

Performance Pitfalls in Large-Scale Java Applications
Translated from COBOL

Toshio Suganuma* Toshiaki Yasue Tamiya Onodera Toshio Nakatani
IBM Research, Tokyo Research Laboratory

1623-14 Shimo-tsuruma, Yamato
Kanagawa, Japan

{suganuma, yasue, tonodera, nakatani}@jp.ibm.com

Abstract
There is a growing need to translate large-scale legacy
mainframe applications from COBOL to Java. This is to
transform the applications into modern Web-based services,
without sacrificing the original programming investments.
Most often, COBOL-to-Java translators are used first for
the base program transformations, and then corrections and
fine tuning are applied by hand to the resulting code. How-
ever, there are many serious performance problems that
frequently appear in those Java programs translated from
COBOL, and it is particularly difficult to identify problems
hidden deeply in large-scale middleware applications.
This paper describes the details of some performance pit-
falls that easily slip into large-scale Java applications trans-
lated from COBOL using a translator, and that are
primarily due to the impedance mismatch between the two
languages. We classified those problems into four catego-
ries: eager object allocations, exceptions in normal control
flows, reflections in common paths, and inappropriate use
of the Java class library. Using large-scale production mid-
dleware, we present detailed evaluation results, showing
how much overhead these problems can cause, both inde-
pendently and collectively, in real-world scenarios. The
work should be a step forward toward understanding the
problems and building tools to generate Java programs that
have comparable performance with corresponding COBOL
programs.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features –
Classes and objects.

General Terms Performance, Languages.

Keywords Legacy migration, COBOL to Java translations,
Object allocation.

1. Introduction
There is a growing need to translate large-scale legacy
mainframe applications from COBOL to Java for mod-
ernization. This legacy transformation is happening in
many industries, such as financial and manufacturing, pri-
marily for two reasons: (1) applications need to be adapted
for a modern Web-based service-oriented architecture
(SOA) [4], and (2) it is becoming increasingly difficult to
find skilled COBOL programmers to perform program
maintenance. These applications are often decades old,
monolithic, huge, and complex, produced from continuous
program modifications and enhancements extending over
long periods of time. Since it is both difficult and impracti-
cal to manually port such large-scale legacy COBOL pro-
grams to Java, in many cases COBOL-to-Java translators
are used first and then corrections and fine adjustments are
added by hand to the resulting code.

Among the post-translation refinements, performance tun-
ing is one of the most difficult and painful tasks, especially
for large scale applications. It requires collecting and ana-
lyzing execution profiles for critical application scenarios,
identifying performance bottlenecks, making necessary
modifications in the translated programs, and verifying the
results. Fixing one major problem often reveals other prob-
lems hidden behind it, and in many cases the process
needs to be repeated a number of times to finally meet the
required levels of performance for an application.

There are many COBOL-to-Java translators available in the
market [3][5][9][10], and there are variations in the quality
of the translated code. However, even the best translators
produce code that tends not to perform well in Java. Some
of these performance problems are due to impedance mis-
match between COBOL and Java programs, while others
are due to inappropriate conversions into Java.

Impedance mismatch refers to significant differences of the
basic program structures between the two languages. For
example, COBOL declares an elementary data item (called

* Currently in IBM Global Business Service Division, Tokyo Japan

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

685

a local variable in many other languages) with a format
specification using a PICTURE clause (e.g. PIC A(4) de-
notes four alphabetical characters, and PIC S9(3) denotes a
signed 3-digit number). Therefore, depending on the for-
mat specified, the number of bytes to be allocated in mem-
ory is initially defined for the local variable. When
translated to Java, such local variables (typically repre-
sented as String or BigDecimal) are allocated as object
instances with a specified number of white space characters
or zeros as initial values. These objects are eagerly allo-
cated at declaration time and then thrown away as the exe-
cution proceeds and the variables are assigned to new
values, since the objects are immutable.

This translation of local variables is natural for translators,
because it would require elaborate and complex control
flow analysis to avoid wasteful eager object creation by
finding the first definitions and usage points of the vari-
ables in the program. However, if all the local variables,
not just the variables of Strings and BigDecimals but also
those of collection types (e.g. arrays), are allocated in this
manner, the cumulative cost can be huge, leading to mem-
ory bloat. In one example, we encountered a class defini-
tion that included instance variables of deeply nested arrays
with BigDecimal and String objects at the bottom, and a
single instantiation of this class consumed more than 20
Mbytes of memory. When we examined this class, we dis-
covered that most of these objects were not touched and the
needs could be satisfied by allocating objects of a few hun-
dreds Kbytes.

A second reason for poor performance is inappropriate
program conversions, especially into uses of exceptions,
reflections, and standard Java class library. For example,
translators tend to use the standard class library as much as
possible to implement the functions required in the original
program logic. This simplifies the translation process, but
many expensive operations, such as object allocations, syn-
chronizations, and internal data conversions, are hidden in
the class library. The translator is not aware of the per-
formance penalties that must be paid at execution time
when using those library calls. In some cases, the translated
code has to create additional object allocations and data
conversions just to satisfy the required interface to invoke
the library, and in some cases the data reverts back to the
original form in the library code. This is pure overhead
irrelevant to the application logic. The problem of inappro-
priate library calls and the related overheads for crossing
boundaries is not translation-specific, but may appear gen-
erally in framework-based applications [8].

