
Instrumentation of Standard Libraries in Object-Oriented
Languages: the Twin Class Hierarchy Approach

Michael Factor
IBM Research Lab in Haifa
Haifa University Campus

Haifa 31905, Israel

factor@il.ibm.com

Assaf Schuster
Israel Institute of Technology

Technion City
Haifa 32000, Israel

assaf@cs.technion.ac.il

Konstantin Shagin
Israel Institute of Technology

Technion City
Haifa 32000, Israel

konst@cs.technion.ac.il

ABSTRACT
Code instrumentation is widely used for a range of purposes
that include profiling, debugging, visualization, logging, and
distributed computing. Due to their special status within
the language infrastructure, the standard class libraries, also
known as system classes, provided by most contemporary
object-oriented languages are difficult and sometimes im-
possible to instrument. If instrumented, the use of their
rewritten versions within the instrumentation code is usually
unavoidable. However, this is equivalent to ‘instrumenting
the instrumentation’, and thus may lead to erroneous re-
sults. Consequently, most systems avoid rewriting system
classes. We present a novel instrumentation strategy that
alleviates the above problems by renaming the instrumented
classes. The proposed approach does not require any mod-
ifications to the language, compiler or runtime. It allows
system classes to be instrumented both statically and dy-
namically. In fact, this is the first technique that enables dy-
namic instrumentation of Java system classes without mod-
ification of any runtime components. We demonstrate our
approach by implementing two instrumentation-based sys-
tems: a memory profiler and a distributed runtime for Java.

Categories and Subject Descriptors
D.1.5 [PROGRAMMING TECHNIQUES]: Object-ori-
ented Programming; D.2.7 [SOFTWARE ENGINEER-
ING]: Distribution, Maintenance, and Enhancement—Re-
structuring, reverse engineering, and reengineering

General Terms
Algorithms, Languages

Keywords
Code Instrumentation, Standard Class Libraries, Inheritance,
Java

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

1. INTRODUCTION
Code instrumentation is the act of modifying the code

of an existing application by inserting new code statements
and modifying or deleting existing ones. Instrumentation
may be applied to source code as well as to compiled code.
In the latter case, it may be applied statically, before the
execution begins, or dynamically at run time.

Code instrumentation is a powerful mechanism for under-
standing and modifying program behavior. It is employed
in various fields, including debugging, logging, visualization,
access control, performance evaluation, distributed comput-
ing, and aspect-oriented programming. (Note that the latter
can be used in any of the other fields.)

Many modern object-oriented languages, e.g., Java, C#,
Eiffel, Smalltalk, O’Caml and Objective-C, supply a rich set
of reusable core classes, known as standard class libraries
or system classes. These classes improve the usability of a
language, allowing the programmer to concentrate on the
higher-level tasks. A subset of standard classes provides
convenient interfaces to operating system facilities, e.g., I/O
and networking. Henceforth, we will use the terms system
classes and user classes to designate the standard library
classes and user-defined classes, respectively.

In general, instrumentation may affect any code used by
the original program. In the context of object-oriented
languages, the instrumentation process may modify system
classes. If the inserted code utilizes the instrumented sys-
tem classes, it may lead to incorrect results. This is because
the functionality of the instrumented system classes is differ-
ent from the original. To put it simply, using instrumented
classes in the inserted code is equivalent to ‘instrumenting
the instrumentation’.

For instance, consider a profiler for Java that instruments
Java bytecode to record the sizes of objects created by the
application. After each object creation statement, it inserts
code that stores the size of the new object in an instance
of a system class java.util.LinkedList by calling its add

method. Assume that the original application also uses this
list class. Therefore, during profiling, the application must
use the instrumented list class to detect the objects created
in its own instances of the list class. However, if the code
added by the profiler uses the instrumented version as well,
infinite recursion occurs. When an object is created, the
profiler invokes the add method of the list; this method cre-
ates an object representing a new list entry. If the list class
used in the instrumentation code is itself instrumented, the
creation of a new entry in the add method will be followed

288

by another invocation of add, leading to infinite recursion.
Even without the recursion problem, the profiler would yield
incorrect results, recording the sizes of the list entry objects
created by the instrumentation code.

To produce correct results, the instrumentation code must
use the original system classes, while all other code uses
their instrumented counterparts. (Certain types of instru-
mentation may still require that the instrumented system
classes be used.) Therefore, the runtime must use the orig-
inal and instrumented versions of the same class simultane-
ously. This, however, is problematic because both versions
have the same name, i.e., there is a name clash problem.

