
The Dynamics of Changing Dynamic Memory Allocation  
in a Large-Scale C++ Application 

Neil B. Harrison 
Utah Valley State College 

800 W. University Parkway 
Orem, UT, 84058 

801-863-7312 
harrisne@uvsc.edu 

 John H. Meiners 
Avaya, Inc. 

1300 W. 120th Ave. 
Westminster, CO, 80234 

303-538-4436 
jmeiners@avaya.com 

Abstract 
Changing the approach to dynamic memory allocation in a large 
legacy application is challenging. In order to improve the 
robustness of memory allocation, we fundamentally changed it. 
We replaced standard heap allocation with class-specific heaps. 
We were able to do it with almost no changes to the existing class 
code by overriding the C++ new() and delete() operators, and 
using templates creatively to insert the changes into class 
hierarchies. 

The results have been very positive. Misuse of dynamic memory 
has been detected and errors caused by memory misuse have been 
avoided. Performance of the new memory management code has 
been as good or better as the previous code. Additional 
capabilities such as audits have been added to further increase the 
robustness of dynamic memory usage.   

Categories and Subject Descriptors   D.3.3 [Programming 
Languages]: Language Contructs and Features – Dynamic 
storage management. 
D.3.3 [Programming Languages]: Language Contructs and 
Features – Data types and structures. 

D.3.3 [Programming Languages]: Language Contructs and 
Features – Patterns. 

General Terms    Reliability 

Keywords   Memory management, templates, Curiously Recurring 
Template Pattern. 

1. Introduction 
We were concerned about our project. For many years, our 
business communication system had been a leader in the 
marketplace. Our system was particularly respected for its high 
reliability and availability, and many large customers had come to 
rely on it. However, cracks were beginning to appear in our 
foundation of reliability. The cracks were small, but potentially 
serious: once or twice, a customer’s system crashed. Such crashes 
were very rare, but problematic to the customer: they lost service 
for a few seconds while the system recovered. 

Crashes are notoriously difficult to diagnose, but it became clear 
that they were associated with memory corruption; specifically 
improper use of dynamic memory. Instrumentation of our heap 
management software confirmed this hypothesis. 

The cause of the crashes was rooted in history. The original 
system was written in C, long before the advent of C++. Because 
of the reliability needs of the system, all memory was statically 
allocated. This enhanced reliability, but at a cost of space: all 
tables had to be allocated to the maximum possible size. As the 
number of features and configurations multiplied, the static 
memory approach became impractical, and we began to allocate 
memory dynamically. This coincided with the rise of C++ and the 
use of polymorphism. 

We were well aware that dynamic allocation of memory is fraught 
with danger, and we were careful to use dynamic memory 
carefully. But the system is large, complex, and stateful, and in 
spite of our best efforts, errors can creep in. We were particularly 
cognizant of potential memory leaks; but other memory errors can 
be related to freeing memory prematurely. The most serious are 
often accessing or modifying objects after they have been freed. 

Conceptually, reliable management of dynamic objects is 
reasonably straightforward. One can localize ownership, as 
described in patterns of managing dynamic objects in C++ [3]. 
One can use smart pointers with reference counting [1][4]. Tools 
to detect illegal memory references and memory leaks are 
available. However, our application processed extremely complex 
states, in which state information was shared and passed among 
several resources (think call transfer scenarios,) which made 
localized ownership impossible. Reference counting was thwarted 
by the high complexity of the code in general. And no memory 
usage tools would run on a system as large and complex as ours – 
we tried.  
 

2. Considerations 
We fixed the memory problem that caused the crashes, but 
wanted to take proactive steps to provide more protection of 
dynamic memory usage. We considered several options to prevent 
memory problems. We considered replacing all dynamic memory 
accesses 
with static memory access. This was soon dismissed as 
unrealistic: because of system requirements and because of legacy 
code, dynamic memory was here to stay. Eventually it became 
clear that only one option was viable. We had to replace the 
accesses to the heap with memory accesses that preserved the 
dynamic memory usage, but prevented the problems associated 

 

 
Copyright is held by the author/owner(s). 
OOPSLA’06   October 22–26, 2006, Portland, Oregon, USA. 
ACM 1-59593-491-X/06/0010. 
 