This paper describes performance pitfalls that are typically
found in large-scale Java applications translated from CO-
BOL, and quantifies the performance overheads those
problems can cause for real world scenarios in large-scale
transaction applications. This work involved performance

problems found in large-scale production middleware that
was originally written in COBOL and recently converted to
Java using a well-known translator. Based on these experi-
ences, we found the problems can generally be classified
into four categories: eager object allocations, exceptions
used for controlling normal execution flows, reflections in
common paths, and inappropriate uses of the class library.
All of these problems combine for significant performance
penalties.

The following are the contributions of this paper:

 Identify performance bottlenecks and pitfalls that
easily slip into large scale Java applications trans-
lated from COBOL: We present a number of perform-
ance pitfalls typically found in large-scale Java
programs translated from COBOL, and categorize them
into four types of problems: eager object allocations,
exceptions used in normal control flows, reflections in
common paths, and inappropriate uses of the Java class
library.

 Detailed experimental evaluations showing signifi-
cant performance overheads caused by those prob-
lems: We present detailed evaluation results using
production middleware that was actually translated
from COBOL. We isolated each of the four types of
problems, and quantified the overheads that can be re-
duced by addressing these problems.

The rest of this paper is organized as follows. The next
section gives an overview of COBOL program specifica-
tions using some simple examples, and shows how Java
programs translated from COBOL can perform poorly.
Section 3 describes the four types of problems we found in
most Java programs translated from COBOL. Section 4
presents experimental results using large-scale middleware
that was actually translated from COBOL and shows the
performance impacts of these problems in several transac-
tion scenarios. Section 5 summarizes related work, and
finally Section 6 presents our conclusions.

2. COBOL Programming Examples
The first COBOL language specification was for COBOL-
60, and the language has evolved since then, with additions
and improvements for many features of the language. This
section is a brief explanation of COBOL programming [1]
using simple examples, focusing primarily on features that
can cause performance problems when translated into Java.

A COBOL program’s basic structure consists of 4 divisions
(IDENTIFICATION, ENVIRONMENT, DATA, and
PROCEDURE). All data and variables to be used in the
program need to be declared in the DATA DIVISION, and
the program body is written in the PROCEDURE DIVI-
SION. All the data and variables are first allocated in mem-
ory when the program is loaded, and they stay in the same

686

address space until the program terminates. There are none
of the dynamic allocation features that modern languages
like Java, C, and Pascal offer. COBOL uses process-based
execution and has only a single thread of control, so no
memory corruption problem can occur with this storage
management approach. Therefore, the biggest challenge for
COBOL-to-Java translation is how to efficiently manage
the data and variables in the Java heap. There are several
language features of COBOL for data declarations and ma-
nipulations. These are quite different from Java’s and thus
can be sources of performance problems when translated.
Elementary data item and PICTURE clause: Variables
in Java correspond to elementary data items in COBOL,
and are declared with a PICTURE clause. COBOL is not a
typed language, but rather it allows programmers to pro-
vide the system with an example (a picture) of how the
storage of each data item should be displayed, and hence
the amount of storage to be reserved. The following exam-
ple shows several data items declared in COBOL.

Each data item is declared with a level number, followed
by a name for the data, followed by a picture clause, op-
tionally with an initial value in a VALUE clause. The char-
acters in the PIC clause indicates how many characters or
digits occur in the storage (an A denotes an alphabetic
character, an X denotes any character in the character set, a
9 denotes a digit, and a V denotes the position of the deci-
mal point in a numeric value,). Recurring symbols are
specified with a repeat factor in parentheses. SPACES or
ZEROS are figurative constants that act like one or more
spaces or zeros.
In general, numeric values with a decimal point specified
(with the V in the PIC clause) are translated to BigDecimal,
other numeric values to int or long, and all of the other
elementary data items to String in Java. Since fixed point is
the only kind of decimal numeric value in COBOL, the
Java translator has to choose either to use floating point
numbers (and accept some precision errors), or to use the
java.math.BigDecimal class to preserve the original preci-
sion. Since many of COBOL programs are used for busi-
ness applications where no precision differences are
allowed, the translators generally have to be conservative
and use BigDecimal in Java.
Group data item: A group represents a collection of ele-
mentary items with a nested structure. This is merely a
structured way of manipulating multiple data items, and
therefore no corresponding storage is reserved (the size of
the group item is just the sum of the sizes of its subordinate
elementary items). Tables can also be defined as a group
item using the OCCURS clause. In the following example,

a table of StudentRecord with a size of 40 elements is de-
fined, each of which includes three elementary items.
Group items are usually translated using classes, inner

classes, and arrays in Java.
REDEFINES clause: The storage allocated for data items
can be overlaid using a REDEFINES clause. This allows
users to define a data item in one format, and use the same
data with another format. In the example below, MonthDef
is first defined as a sequence of 36 alphabetic characters,
and then the exact storage location is redefined with a
group item of MonthName, where the subordinate data
item, Month, treats it as an array of size 12 with 3-character

data strings for each element.
This corresponds to the union of C, but there is no corre-
sponding feature in Java to handle the same data object
with different definitions. Translators usually have to de-
fine two different classes and copy the corresponding data.

