figure. Further within the bars corresponding to

166

Subject Low High Mean Title Code
Birt 2 311 157 9 9

Datatools 18 94 56 4 17
Derby 9 234 67 6.5 19

Hadoop 3 130 20 5 7

Table 5. Query Size (number of words)

Query Construction
Subjects Index A TB CB

CW TW CW TW CW TW
(1) (2) (3) (4) (5) (6) (7) (8)

MI 75.2 28.7 78.7 41.8 80.6 31.1
Birt BI 62.6 22.7 64.2 29 66.7 24.3

CI 73.2 27.9 74.8 40.3 79.2 29.5
MI 65.7 20.8 71.7 34.7 77.0 24.7

Datatools BI 47.6 13.8 54 26.0 55.7 17.6
CI 64.6 20.2 70.2 31.7 73.6 20.5
MI 57.7 16.5 65.1 23.9 68.9 20.3

Derby BI 49.4 14.6 53.1 26.8 59.5 19.1
CI 57.9 16.3 64.5 23.4 68.8 19.7
MI 65.5 57.8 65.4 66 69.3 59.3

Hadoop BI 58.2 59.9 59.0 75.2 67.1 64.0
CI 63.1 57.6 63.3 65.2 67.9 59.1

Table 6. Percentage of significant Code Words (CW) and
Title Words (TW)

these indices, the first one corresponds to base technique A
(empty bar), the second corresponds to title boost TB (verti-
cal line bar) and third one is code boost - CB (horizontal line
bar).

As evident from the plot, between TB and CB, boosting
the title words during the query construction (TB) had posi-
tive impact on bug coverage across all indices and subjects
except for Hadoop. The maximum gain in coverage was ob-
served for Derby (11%) for BI index. However, boosting
code words (CB) showed more mixed results. It only pro-
vided an increased bug coverage for Derby over the base BI
and MI techniques. It also improved the bug coverage for
Hadoop over the MI technique. Overall TB technique seems
to outperform CB techniques for the subjects and indices
considered.

Now, we investigate the reason why title-boost proves to
be beneficial and not code-boost. For every search query
that is run, our Lucene-based search system returns the set
of query terms that are significant in computing the search-
similarity scores. Table 6 lists the percentage of title-words
(TW) and code-words (CW) that feature in the set of signif-
icant query terms, across the subjects, when different search
techniques are applied. The rows represent each indexing
technique (across all subjects) and the columns represent
the query construction strategies. Columns (3) and (4) cor-
respond to All (A) , columns (5) and (6) to Title-Boost (TB),
and columns (7) and (8) to Code-Boost(CB) strategies.

For Hadoop, the queries used in the base techniques con-
tain more than 57% of the significant title words, while the
queries of the other three subjects have less of such words
(22% for Birt, 13% for Datatools, 14% for Derby). When
title boost (TB) is applied the percentage of significant title

Unique Terms Intersect
Subjects

MI CI Bugs Bugs-MI Bugs-CI
Birt 41621 148451 6460 2257 (35%) 2778 (43%)

Datatools 24634 70763 1818 1098 (60%) 1152 (63%)
Derby 28315 65913 65797 1940 (50%) 2021 (51%)

Hadoop 14070 55285 1610 1020 (63%) 1131 (70%)

Table 7. Size of Repository Index and Overlap with Bug
Test Set

words in queries almost doubles for Datatools (from 13.8%
in MI:A to 26%) resulting in a increase of bug-coverage.
However for Hadoop, further boosting of title words does
not actively contribute toward increases in bug coverage be-
cause most of the keywords in the title are already consid-
ered to be significant even in the base techniques. Unlike ti-
tle words, the percentage of significant code words are much
higher (47% - 75%) for all subjects in the base techniques—
MI:A, CI:A and BI:A. Also, when TB is applied, the code
words in the title also get a boost (column (5) > column(3)).

To summarize, giving preference to title-words in the
query helps to improve the effectiveness of the search.
On average when compared to the base techniques across
all indices, title boost TB provided 1.6% increase in bug
coverage for Birt, 3.9% for Datatools and 7.8% for Derby.
For Hadoop, this did not work as already title words were
well represented in the significant query terms.

For each bug report under analysis, we collect the follow-
ing features: Total number of words, Number of code words
and Number of title words. Further, we note the Search-
Similarity score returned by the search engine as we execute
queries. Next, we compute Spearman’s rank correlation co-
efficient between the features and whether the search tech-
nique returns a correct or an incorrect match for that bug,
i.e., coverage at the bug level. We find the Search-Similarity
score to be positively correlated across almost all subjects
(except Hadoop) and techniques. This confirms the intuition
that the likelihood of suggesting a correct match is high if the
Search-Similarity score is high. The number of code words
is positively correlated with coverage in 5 of the 12 cases.
So, there is some evidence that code words in bug descrip-
tion can improve search performance; however we cannot be
conclusive about this result. The total number of words in a
bug report is negatively correlated in some cases–perhaps in-
dicating that the search techniques are not able to deal with
too much noise in the bug descriptions.