 

866



with memory allocation from the heap. In essence, we had to 
make heap memory allocation safe – preferably as safe as static or 
automatic memory allocation. 
 
The overall goal was to eliminate all serious system problems 
related to dynamic memory usage. Specifically, this meant that 
the system must continue to run properly even if memory was 
misused. In particular, if an object was deleted twice, or used after 
it was freed, or if memory leaked, the system must continue to 
operate. 

There were additional constraints as well. In particular, real time 
performance was important. Memory usage was a key issue. 
Systems ran on specialized hardware, with hard memory limits. 
Memory was adequate, but limited. This meant that solutions to 
the memory problem could not afford to waste significant 
amounts of memory. This was a significant issue in our low cost 
small configurations. 

In addition, the solution had to be implemented within the current 
release schedule. The schedule allowed a few months for design, 
implementation, and testing, but there were over 100 different 
classes that allocated objects dynamically. Naturally, this 
demanded a generic solution. Looking forward, the solution had 
to be easy to implement, as other programmers would invariably 
be creating new classes with dynamic instantiation. 

3.   The Solution 
 

3.1 Overall Approach 
The most serious problems, both in terms of consequences and in 
difficulty to diagnose were use of so-called “stale pointers;” 
accesses to memory after it had been returned to the heap.  If the 
program attempted to use a pointer to memory that had been freed 
and then allocated to some other place in the program, the access 
might fail, particularly if the program expected to use a pointer in 
that memory – the other part of the program may have modified it 
to be non-pointer data. This could cause a crash, but at least the 
generated stack backtrace would lead one to the offending code. 
However, if the program did not read, but rather modified the 
data, the crash would happen somewhere in innocent code – the 
memory would become corrupted for no apparent reason. Such 
problems were nearly impossible to track down, but were even 
more difficult because of the fact that the behavior could change 
depending on what data was written, and how the memory was 
allocated. So it was hopeless to consider finding and fixing all the 
potential problems. Therefore, the only reasonable approach was 
to prevent such errors from having disastrous effects, and detect 
such errors as much as possible. 

Note that many heap implementations, including ours, used some 
sort of a LIFO approach to managing the free memory list, 
generally for performance reasons. This maximized the likelihood 
that use of stale pointers would cause problems.  

The first decision was to institute class-specific pools of memory. 
The rationale was that if writes to stale pointers happened, at least 
the “shape” of the memory would be the same, thus reducing the 
chance that pointers would turn into non-pointers. This could be 
done easily by overloading the new() and delete() operators. 

Class-specific pools of memory allowed for a number of other 
significant benefits. Because objects in a pool were all the same 
size, it became easy to shift from a LIFO management of free 
resources to FIFO, thus greatly reducing the chances that using 
stale pointers would be accessing an object in use. 

These approaches to memory management are not new; they are 
tried and true techniques. Our unique challenge was to retrofit 
them into a very large existing application, and to do it in the 
context of a normal development cycle. Among other things, the 
development base had to remain stable even if we added an 
incomplete solution to the base. To our knowledge, such a 
wholesale change to memory management had not been attempted 
before on such a large legacy system. 

3.2 Classes and More Classes 
 

Because each (base) class needed its own unique pool of memory 
from which to draw, it was not practical to replace the global 
new() and delete() functions – each class needed its own. Since 
inheritance and polymorphism was used extensively, we preferred 
to overload new() and delete() at the base class level. We also 
wanted to minimize the amount of code that had to be changed, 
since we had so many classes to change Therefore, we defined 
new and delete in a template class, and used the Curiously 
Recurring Template Pattern [2][5] to create a custom base class 
from which the class would inherit the new() and delete() 
functions. 

The Curiously Recurring Template is as follows: A template is 
created, and a class inherits the template which is instantiated in 
terms of the class. Therefore, the template instantiation generates 
a unique base class from which the main class is derived. This 
allows capabilities to be added to a class hierarchy easily. Of 
course, in order for this to work, the template cannot instatiate the 
class, since it is not defined yet. 

The use of the Curiously Recurring Template Pattern allowed us 
to override the new() and delete() functions of a class without 
surgery somewhere in the innards of the class declaration. It also 
meant that all classes derived from that classes picked up the 
overridden functions automatically.  