MOVE statement and the CORRESPONDING clause:
MOVE statements are frequently used in COBOL pro-
grams for assigning values to data items. In moving data
between elementary data items, there are several rules that
must be followed, such as checking the compatibility rules
between the sending and receiving items, a truncation rule
when the sending item is longer, and how to fill with
spaces or zeros when the sending item is shorter.
If specified with a CORRESPONDING clause in moving
data between group items, the sending and receiving items
are treated as group items, not as elementary items, based
on the group semantics. In the example below, Name and
Address within CustomerY receive the values of Name and
Address of CustomerX, respectively. Note that types and
lengths of the subordinate items of the corresponding items

01 MonthDef PIC X(36) VALUE "JANFEBMAR
APR MAYJUNJULAUGSEPOCTNOVDEC".

01 Month Name REDEFINES MonthDef.
 02 Month OCCURS 12 PIC X(3).

01 Name PIC A(20) VALUE SPACES.
01 AccountInfo PIC X(50) VALUE SPACES.
01 Balance PIC 9(10)V99 VALUE ZEROS.

01 StudentRecord OCCURS 40 INDEXED BY K.
02 Name PIC X(10) VALUE SPACES.
02 MathScore PIC 999 VALUE ZEROS.
02 ScienceScore PIC 999 VALUE ZEROS.

01 CustomerX
02 Name PIC A(20) VALUE SPACES.
02 Balance PIC 9(10)V99 VALUE ZEROS.
02 Address PIC X(50).

01 CustomerY.
02 DateOfBirth PIC 9(8).
02 Name PIC X(15).
02 Address PIC X(60).

…..
 MOVE CORRESPONDING CustomerX to CustomerY

687

in the two groups are slightly different, so truncation and
space filling occurs as appropriate.

The MOVE statement with a CORRESPONDING clause
will be translated into value assignments between corre-
sponding instance variables of two Java objects. Truncating
and filling in of characters and digits for String and Big-
Decimal will require new object allocations, since they are
both immutable types.

COPY statement and the REPLACING phrase: COPY
statements are similar to “Include” statements in C and
C++, and allow users to include external source code or
data declarations that are used in common among multiple
programs. This is a useful feature for development and
maintenance of large software systems, since certain
changes may only require an update to the text in the copy
library and can then indirectly affect many individual pro-
grams.

A simple copy statement includes the library code or a file
without any change. The text can be changed as it is copied
into the program by using the REPLACING phrase. This is
a powerful feature in COBOL and particularly useful for
reusing data declarations. In the example below, a single
data definition, PersonData, is reused for declaring two
different records by renaming the original data name.

COPY statements are often used to define the interfaces of
subprogram calls. For each subprogram, the input and out-
put specifications are defined as a separate file, and then
this file is copied in the callers for passing arguments and
receiving outputs and in the callee for receiving arguments
and returning output values. This allows any program to
reuse the interface declaration by simply copying the file to
make the calls to the subroutine.

However, such uses of COPY statements can be quite ex-
pensive when translated to Java, because this is often im-
plemented by defining service classes for the input and
output of method calls. COBOL subprograms are not usu-
ally written in a modular style, but as very generic service
functions that accept various patterns of parameters and
that provide a variety of return values (and were often ex-
tended as the program was enhanced over the years).
Therefore, the interface definitions that will be copied to
any caller programs include data items covering all of the
cases the subprogram can handle as input or output. For

individual callers, however, many of the data items defined
in the service classes may be unnecessary.

Open subroutine call with PERFORM statement: An
open subroutine is a named block of code that control can
fall into or through. It has access to all the data items de-
clared in the main program, but cannot declare its own lo-
cal data items. This is in contrast to a closed subroutine that
can declare local variables which cannot be accessed out-
side of the subroutine. COBOL supports both open subrou-
tines (using PERFORM statements) and closed subroutines
(or subprograms, using CALL statements), but many other
languages, including Java, support only closed subroutines.

Open subroutine calls are often used combined with GO
TO statements for dealing with errors. When an error is
detected during the subroutine’s execution, it can stop exe-
cuting the rest of a paragraph as shown in the example be-
low.

Although this is dangerous and not a recommended pro-
gramming practice, it is actually used in many existing ap-
plications and translators have to deal with it. Because
techniques such as this error handling mechanism, nested
PERFORM statements, and falling through from a main
program are allowed, open subroutines can produce quite
complex control flows. Translators often use the Java ex-
ception handling mechanism to manage the control flows
from deeply embedded subroutine calls that return to the
main program, without regard to whether they are normal
flows or exceptional flows. This is shown in Section 3.2.

3. Performance Problems in Translated Java
Programs
As shown in the previous section, COBOL has many fea-
tures that can cause poor performance when translated to
Java. Here we describe several major problems and our
solutions, based on intensive work with a large Java appli-
cation translated from its original COBOL version. The
application provides a variety of transactional services in
response to user requests.

We used the JPROF profiling tool [6] to investigate the
execution behaviors of the application. The tool allowed us

PROCEDURE DIVISION.
Begin.

PERFORM Paragraph1 THROUGH ParagraphEnd.
STOP RUN.

Paragraph1.
 Statement1.
 IF ErrorOccurs THEN GO TO ParagraphEnd.
 END-IF
 Statement2.
ParagraphEnd.

EXIT.

01 CustomerInfo.
COPY PersonData REPLACING Name BY CustomerName.
01 EmployeeInfo
COPY PersonData REPLACING Name BY EmployeeName.
……
------------- PersonData --------------------
03 PersonInfo OCCURS 100 TIMES INDEXED BY K.

05 Name PIC A(15) VALUE SPACES.
05 Address PIC X(50) VALUE SPACES.

688

to track the numbers of instructions executed and the sizes
of the objects allocated down to the individual methods.

We categorized the performance problems into four types:
eager object allocations, exceptions in normal control flows,
reflections in common paths, and inappropriate use of Java
class libraries. The following subsections describe each of
them in detail.

3.1 Eager Object Allocations
There are many specifications in COBOL that allocate ob-
jects eagerly in the corresponding Java program. This type of
problem can appear in many different forms in the translated
Java program.