We propose an instrumentation approach that allows both
the original and instrumented versions of a system class to
coexist within the same execution environment. It solves the
name clash problem by renaming the instrumented classes
and modifying all code, other than the instrumentation
code, to use these renamed classes. The inheritance hier-
archy of the instrumented classes is isomorphic to the orig-
inal one. Therefore, we call our solution the Twin Class
Hierarchy approach (TCH).

One of the most important features of TCH is its portabil-
ity. Being entirely based on instrumentation, it is orthogonal
to the implementation of the targeted language framework.
Neither the compiler nor the runtime environment need to
be modified. Since in most cases the initial goal of code in-
strumentation is portability, a nonportable solution would
be unacceptable.

In most languages, the TCH class name transformation
does not preserve the integrity of the code and may come
into conflict with features such as inheritance, exceptions,
and reflection. Therefore, we augment the TCH approach
with techniques that overcome these difficulties. Despite
the language-specific nature of several problematic features,
most of our solutions are generic, or at least can be employed
by the popular contemporary languages, e.g., C#, Small-
talk, and Java. The implementation of TCH is not entirely
automatic, but may require a certain amount of hand tuning
to adapt it to a particular language. However, once the
tuning is completed, TCH can be used automatically by any
general instrumentation in that language.

Of course, one could argue that the problem could be
solved by avoiding the use of system classes in the inserted
code. However, this restriction significantly limits the conve-
nience and power of the instrumentation. Instead of reusing
system classes, the user would have to reimplement them.
In addition, the functionality of those classes that cannot be
reimplemented would become unavailable. For example, in
the Microsoft Intermediate Language (MSIL) used in .NET,
it is impossible to synchronize thread activities without us-
ing classes from the System.Threading package.

Their special status within the runtime makes system
classes difficult to instrument. In fact, most frameworks,
([1, 2, 4, 15, 16] for example), avoid instrumenting them,
modifying only user classes. Some systems [1, 2, 4] limit
their functionality to user classes, while others [15, 16] in-
vest considerable effort into implementing context-specific
workarounds.

TCH facilitates the instrumentation of system classes.
With TCH class name transformation, the instrumented
system classes become user classes, which are easily instru-
mented by most frameworks. In particular, as we show in
Section 3, TCH allows Java system classes to be instru-

mented, statically or dynamically, without any modification
of the Java Virtual Machine (JVM) or the operating sys-
tem components. By contrast, existing frameworks that are
capable of instrumenting Java system classes compromise
portability. For example, Keller et al. [12] make changes in
the JVM. Duncan et al. [10] modify the dynamically linked
libraries (DLLs) that are used to access the file system.

Although our main motivation is to allow the original sys-
tem classes to be used, our solution can be applied to user
classes as well. This is useful when a reusable non-standard
library, e.g., a library for management of log files, employed
by the application to be instrumented, is also utilized in the
code inserted by the instrumentation. We focus on system
classes because it is the more difficult problem.

We have employed the TCH approach in an
instrumentation-based profiler for Java and in a dis-
tributed runtime for Java, which we call JavaSplit [11]. The
profiler collects statistics about memory allocations per-
formed by an application. We use it to explore the SPECjbb
benchmark [5]. The JavaSplit runtime instruments a stan-
dard multithreaded Java program for distributed execution.
The instrumentation intercepts events that are interesting
in the context of distributed execution, e.g., accesses to
shared data, synchronization, and creation of new threads.

In both systems, the inserted code uses the original ver-
sions of system classes, while all other code uses their in-
strumented counterparts. The ability of TCH to instrument
all system classes plays an important role in the implemen-
tation of both systems. Without it, the profiler would not
be able to detect many of the allocations that occur within
the system classes, whereas JavaSplit would not be able to
maintain the correctness of memory and synchronization op-
erations.

The main contributions of this paper are as follows. First,
we present a novel instrumentation strategy that extends
the capabilities of code instrumentation in object-oriented
languages. Second, we discuss issues that arise when imple-
menting our strategy in contemporary languages. Finally,
we show how TCH enables dynamic instrumentation of Java
system classes.

The structure of the rest of this paper is as follows. Sec-
tion 2 presents the Twin Class Hierarchy approach. In Sec-
tion 3 we discuss the difficulties of instrumenting system
classes and show how TCH alleviates them. Section 4 ex-
plores the overhead of TCH. Section 5 demonstrates the con-
tribution of TCH in profiling and distributed computing. In
Section 6 we present approaches similar to TCH. Section 7
describes several load-time instrumentation frameworks and
their relation to TCH. We conclude in Section 8.