Why could we not simply derive every class from a common base 
class that overrode new() and delete(). The problem was that each 
different class hierarchy needed its own separate pool of objects. 
The template contained a static object, a pointer to the memory 
pool controller (see below). Since each class hierarchy needed its 
unique memory pool controller object, they couldn’t all derive 
from a common class. The inherited template provided the 
uniqueness. Interestingly, the template did not need the class 
name internally; it was simply used to generate different classes. 
This is not uncommon in uses of the Curiously Recurring 
Template Pattern. 

The  template looked something like this (simplified view): 

template <class T> 

class MemPool 

{ 

public: 

867



    static void* operator new(size_t t) 

 { return mptr->getObj(t); } 

    static void operator delete (void* ptr) 

 { mptr->returnObj(ptr); } 

private: 

    static MemPoolCntl* mptr; 

}; 

Instantiation of the template was something like this: 

class MyClass : public MemPool<MyClass> 

{ 

… 

}; 

As templates generate source code, and there were many classes, 
we made the template itself as small as possible. In fact, the 
template consisted of a pointer to a memory pool controller object 
whose methods contained all the memory control logic. The 
template had a handful of single-line functions that invoked the 
memory controller’s methods. As a result, the code growth was 
minimal. 

3.3 Base Classes and Derived Classes. 
Overloading new() and delete() meant that publicly derived 
classes got the benefit of the allocation without adding the 
template at each derived class. In fact, instantiating the template 
at both a base class level and a derived class level produced a 
compile error. In nearly all cases, it was exactly what we needed. 
However in one or two cases, a particular derived class was much 
larger than any of the other derived classes (sometimes by 
thousands of bytes). Since the pool must consist of objects large 
enough to hold the largest derived class, this would have resulted 
in significant memory wastage. In those cases, we overloaded 
new() and delete() directly, without using the template. We had to 
put the contents of the template into the desired derived class by 
hand, but once done, it worked perfectly. With the expectation 
that this might be done again on rare occasions, we created a 
macro that generated the code that paralleled the code in the 
template. The macro was placed with care inside the class 
definition in order to overload new() and delete(), and provide a 
pointer to a MemPool memory manager object. 

3.3.1 Memory Usage 
As indicated before, memory was limited. Every class has an 
expected maximum number of objects that would be allocated at 
any one time, based on the runtime configuration of the system. 
There was enough memory for objects in use for any one 
configuration, but there were tradeoffs in configurations. There 
was not enough memory for all objects to have maximum 
allocation at the same time. Therefore, we could not afford to 
have static tables of the maximum free objects for each type; the 
allocation must by dynamic. 

In order for class specific memory to work, memory could never 
be shared among classes – memory must belong to a specific 
class. MemPool approached these conflicting requirements by 
reserving blocks of objects all at once. Once it reserved such a 

block, it was never returned to the general heap. The size of block 
was set by the implementer on a per class basis. (There was a 
slight performance penalty for many small blocks, so the block 
size was a time versus space tradeoff). 

Among different customers, the number of objects needed of 
different classes varied widely, but within one system, the pattern 
of class usage is very stable over time. No one customer needs the 
maximum number of objects of all classes. As usage of objects of 
a class grew, sufficient blocks would be allocated. Over time, the 
object usage pattern for that system was reached, and no new 
blocks for any class were needed. In this way, we supported 
different configurations dynamically with a limited amount of 
memory. 

3.4 Error Detection and Avoidance 
We took a double-pronged approach to error detection. First and 
foremost, we tried to prevent errors that might occur from causing 
any harm. In these cases, we generated error messages, since they 
represented errors in the application code that should be cleaned 
up. Second, where this was impossible, we alerted the user that a 
problem had occurred that might bring down the system later. 
Whenever we created an error message, we also captured a stack 
backtrace, which programmers could use to help determine the 
source of the error. 

3.4.1 Double Deletes 
To prevent double deletes from causing problems, we stored free 
objects in a FIFO free list. Each class’ free list had a tunable (at 
compile time) minimum size, guaranteeing that freed objects 
would stay in the FIFO for a certain amount of time. The rationale 
was that when an object was freed, subsequent uses, including 
deletes, would be most likely to occur shortly afterwards, rather 
than a long time later. Our experience bore this out. 