String initialization and reinitialization: Elementary data
items which are specified with A or X in their PICTURE
clauses (e.g. PIC X (10)) are converted to Java strings. By
the definition of the PICTURE clause, memory for those
strings needs to be reserved for the specified number of char-
acters at declaration time. Usually, the initial values are white
space characters.

Translators often define a generic function (as below) to cre-
ate a space string of a specified length, and replace each
string declaration with a call to that function.

This is a simple method for the translation process, but is
very expensive when executed, since it creates a new in-
stance of space string each time it is called, whether or not
the same string already exists in the heap.

To insure the space strings are shared in the heap, we defined
a static array of space strings of different sizes, and create
new strings based on their sizes, and retain these objects until
the application terminates, as shown below.

This has a similar effect as String.intern(), but is considered
even more effective since space strings of different lengths
can share the character array from the initially allocated
space string of the maximum length. The base structures for
this implementation are hidden from users and cannot be
modified (protected as private and final). Also, it does not
create any garbage after the current transaction executes.
Transactions of the same type can be requested many times
during the application lifetime, so it is beneficial to retain
each space string to minimize the production of garbage ob-
jects.

BigDecimal and its initialization: As mentioned in Section
2, all decimal numbers are represented as fixed point in CO-
BOL, and they are usually converted to BigDecimal in Java.
This can be another source of overhead for both time (com-
putation) and space (object creation). Since BigDecimal is
immutable, each time a new computation is performed, an-
other instance of BigDecimal has to be created.

As with String, care has to be taken for initialization and
reinitialization of BigDecimal with zeros (which is the most
common case). Instead of creating a BigDecimal object at
each declaration of the variable with a specified number of
zeros of a scale factor, we created (as shown below) a static
array of BigDecimal, with a new instance at the first request
of each scale, and retain the objects until the program termi-

nates.

Class constructor and arrays: A Java class is defined for
each subprogram in COBOL. Since all of the data is allo-
cated and initialized at declaration time in COBOL, the con-
structors of the Java classes are generated (by translators) to
work in the same way, creating objects for all of the instance
fields. If a group data item or a table is included in the sub-
program declaration, it is usually converted to an inner class
or an array in Java, and all of the subfields of the inner class
or elements of the array are instantiated.
With this eager allocation of class fields in constructors, and
with deep nested hierarchies in the class relationships, it is
easy to create huge data structures by merely creating a sin-

static final BigDecimal ZERO = new BigDecimal (0);
static final BigDecimal [] bdecimals = new BigDecimal [10];
static final String [] zeros =

{“0”, “0.0”, “0.00”, “0.000”, … “0.0000000000”};

public static
BigDecimal getBigDecimal (BigDecimal value, int scale) {

if (value == ZERO) && (scale <= 10) {
if (bdecimals[scale] == null) {

bdecimals[scale] = new BigDecimal (zeros[scale]);
 }

return bdecimals[scale];
 } else return

value.setScale (scale, BigDecimal.ROUND_DOWN);
}

public static String createSpaceString (int length) {
 // empty string buffer
 StringBuffer spaceString = new StringBuffer (“”);
 while (length-- > 0) spaceString.append (“ ”);
 return spaceString.toString();
}

static final int MAXLEN = …;
private static final String [] strings = new String [MAXLEN];
private static final String spaceString =

new String (new char [MAXLEN]);

public static String getSpaceString (int length) {
 if (length <= MAXLEN) {

if (strings[length] == null) {
strings[length] = spaceString.substring (0, length);

}
return strings[length];

 } else return createSpaceString (length);
}

689

gle object. This is especially true when arrays are involved in
the class relationship.
Figure 1 shows two such examples we actually encountered
in the production level code. Figure 1 (a) shows a class rela-
tionship using inner classes, which indicates that it came
from a single group item defined in the original COBOL
program, while Figure 1 (b) shows the relationships with all
of the external classes. Both cases involve several arrays in
the layers of the class relationship, and instantiating the top
level class in the hierarchy results in building a large data
structure. Class A in Figure 1 uses about 3 MB (calculations
omitted) of memory, and Class P consumes more than 72
MB (10 x 300 x 50 x 480) of memory, assuming that we use
a 32-bit JVM and 8-byte object headers, so each string object
costs 40 bytes, while each BigDecimal object needs 24 bytes,
both including object headers.

If this is in a frequently executed path (for example, the class
is instantiated each time a frequently used transaction is in-
voked), it can create several hundred objects that are simply
thrown away at the end of each transaction, causing unac-
ceptably frequent garbage collection. Even worse, significant
parts of the initially allocated memory are not used at all dur-

ing individual transactions. This is because the original CO-
BOL program was designed to handle similar but different
functions in a single subprogram, and the variables are de-
clared to cover all of the cases.
Note that these are not atypical cases. We encountered
many similar examples. Translators usually process each
subprogram independently, and produce a class with a con-
structor allocating those objects for the instance fields. This
works well for generating functionally correct Java pro-
grams, but it causes excessive object allocations that are
often detected at the very end of the testing cycle. It is ex-
tremely difficult to detect this kind of problem without hav-
ing a complete picture of the class relationships.

We can solve this problem by modifying the constructor,
getter, and setter methods for the private instance fields of
arrays to use lazy instantiation of array elements.