3.4.2 Impact of Subject Level Features
The high efficacy of all search variants on Hadoop (Figure 3)
made us investigate if there are specific subject level features
that bias text-based search. We analyzed two factors:

• Do the techniques work well only when the number of
files to be fixed associated with bug reports is large?
Figure 5 plots the spread of number of files fixed for
each bug in our test suite—per subject. Except for a

167

Figure 4. Bug coverage (BC %) across the base techniques and boost techniques are plotted for all subject for search result
size of 5. X axis represents the subjects. Y axis represents the bug coverage.

Figure 5. Spread of files modified per Bug per subject in
the oracle. The red stars indicate outliers. The bottom and
top whiskers show the low 25 and top 25 percentile. The box
shows the spread for remaining 50 percentile.

few outliers (ranging from 4% for Datatools to 10% for
Hadoop)), 75% of the bugs across subjects require 6 files
or less to be modified and remaining 25% require 15
files or less . The wider spread of upto 15 files is due to
Datatools, which also impacts the FDR significance test
for this subject (as discussed in Section 3.2). The spread
for Hadoop is very much similar to Derby or Birt, hence
the measure of number of files fixed per bug does not
seem to have any impact on the text based search.

• Do the code search techniques work well only when there
is a high vocabulary overlap between the code index and
the bugs analyzed? Table 7 lists the size of the two vari-
ants of code index CI, MI. Column 4 gives the number
of unique terms in the bug queries created from the test
suite. Column 6 and 7 gives the absolute and percentage
of intersection between words in the test suite (bugs) and
the two code indices. The overlap is highest in Hadoop—
63% for CI and 70% for MI. This validates the fact that
these techniques work the best for Hadoop (as observed
in Figure 3). The overlap is lowest for Birt—manifested
in the fact that we note the lowest bug coverage for Birt
when we search over the code index (CI). Thus, across
subjects, the vocabulary overlap between code index
and bug reports impacts search efficacy. Again, we
note that identifier splitting does not lead to an increase
in vocabulary match—note the percentage overlap across
columns 5 and 6 in table 7. The bug to index vocabu-
lary match is higher in the CI technique (where code is
not processed) than the MI technique (where the code is
pre-processed with identifier splitting).

Summary for RQ3

• Boosting the title words as part of query construction helps in increasing
the bug covergae. Minimum of 1.65% in Birt, and maximum of 7.8% in
Derby.

• Too many words in bug description can negatively impact search accu-
racy.

• There is some evidence that presence of code words can help search.
However, we are still not conclusive.

• Search similarity score seems to be the only feature, which is almost
always significantly correlated to a correct or incorrect search match.

4. Related Work
Traditionally, research on fault localization always meant ap-
plication of some program analysis or debugging technique.
Different variants of program slicing [4] have been tested on
their efficiency of localizing faults. However, the slicing cri-
terion (the point of interest in the program where analysis
can start) may not be always clear from a description of a
reported bug; thus slicing techniques cannot be immediately
applied. Statistical debugging or spectra-based fault local-
ization [13] evaluates various program spectra and pass/fail
status of test cases in order to compute the risk of contain-
ing a fault for each program entity. Such techniques need
a large number of passing test cases to be effective, which
may not be always available in practice. Delta debugging
[23] instruments the test environment such that it is possible
to systematically make the input to a failing test case smaller.
Mutation based approaches [21] modify the program state or
control flow such that failing test cases can pass. However,
they are not very scalable since the search space of program
states can become really large and can only be applied to
limited types of faults.

Hipikat [8] applies information retrieval to recommend
existing software development artifacts (e.g., change tasks,
design documents, source files) in context of a task being
performed. PROMESIR [11] shows that Latent Semantic In-
dexing (LSI) and scenario based probablisitic ranking (SPR)
methods can be effective to locate features (formulated from
title and description of bugs) within source code. Lutkins
et al. [1] show that querying a Latent Dirichlet Allocation
(LDA) model built from the source code can outperform
LSI-based methods. Rao and Kak [20] evaluate five generic
text models—Unigram Model, Vector Space Model, Latent
Semantic Analysis, LDA and Cluster Based Decision Mak-

168

ing with respect to their effectiveness in localizing bugs of
the iBUGS dataset [9]. DebugAdvisor [5] can launch fat
semantic queries (comprising of bug description, debugger
output, logs etc.) over software repositories that aggregate
data from diverse systems such as version control systems,
debugging sessions and bug databases.

To the best of our knowledge, there exist no prior work
that compares and contrasts the approaches of searching
over source code and past bug reports; and the benefits of
combining them.