When a delete happened, it was easy to check whether the object 
was on the free list. We put out an error message, and allowed 
processing to continue normally. 

3.4.2 Writing to Freed Memory 
Prevention followed the same model as for double deletes, using a 
free list FIFO with a minimum size. Other steps were also 
employed. When an object was freed, a checksum of the object 
was generated. When an object was subsequently allocated, the 
checksum was re-generated, and compared to the original. If the 
two did not agree, the object had been modified. We created an 
error message, and then put the object at the back of the free list. 
The rationale was that if it had been modified, it might be 
modified again, so don’t use it if possible. Instead, select the next 
object on the free list; presumably one that had not been modified. 
The code detected the extremely unlikely event that all objects on 
the free list had been corrupted, and in that case, put out a more 
serious error message, and selected one of the objects. 

3.4.3 Accessing a Freed Object 
There was no way to detect that a freed object was being accessed 
for reading without instrumenting the memory in a way that 
detected all reads. This would have compromised the real time 
properties of the system. Instead, we relied on the FIFO with a 
buffer to maximize the time that an object would be on the free 

868



list. The rationale was that an access of an object after it is freed 
is most likely to occur soon after the object has been returned to 
the free list. Our experience tended to corroborate this hypothesis. 

3.4.4 Memory Leaks 
Without expensive instrumentation, it is impossible to detect 
memory leaks as they happen. So we adopted a compromise that 
served us well. Each class’ memory pool was declared to have a 
maximum size (in number of objects.) When the number of active 
objects exceeded half the limit, an error message was output. The 
message contained information about the number of objects 
allocated, as well as the maximum. A memory leak would 
produce scores of such messages, which were useful to predict 
how long the system could continue to run before that class’ 
memory pool was exhausted. These messages’ stack backtrace 
could not point to the missing delete (obviously), but did show 
where the allocations were happening. 

This was making the best of a difficult situation. We checked all 
places where objects were dynamically created to ensure that they 
checked for the success of the allocation; however, the system 
would certainly function in degraded mode at that point. The 
early warning would give people a chance to reset the system at a 
convenient time. 

3.4.5 Exceptions 
It might be noted that in no case did we throw exceptions. There 
were several reasons for this. The main reason was that much of 
the system had been created before exceptions became part of 
C++, so exceptions had never been part of the error detection and 
handling strategy.  

3.4.6 Visibility 
The system had an interface for accessing certain internal 
information. It was valuable to see the state of memory allocation 
for all classes, so functions were written to present the current 
state of each memory pool, including the number of active and 
free objects, the total number of allocations that had been done, 
and the total number of memory errors that had been detected. 

When each memory pool was instantiated, it registered with a 
static object, providing a pointer to itself. This object would 
retrieve the current information from each memory pool whenever 
requested. 

Part of the information displayed was the name of the class for 
each memory pool. It turned out that it was easy to use the 
memory pool’s instantiation macro to populate the class name – a 
sort of poor man’s reflection. It meant that implementers had to 
do nothing special for their class’ data to show up; it all happened 
automatically. 

 

3.5 Implementation Joys 
Implementation of the system proved to be easier than 
anticipated. It consisted of two parts. The first was to implement 
and thoroughly test the memory allocation software. The second 
was to implement it for all the classes in the system. 

In order to test the memory allocation software itself, we wrote a 
template function that did normal allocations and deallocations, 

and exercised all the error paths as well. It attempted to free an 
object twice. It wrote to an object after it had been freed, and 
verified that the write was detected, that the object was returned 
to the tail of the free list, and that a subsequent allocation of that 
object was successful. It wrote to all the objects on the free list, 
and verified that this condition was alerted. It attempted to delete 
a bad address, and a misaligned address. Both were detected and 
alerted. It simulated a memory leak by allocating all the objects 
allowed, and one beyond it. It attempted to allocate an object 
larger than the largest derived class in the class hierarchy. As this 
was a template function, it was delivered to the official code base, 
where it could be instantiated as needed. 