 1 2 3 …. 50

 1 2 3 …. 100

 1 2 … 10
 1 2 3 …. 50

 1 2 3 …. 300

 1 2 … 10Class P

Class Q

Class R

Array of Class Q

Array of Class R

Array of Strings and
BigDecimals

String X 9
BigDecimal X 5

Class A (72 bytes)

Inner
class a
(16 bytes)

Inner
class b
(48 bytes)

Inner class c (16 bytes)

Inner class e (16 bytes)

 1 2 … 10
Inner class d (24 bytes)

Figure 1. Two examples of class relationships, involving several layers of arrays. Example (a) uses inner classes for all
subordinates, while Example (b) uses external classes. Both cases build large data structures by instantiating a single object
of the top level class in the hierarchy; Class A accounts for about 3 MB of memory, but Class P accounts for more than 72
MB.

480
bytes

String
(40 bytes)

String
(40 bytes)

(a) Class relationship involving inner classes only (b) Class relationship with external classes

public class ClassB {
 public void execute () { // entry method
 try {
 initialize ();
 main ();
 } catch (RuntimeExceptionClassB e) {
 } }
 private initialize () {
 // do some initialization task
 if (errorOccurred) exit();
 }
 private main () {

// do actual business logic, including database access
exit ();

 }
 private final exit () {
 // some error handling logic
 throw new RuntimeExceptionClassB ();
} }

public class ClassA {
 // an array instance field
 private ClassX [] xArray = new ClassX [101];
 public ClassA () {

// constructor does not instantiate elements of the array
 }
 public ClassX getXArray (int i) {

if (xArray [i] == null) {
xArray[i] = new ClassX ();

 }
 return xArray [i];

 }
 public void setXArray (int i, ClassX value) {
 xArray [i] = value;
} }

690

3.2 Exceptions in Normal Control Flows
In Section 2, we mentioned that open subroutines using
PERFORM statements are often translated to use exception
mechanisms in Java. This works well to ensure the same
flow of control is executed in the translated business logic
as in the original version, but it tends to introduce excep-
tions in normal control flows, causing significant over-
heads.

In the above example, the intention was probably to pro-
vide an error-handling routine and call it at all of the exit
points in the subroutine that raise error conditions, includ-
ing after the database access in the main program in the
original COBOL program. Human programmers would
never do this, but due to inappropriate conversion logic,
translators can generate this performance-limiting code.

3.3 Reflections in Common Paths
A COBOL table is translated into an array in Java. The
elements of the array are usually initialized with instances
of a specified class (unless the proposed changes described
in Section 3.1 are used). While executing a transaction,
some elements of the array will change. For example, if the
array is used to hold objects extracted from a database, then
some elements may be updated with new objects, while
others are left in their initial state, depending on the num-
ber of records fetched for a particular query. Later in the
transaction, the array may be traversed to find the number
of updated elements by checking each element against the
initial state.

For this business logic in the original COBOL, translators
tend to create a single generic function that compares two
arbitrary objects with the reflection mechanism, and use
that function to perform comparisons for any type of array
element. As shown in Figure 2, the function accepts two
objects, comparing their classes first and then the defined
methods, including names and parameters. It even recur-
sively invokes the methods and checks the type of the ob-
jects returned. With reflection, this function can compare
any pair of objects to each other.

The performance of reflection has been significantly im-
proved in Java version 1.4 and later [11], but it is still bet-
ter not to use reflection in frequently executed paths. We
modified the code to avoid the use of the generic function,
and instead call a new method added to each class to check
its initialized state. If all of the arrays are guaranteed to use
dynamic allocation for their elements, then a simple null
check should suffice instead of the object equality check.

3.4 Inappropriate Calls to Class Libraries
Translators generally try to use class library functions as
often as possible to simplify the translation process. For
example, classes and methods for dates and timestamp ser-

vices are called frequently since COBOL is by design a
business language and many business applications use
dates and timestamps quite often.

The class java.text.SimpleDateFormat () provides methods
for formatting Date objects into date/time strings and, in
reverse, for parsing date/time or timestamp strings to create
various types of objects, based on specified PATTERN
strings. It is useful for translators to call library functions
for the date and time manipulations. However, this simpli-
fied translation process creates additional overhead. Both
format () and parse () provided in this class internally cre-
ate many temporary objects. Simply to cross the library
interface, the application has to convert the data by creating
another object (e.g. Calendar). Worse, since these methods
update the instance fields of the object as working space,

static final String PATTERN = “yyyy-MM-dd”;
private static char filler = '-';
private static char digits[] = {'0','1','2','3','4','5','6','7','8','9'};

public String getDate (int day, int month, int year) {

try {
char tmp [] = new char [10];
tmp [0] = digits [year / 1000];
tmp [1] = digits [(year % 1000) / 100];
tmp [2] = digits [(year % 100) / 10];
tmp [3] = digits [year % 10];
tmp [4] = filler;
tmp [5] = digits [month / 10];
tmp [6] = digits [month % 10];
tmp [7] = filler;
tmp [8] = digits [day / 10];
tmp [9] = digits [day % 10];
return new String (tmp);

} catch (ArrayIndexOutOfBoundsException e) {
 calendar = new GregorianCalendar ();
 calendar.add (GregorianCalendar.YEAR, year); ….

return new SimpleDateFormat (PATTERN).
format (calendar.getTime());

} }

A generic function
for checking object

equality

 1 2 3 …. 50 1 2 3 …. 100

Array of Class YArray of Class X

Vanilla instance
of Class X

Vanilla instance of
Class Y

Figure 2. An example of using reflections in common
paths. A generic function accepts two objects of any type
and checks the equality between the two objects as an
array element mutation check.

691

creating a static instance of this class with a specified PAT-
TERN string does not work (because it is thread unsafe).
The problem was also reported in [8].