5. Conclusion
In this paper, we study the efficacy of different text-search
approaches in bug localization through an empirical evalua-
tion on four open source subjects. Specifically, we examine
techniques that directly search the code repository and those
that search over a historical collection of bug reports. Over-
all, no technique comes out as significantly better over the
other; for a search result set size of 5, code repository search
as well as bug repository search yielded a bug coverage vary-
ing from 20 to 60% across our study subjects. Doing any
pre-processing of the code to split identifiers into words did
not yield benefits. However, we find that these techniques
are complementary; we measure an improvement in the bug
coverage (1% - 46%) when the techniques are applied in tan-
dem. Favoring words in title help in producing better recom-
mendations in most cases. All experimental data (bugs, truth
set, search results) are available here 9.

References
[1] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source Code

Retrieval for Bug Localization Using Latent Dirichlet Alloca-
tion. In Proceedings of the 2008 15th Working Conference on
Reverse Engineering, 2008.

[2] L. P. . Enslen, E. Hill and K. Vijay-Shanker. Mining Source
Code to Automatically Split Identifiers for Software Analy-
sis. In Working Conference on Mining Software Repositories,
MSR, pages 71–80, 2009.

[3] H. Agrawal, R. Demillo, and E. Spafford. Debugging with
dynamic slicing and backtracking. Software: Practice and
Experience, 23(6):589–616, 1993.

[4] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
localization using execution slices and dataflow tests. In
Software Reliability Engineering, 1995. Proceedings., Sixth
International Symposium on, pages 143–151. IEEE, 1995.

[5] B. Ashok, J. Joy, H. Liang, S. Rajamani, G. Srinivasa, and
V. Vangala. DebugAdvisor: A Recommender System for
Debugging. In Proceedings of the the 7th joint meeting of
the ESEC/FSE, pages 373–382. ACM, 2009.

[6] Y. Benjamini and Y. Hochberg. Controlling the false discov-
ery rate: a practical and powerful approach to multiple testing.
Journal of the Royal Statistical Society. Series B (Methodolog-
ical), pages 289–300, 1995.

9 https://sites.google.com/site/searchbugs/

[7] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. Holmes: Effective statistical debugging via ef-
ficient path profiling. In Proceedings of the 31st International
Conference on Software Engineering, pages 34–44, 2009.

[8] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development. IEEE
Trans. Softw. Eng., 31:446–465, 2005.

[9] V. Dallmeier and T. Zimmermann. Extraction of bug lo-
calization benchmarks from history. In Proceedings of the
twenty-second IEEE/ACM international conference on Auto-
mated software engineering, pages 433–436. ACM, 2007.

[10] R. A. DeMillo, H. Pan, and E. H. Spafford. Critical slicing for
software fault localization. pages 121–134, Jan. 1996.

[11] Y. Denys Poshyvanyk et al. Feature location using probabilis-
tic ranking of methods based on execution scenarios and infor-
mation retrieval. IEEE Transactions on Software Engineering,
pages 420–432, 2007.

[12] J. F. et al. Measuring nominal scale agreement among many
raters. Psychological Bulletin, 76(5):378–382, 1971.

[13] J. Jones and M. Harrold. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of
the 20th IEEE/ACM international Conference on Automated
software engineering, pages 273–282. ACM, 2005.

[14] B. Korel and J. Rilling. Application of dynamic slicing in
program debugging. In Proceedings of the 3rd International
Workshop on Automatic Debugging, May 1997.

[15] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 15–26, 2005.

[16] B. Lientz, E. Swanson, and G. Tompkins. Characteristics of
application software maintenance. Communications of the
ACM, 21(6):466–471, 1978.

[17] C. Manning, P. Raghavan, and H. Schutze. Introduction to
information retrieval. Cambridge University Press 2008.

[18] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic. An in-
formation retrieval approach to concept location in source
code. In Reverse Engineering, 2004. Proceedings. 11th Work-
ing Conference on, pages 214–223. IEEE, 2004.

[19] J. McKEE. Maintenance as a function of design. In Pro-
ceedings of the National Computer Conference and Exposi-
tion, pages 187–193. ACM, 1984.

[20] S. Rao and A. Kak. Retrieval from software libraries for bug
localization: a comparative study of generic and composite
text models. In Proceeding of the 8th working conference on
Mining software repositories, pages 43–52. ACM, 2011.

[21] C. D. Sterling and R. A. Olsson. Automated bug isolation via
program chipping. 37(10):1061–1086, Aug. 2007.

[22] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3(3):121–189, 1995.

[23] A. Zeller. Isolating cause-effect chains from computer pro-
grams. ACM SIGSOFT Software Engineering Notes, 27(6):
1–10, 2002.

169

[24] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng., 28(2):183–
200, Feb. 2002.

170