Once the allocation software was tested and added to the official 
base, implementation for each class proceeded. For each base 
class, the class definition line of code was changed, and two 
initialization lines of code were added. No changes were required 
for most derived classes. Testing was accomplished by executing 
the system with normal activity, and checking the object 
allocation activity through the visibility interface. The interface 
showed all object allocation activity, including the total number 
of allocation errors encountered. With this, it was easy to verify 
correct behavior. Overall, it took a short time to implement 
memory management for all classes – calendar time was a few 
weeks, but since developers were engaged in other development, 
actual time was a matter of days. 

3.6 Non-Object Allocations 
After the implementation of the MemPool template for all classes 
that allocated objects dynamically, our instrumentation showed 
that there was still memory on the heap. Investigation showed that 
a purchased library, written in C, did nearly all the allocations. 
We wanted to extend the MemPool benefits to these allocations as 
well. So we created five dummy classes, representing generic 
objects of different sizes: 8 bytes, 16, bytes, 32 bytes, 64 bytes, 
and 128 bytes. Then we intercepted calls to malloc(), and based 
on the size of the malloc() request, returned the appropriate 
object.  

Unlike the case for classes, we could not determine the maximum 
number of these “objects” that would be needed. We did 
determine empirically what the maximum sizes should be, but in 
case individual usage of the system caused these limits to be 
breached, we changed the algorithm slightly. If the limit for any 
of these dummy classes was exceeded, no errors were reported. 
Instead, the system would revert to having malloc() allocate 
memory. As usage dropped back below the threshold, MemPool 
would resume allocating the memory. In practice, we did not see 
this ever happen. Overall, heap usage dropped to basically 
nothing. 

3.7 Enhancements 
After the initial release, we added more capabilities to the 
memory pool system. These were designed to provide additional 
reliability in various aspects of memory allocation. 
We required that all classes that were dynamically instantiated 
use the MemPool template. The template made it easy to see 
which classes did use it, but it was not immediately clear if a class 
that did not use MemPool did instantiate dynamic objects. 
Furthermore, if a person wrote a class that dynamically 
instantiated a class that had heretofore been only statically or 

869



automatically allocated, that class should now use the MemPool 
template. A simple approach was devised to prevent unauthorized 
dynamic allocation of objects. 
We wrote a template similar to the MemPool template, called 
NoNew. It defined new() and delete() as private. Any class using 
the NoNew template could not be dynamically instantiated. Every 
class was required to use either the MemPool or the NoNew 
template, or be derived from a class that used one or the other. 
This made it easy to verify in code inspections that classes 
allocated memory safely. 
A second enhancement was added to detect writes outside of 
allocated buffers. Four bytes were reserved both before and after 
each piece of memory. Those bytes were written with bit patterns. 
When the memory was returned, the bit patterns were checked to 
see if they had been modified. This provided an added measure of 
safety, as well as detection after the fact. This could be turned off 
or on for each class. It was turned on only for the specific size 
byte buffers, since these allocations were usually made for 
message buffers which could be of variable sizes. This was purely 
preventative, since we had never seen such problems; the 
enhancement did not detect any problems. 
A capability to audit the state of objects was added. This was 
mainly to detect memory leaks, and clean them up before they 
caused problems. It used a mark and sweep approach: at the 
beginning of an audit, the application code would notify the 
MemPool of each object it considered active. It was informed if 
MemPool considered any of those objects to be free. It was also 
informed if previously marked objects were marked. At the end of 
the marking phase, MemPool would sweep the free list and detect 
any objects that were on its active list but were unmarked, and 
free them. It would simply put them on its free list, rather than 
call the object’s destructor (because of possible side effects of 
doing so). 
In order to use the audit, the application code had to have a way 
of accessing all its active objects. In most cases, this was 
reasonably straightforward, though some classes stored pointers to 
objects in multiple places. This necessitated the capability to mark 
objects in such a way that duplicate marks were not considered 
errors. 
The most significant challenge of the audit code was that the 
audits ran at low priority, so the audit code had to be interruptible. 
During an audit hiatus, objects could be allocated or freed; the 
audit code had to account for such changes. 