We can skip the expensive library calls for date and time-
stamp services in many cases. For example, using the
ThreadLocal class to create thread-safe SimpleDateFormat
and Calendar objects is one way to alleviate the problem.
However, the above code works even better to replace for-
mat () when creating a date string in a specified format
from the integer values of day, month, and year. Only in
exceptional cases (as when out-of-range values are speci-
fied), need the library method be called. This code was
verified to be approximately four times faster and to pro-
duce fewer than one-third as many temporary objects.

4. Experimental Results
As noted, we looked into the performance problems of a
large Java middleware system that has been translated from
an original COBOL version. The total number of classes in
this application is nearly 60,000, and there are approxi-
mately 700 database tables. In this section, we show how
the performance of this middleware can be related to these
problems by using real-world transaction scenarios.

4.1 Methodology
Table 1 shows a list of the transactions we used in the
evaluation. These are all real-world transaction scenarios.
The numbers of classes, methods, and database reads and
writes show the relative complexities of the transaction
scenarios. These are all dynamic numbers. The operational
characteristics of each kind of transaction processing are
also described. The input data was selected to exercise all
of the necessary operations for each transaction.

We implemented performance fixes for the middleware in a
way that can be switched on and off for each problem type
described in Section 3. We did all those fixes manually by
directly modifying the translated Java code (not through
the translator improvements). When comparing the per-
formance impacts on a particular problem with several con-

figurations, we restored the database tables (for
transactions including update operations) and used the
same input data to ensure that same paths and operations
were executed within the middleware code.

Figure 3 shows the environment for this experiment. We
performed all measurements with a simple one tier configu-
ration, running the translated middleware on the Web-
Sphere ND (Version 6.0.2), DB2 (Version 8.2.6), and a
client module that dispatches a variety of transaction re-
quests on a single node. The client requests a single trans-
action at a time. The machine is an IBM IntelliStation
(Xeon 3.6 GHz processor with 3 GB memory), running
Windows XP SP2, and using the JVM of the IBM Devel-
oper Kit for Windows, Java Technology Edition, Version
1.4.2. Both the initial and maximum heap sizes were set to
1,024 MB.

In order to exclude the effects of JIT compilation overhead
from the measurement, we adjusted the threshold to invoke
the JIT compilation and ran a sufficient number of warm-
up runs before starting the measurements. After starting
each measurement, we collected the results for 10 succes-
sive runs, and calculated the average.

Table 1. List of transactions used in the experiment

Name Description # of
classes

of
methods

of db
reads

of db
writes

Transaction 1 Calculate decimal numeric values, generating future profile 1,329 5,001 515 87

Transaction 2 Calculate decimal numeric values for a specified condition 1,629 6,212 360 0

Transaction 3 Get information on records over a specified time interval 822 2,818 5 0

Transaction 4 Get information on structured records 815 2,825 11 0

Transaction 5 Create profile information from a set of specified records 980 3,580 189 0

Transaction 6 Get information from a given record number 511 4,127 21 0

Transaction 7 Validate required changes to a given record 1,468 13,641 783 7

Transaction 8 Create a set of new records with a specified customer data 1,840 6,141 139 21

HW: Xeon 3.6GHz 3 GB Memory, Windows XP SP2

WebSphere
App Server

DB2 with 700 tables populated

Translated Middleware

Client module (dispatches transaction requests)

Figure 3. Experimental environment. The translated
middleware is running on WebSphere Application Server
and executes transactions, accessing the database tables.

692

We first show the impacts of addressing the eager object
allocations (Section 3.1) and other performance problems
(Section 3.2 through 3.4) on the reduction of instruction
counts and the memory used for object allocation in Sec-
tion 4.2. We then present the end-to-end performance im-
provements for each transaction when addressing all of the
problems in Section 4.3.

4.2 Impacts on Java Performances
Figure 4 shows the reduction ratios of (a) instruction
counts and (b) size of total object allocations for each
transaction, collected by profiling with JPROF. The base-
line of the performance comparison is NoOpt (all optimiza-

tions disabled). The four bars in the left (colored various
shades of orange) show the following optimizations.

1. StringOpt shares space characters of String objects at
initialization and reinitialization time.

2. BigDecimalOpt shares initial zero values of BigDeci-
mal objects at initialization and reinitialization time.

3. ArrayOpt creates objects for array elements in an on-
demand basis, avoiding eager object instantiations in
class constructors.

4. AllocationOptAll enables all three optimizations 1 to 3,
showing the cumulative effects for fixing eager object
allocations.

Figure 4. Results from fixing eager object allocations and other performance problems in terms of (a) ratios of instruction
counts and (b) ratios of object allocation size. The baseline of the comparison in this graph is NoOpt (value of 1.0)

(a) Ratio of instruction counts (smaller is better)

0

0.2

0.4

0.6

0.8

1

Transaction1 Transaction2 Transaction3 Transaction4 Transaction5 Transaction6 Transaction7 Transaction8 Geo.Mean

(b) Ratio of object allocation size (smaller is better)

0

0.2

0.4

0.6

0.8

1

Transaction1 Transaction2 Transaction3 Transaction4 Transaction5 Transaction6 Transaction7 Transaction8 Geo.Mean

StringOpt BigDecimalOpt ArrayOpt AllocationOptAll
ExceptionOpt ReflectionOpt LibraryOpt AllOpt

693

Since the eager object allocations have significantly larger
impacts on performance than the other problems, we first
present the results when addressing the eager object alloca-
tion problems. On top of these fixes, we then show how
much gain we can achieve by addressing the other prob-
lems later in this section.

Fixing eager object allocations is particularly effective for
large transactions (in terms of execution time; e.g. Transac-
tions 1, 2, 7, and 8). The size of object allocations was
drastically reduced to 8% for Transaction 1 and to less than
50% for Transactions 7 and 8, with all optimizations en-
abled. These transactions consumed over 300 MB of Java
heap memory per transaction in the original version, caus-
ing frequent invocations of garbage collection. Most of the
memory used was simply wasted with these eager alloca-
tions for initializations.

Which of the three optimizations is the most effective de-
pends on the nature of the transactions. For example,
Transaction 1 uses a large deeply nested array of data
structures for its working space (as illustrated in Figure 1),
and ArrayOpt alone has a large impact on reducing the
total memory consumption. Both Transactions 1 and 2 per-
form lots of decimal numeric calculations, and they both
heavily use BigDecimal variables. Therefore, the effect of
BigDecimalOpt on these two transactions is much higher
than for the other transactions. The optimization on String
is consistently effective for all transactions.

For smaller transactions (such as Transactions 3 and 6), the
effect is less dramatic, but still the eager object allocation
contributes around 10% to 20% reductions of instruction
counts, and 20% to 30% reductions of the total heap con-
sumption. From these results, it is clear that eager object
allocations are pervasive over a variety of transactions in
the translated Java programs.

From the above results, we think it is mandatory to fix the
problems with eager object allocations before addressing
the other problems, since the impact is significantly larger
and pervasive. Thus, we simply incorporate all of those
fixes (AllocationOptAll), and on top of that, the perform-
ance impacts caused by the other problems were studied.
The four bars on the right (colored various shades of blue)
in Figure 4 show the following optimizations.

5. ExceptionOpt eliminates exceptions thrown in normal
control flows in transaction executions (described in
Section 3.2).

6. ReflectionOpt eliminates reflection used in commonly
executed paths in transactions (described in Section 3.3).

7. LibraryOpt eliminates expensive class library calls
(described in Section 3.4).

8. AllOpt applies all the above optimizations

The effect of the three optimizations (5 to 7) is not as wide-
spread across the transactions as the optimizations for ea-
ger object allocations. ExceptionOpt is useful for
Transaction 2 with roughly a 15% to 20% reduction of in-
struction counts. We think this transaction executes code
that was implemented using many open subroutines in the
COBOL.

ReflectionOpt looks particularly effective for Transactions
3 and 5 (and to a lesser extent, for Transaction 4), but this
optimization actually produces almost equal contributions
for all of the transactions. Transactions 3 and 5 are rela-
tively small, and this means the optimization has a larger
impact on those transactions.

Transaction 2 does some computations related to the time
intervals over specified periods in the past, so there are lots
of date and timestamp operations during the transaction
execution. LibraryOpt has a large impact on this transac-
tion, reducing both instruction counts and object allocation
to less than 40% of the level after the optimizations for
eager object allocations.

4.3 End-to-end Performance
Figure 5 shows the end-to-end performance (response time)
improvements with all of the optimizations enabled. The
(blue) triangles in the graph show the response times with
the translated code (NoOpt) and the (purple) squares show
the response times with all of the optimizations enabled
(AllOpt). After the warm up runs (to the steady state), we
measured 20 consecutive runs for the response time of each
transaction. Since Transactions 3 to 6 are small, we iterated
several times for each point in the graph to improve the
timer resolution. The plots in the graph are normalized rela-
tive to the average response times with NoOpt over 20 runs.

The database accesses in the application were generated by
the translator from the original embedded SQL in the CO-
BOL to SQLJ in the Java programs. In this experiment, we
did not perform any database access optimizations at all,
such as caching. Thus a fair amount of the fixed costs for
database accesses, e.g. more than 50% of the total response
time for some transactions, were included in the end-to-end
performance. The data presented here is based solely on the
optimizations on the Java applications.

The performance was consistently improved for all of the
transactions. The largest improvement was observed in
Transaction 3, about 40%, followed by Transaction 2, be-
tween 25% to 30%. Many other transactions achieve
around 10% to 20% improvements. This is significant, es-
pecially for large transactions (such as 1, 2, 7, and 8),
where there are large numbers of database accesses, as
shown in Table 1.

The spikes in the graph show where garbage collection
occurred. As we can clearly see from the graphs for Trans-

694

actions 1, 2, 4, and 7, the frequency of the garbage collec-
tion was reduced by our optimizations to eliminate eager
object allocations.

From these results, we can see that our optimizations on the
translated middleware produced significant improvements
in the response times for all of the transactions.

5. Related Work
There are a number of tools and services currently avail-
able in the market for fully automatic or semi-automatic
COBOL to Java translation. SoftwareMining provides a
toolkit (called CORECT) that translates COBOL to Java or
C# [10]. The tool’s primary objective is to generate “legi-
ble and maintainable” code. Approximately 95% of the
legacy code is transformed automatically and the remainder
is dealt with in a semiautomatic manner. During the trans-
formation, a program analyzer uses heuristics for some
optimizations, such as identifying data usages, identifying
and removing dead code, and simplifying REDEFINE
clauses.

Relativity [9], EvolveWare [5], and Datatek [3] all support
legacy application migration tools, including for COBOL

to Java. Some of these employ sophisticated tools for
smooth transitions, such as the Modernization Workbench
from Relativity or the automated code analysis from
Datatek. However, the goal of these tools is to make the
final translated program as readable and maintainable as
possible while generating sufficient documentations, and
performance seems to be a secondary concern. Our work in
this paper exposes the serious performance problems that
can pervade Java programs translated from COBOL, based
on extensive study of large production middleware trans-
lated from COBOL.