4. Results 
Reliability tends to be a negative trait: it can best be measured by 
the lack of anything bad happening. Memory usage reliability is 
this way, though the MemPool did give indication of any 
problems it detected and corrected. It also gave memory usage 
statistics that gave some indication of flawless activity. 

Shortly after the introduction of MemPool, before the system was 
released, it detected two or three illegal uses of memory. Since it 
pointed to the class and the line of code where the problem was 
detected, the problems were readily fixed. 

Once the software was released into the field, there were no 
memory-related crashes. The MemPool system has been in place 
for over two years, over more than two releases, and we have had 
no problems. Early on, MemPool detected two memory problems: 

The first was that MemPool detected writes to objects after they 
had been deleted. In fact, it reported that every object on the free 
list had been corrupted. Investigation showed that a state member 
variable of the objects was changed immediately after the object 
was deleted – the way it was done turned out not to cause 
problems, but a very dangerous practice nonetheless. 
Interestingly, the developer’s initial reaction was that the 
MemPool software must be broken, even though it reported 
problems with only that single class. Object dumps provided by 
MemPool vindicated it. 

The second problem was a memory leak. MemPool detected the 
memory leak, and isolated it to the offending class. This enabled 
the developers to quickly find and fix the problem. In the 
meantime, the customer was able to restart the system at a 
convenient time, thus preventing crashes. 

On an inhouse system, a problem was detected with calls to 
malloc. Since the calls went through the specific size byte buffers, 
we could detect the size of the offending buffers. This helped 
track down and fix the problem. 

Perhaps the most significant positive effect was that MemPool 
detected several problems with new code shortly after the new 
code was delivered to the base. This meant not only that such 
problems were detected long before the system was delivered to 
customers, but that any such problem was known to be in the new 
code. This made the problems easy to find and fix. 

Since the release of the system to customers, we have had no 
complaints about crashes related to memory (mis-)use. This lack 
of negative feedback indicates that the solution is very robust. 

5. Performance 
The system was a soft real-time system – stimuli had to be 
serviced within specified intervals. Speed was desirable, but 
consistency of performance was more critical than speed. 
Memory allocation through MemPool was sufficiently fast and 
consistent for our needs. 

Allocation of memory through MemPool was very quick: it 
simply took the first element of the free list. Generating the 
checksum (see above) required a single pass through the object. 
Therefore, allocation time was constant, regardless of the number 
of objects active or free. 

Freeing an object required searching through memory to find the 
right object. However, since the objects were housed in blocks, 
the time was a function of the number of such blocks. The user 
could set the number of blocks on a per class basis at compile 
time. In any case, object deletion was nearly as fast as allocation, 
even though performance showed very slight super-linear 
behavior as a function of the number of blocks. 

All indications were that little little memory was wasted. We did 
not see an appreciable increase in memory usage; whatever 
memory was used by the MemPool approach was well within the 
amount originally allocated for the heap. 

In summary, speed was as good or better than previous, and 
memory usage did not noticably increase. 

870



6. Summary 
In all, the effort to change the way we did dynamic memory 
allocation was a very strong success. We were able to complete 
the development more quickly than anticipated, with high quality 
and reliability. The results indicate that we are now able to detect 
dynamic memory problems, prevent them from adversely 
affecting system reliability, and provide information useful to 
developers for debugging such problems. And we did it on a large 
legacy system. 

7. References 
[1] Alexandrescu, A. Modern C++ Design, Addison-Wesley, 

Reading, MA, 2001, 157-196. 

[2] Coplien, J. A Curiously Recurring Template Pattern. In 
Stanley B. Lippman, ed., C++ Gems, Cambridge University 
Press, New York, NY, 1996, 135-144  

[3] Cargill, T. Localized Ownership: Managing Dynamic 
Objects in C++. In J. Vlissides et al, eds., Pattern Languages 
of Program Design, vol 2, Addison-Wesley, Reading, MA, 
1995, 5-18.  

[4] Murray, R. C++ Strategies and Tactics. Addison-Wesley, 
Reading, MA, 1993, 149-155. 

[5] Vandevoorde, D. and N. Josuttis. C++ Templates: The 
Complete Guide. Addison-Wesley, Reading, MA, 2003, 295-
298. 

 

871