Mitchell and Sevitsky [7] studied the details of the Java
memory bloat problems for many applications and bench-
marks. They classified the memory usage of Java objects
into actual data and the rest (infrastructure overhead such
as object headers of individual instances and entry in-
stances for collection structures), and showed the actual
data occupies only a small fraction of the total heap con-
sumption. Based on extensive study, they proposed a health
metric, the ratio of actual data to the total, and how its ap-
plication-neutral asymptotic behavior can be linked to the
underlying program design. The eager object allocations in
our study of the COBOL-translated Java programs pose
more serious problems than what they addressed in ordi-

Figure 5. End-to-end performance improvements on Transactions 1 to 8. The (blue) triangles are with all optimizations
disabled (NoOpt) and the (purple) squares are with all enabled (AllOpt). After the warm up runs, we measured the re-
sponse times of 20 consecutive runs for each transaction. The X-axis is the time for the run and the Y-axis is the normal-
ized response time relative to the average response time with NoOpt over 20 runs.

Transaction 1 Transaction 2 Transaction 3 Transaction 4

Transaction 5 Transaction 6 Transaction 7 Transaction 8

Translated version (no optimization applied) Optimized version (all optimizations enabled)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 5 10 15 20

695

nary Java programs, since these data structures have actual
data, but are not used in a meaningful way during program
execution.

An interesting question involves the different health signa-
tures between the two languages, COBOL and Java. For
example, a COBOL group item does not impose any mem-
ory overhead when gluing its elements together into a col-
lection structure, as described in Section 2. Therefore using
collections is a good practice in COBOL and improves the
health metric, but lowers the metric for the translated Java.
In contrast, the static nature of the COBOL storage system
results in lots of white space allocated in the data fields,
without actual data. In general, as an application-neutral
metric, the health signatures of snapshots of COBOL pro-
grams can be considered much higher than those of the
translated Java programs. If the health metric can be esti-
mated from the translated Java source program, that may be
an indicator of the program’s performance.

The inappropriate use of Java class libraries described in
Section 3.4 is just one form of larger problems in the
framework-based application development. Mitchell et al.
[8] studied the runtime inefficiency of the framework-
based applications, and showed inefficient processing of
date and timestamp data when parsing XML texts in the
SOAP framework. Since it is extremely difficult for both
translators and human programmers to be aware of the run-
time costs that must be paid by calling library routines or
framework-provided services at development (translation)
times, new optimization techniques are needed for runtime
or deployment time, to span several layers of components.

6. Conclusions
We described the details of some performance pitfalls of
large scale Java applications that were translated from CO-
BOL. As mentioned, this study is based on our experiences,
investigating performance problems in mission-critical
commercial middleware code that was actually translated
from COBOL using automatic translation. There are many
differences, particularly in storage management, between
the two languages, and a direct and naive translation may
lead to high pressure on the Java heap and can cause unac-
ceptable amounts of garbage collection.

We classified the performance problems into four catego-
ries: eager object allocations, exceptions in normal control
flows, reflections in common paths, and inappropriate uses
of the Java library. The eager object allocation was found
to be the biggest and most serious problem. Because of the
differences in the language specifications, translated Java
programs often encounter performance pitfalls that would
never occur in programs written by human programmers.

There are strong demands to port COBOL to Java for busi-
ness applications in many industries, and the need is ex-

pected to increase in the near future for modernizing large
assets instantiated in legacy programs. However this is not
practical unless the performance of the translated code is
close to that of the original COBOL versions. We showed
where we need to focus in the translated Java code to im-
prove the performance, and in the future, we hope we can
apply this work to improve a translator or to create a refac-
toring tool that supports translated Java programs.

Acknowledgments
We are grateful to Hiroshi Arai of IBM Japan for technical
materials and suggestion on the COBOL-to-Java transla-
tion.

References
[1] COBOL programming – tutorials, lectures, exercises,

examples. http://www.csis.ul.ie/cobol/default.htm.
[2] S. Chandra, J. de Vries, J. Field, H. Hess, M. Kali-

dasan, K. V. Raghavan, F. Nieuwerth, G. Ramalingam,
J, Xue. Technical Forum: Using Logical Data Models
for Understanding and Transforming Legacy Business
Applications. IBM Systems Journal 45(3), 2006.

[3] DATATEK Inc, http://www.datatek-
net.com/dtk_cobol.htm?

[4] D. F. Ferguson, and M. L. Stockton. Service-oriented
architecture: programming model and product
architecture. IBM System Journal, 44(4), 2005.

[5] Evolveware Inc, Legacy Rejuvenator, available at
http://www.evolveware.com/lr.html.

[6] IBM Corporation. JPROF, open source version avail-
able, http://sourceforge.net/projects/perfinsp.

[7] N. Mitchell and G. Sevitsky. The Causes of Bloat, The
Limits of Health, In Proceedings of the ACM Confer-
ence on Object Oriented Programming, Systems, Lan-
guages, and Applications, pp. 245–260, 2007.

[8] N. Mitchell, G. Sevitsky, and H. Srinivasan. The Diary
of a Datum: An Approach to Modeling Runtime Com-
plexity in Framework-Based Applications, Workshop
on Library-Centric Software Design (LCSD), at the
ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, 2005.

[9] Relativity Technologies, http://www.relativity.com.
[10] SoftwareMining Inc, The COBOL Transformation

Toolkit: CORECT, available at http://www.software-
mining.com/services/translation.jsp

[11] D. Sosnoski. Java programming dynamics: Introducing
reflections.
http://www.ibm.com/developerworks/library/j-dyn06

696

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