2. TWIN CLASS HIERARCHY
At the heart of the TCH approach lies the idea of renam-

ing the instrumented classes to allow the instrumented and
original classes to be used simultaneously by the runtime.
For each original user or system class we produce an instru-
mented version with a different name. The inheritance rela-
tions of the instrumented classes mimic the original inher-
itance hierarchy. Thus, the new hierarchy is isomorphic to
the original one. Figure 1 illustrates class renaming in Java.
(The new name is produced by adding a prefix ‘TCH.’ to the
original one, so that SomeClass becomes TCH.SomeClass.)

In the instrumented version of a class, all code other
than that inserted by the instrumentation is modified to use

289

java.lang.Object

userpkg.UserDerived

java.lang. Integer

java.util.AbstractCollection

java.lang.Throwable

java.util.AbstractList

java.lang.Exception

java.lang.RuntimeException

userpkg.UserException

java.util.Vector

userpkg.CustomList

java.lang.Double

java.lang. Number

userpkg.UserBase

java.util.ArrayList

(a) Original class hierarchy

java.lang.Object

TCH.userpkg.UserDerived

TCH.java.util.AbstractCollection

TCH.java.lang.Throwable

TCH.java.util.AbstractList

TCH. java.util.Vector

TCH.userpkg.CustomList

TCH.java.lang.Number

TCH.userpkg.UserBase

TCH.java.util.ArrayList

TCH.java.lang.Integer

TCH.java.lang.Exception

TCH.java.lang.RuntimeException

TCH.userpkg.UserException

TCH.java.lang.Double

TCH.java.lang.Object

java.lang.Throwable

(b) Twin class hierarchy

Figure 1: A fragment of the class hierarchy in Java, before and after the TCH transformation. The instru-
mented versions of system classes become user classes. (Java system classes are designated by dark gray.)
The irregularity of java.lang.Throwable is discussed in Section 2.3.

290

public class Example
extends java . u t i l . Vector

{
private int i n tF i e l d ;

protected java . lang . Long l ongOb j f i e l d ;

private java . lang . Object ob jF ie ld ;

// cons t ruc t o r
public Example{

. . .
}
java . u t i l . L i s t someMethod (

int n , java . lang . S t r ing s) {
. . .

}
java . lang . I n t e g e r someOtherMethod (

java . u t i l . Vector vec ,
java . lang . Object obj)

{
. . .
i f (obj instanceof java . lang . S t r ing){

. . .
}
. .
java . lang . I n t e g e r l o c a l

= new java . lang . I n t e g e r (n) ;
java . lang . System . out . p r i n t l n (l o c a l) ;
. . .
return l o ca lVar ;

}
}

(a) Original class

public class TCH. Example
extends TCH. java . u t i l . Vector

{
private int i n tF i e l d ;

protected TCH. java . lang . Long l ongOb j f i e l d ;

private java . lang . Object ob jF ie ld ;

// cons t ruc t o r
public Example{

. . .
}
TCH. java . u t i l . L i s t someMethod (

int n , TCH. java . lang . S t r ing s) {
. . .

}
TCH. java . lang . I n t e g e r someOtherMethod (

TCH. java . u t i l . Vector vec ,
java . lang . Object obj)

{
. . .
i f (obj instanceof TCH. java . lang . S t r ing){

. . .
}
. .
TCH. java . lang . I n t e g e r l o c a l

= new TCH. java . lang . I n t e g e r (n) ;
TCH. java . lang . System . out . p r i n t l n (l o c a l) ;
. . .
return l o ca lVar ;

}
}

(b) Twin class

Figure 2: A Java class before and after the TCH transformation. (Although we present source code, the actual
transformation can be performed on bytecode as well.) All referenced class names, except java.lang.Object,
are replaced.

TCH
transformer

purpose-specific
transformer

original
class

runtime

0111011
1010100

phase 1 phase 2

Figure 3: Instrumentation process. The code in-
serted during the second phase uses original class
names.

Object (OOC)
Object (OOC)

TCH.Object
(IOC)

original
class

hierarchy
twin
class

hierarchy

irregular
classes

Figure 4: High-level view of class hierarchy trans-
formation

291

the TCH class names (see Figure 2). For example, in Java
bytecode, the renaming affects the instructions instanceof,
invokevirtual, new, getfield, etc. (See [14] for the ex-
act semantics of the above instructions.) However, as we
show in Section 2.7, there is no need to modify the strings
that designate class names. (In fact, they cannot always be
distinguished from the other strings.)

The TCH-related transformations are independent of the
purpose-specific instrumentation. Therefore, it is possible to
rewrite the code in two phases, applying the TCH transfor-
mations prior to the purpose-specific transformations (see
Figure 3). To solve the circular dependency problems de-
scribed in the previous section, the latter phase inserts code
that uses the original class names. Both phases can be per-
formed statically, or both can be performed dynamically. It
is also possible to produce the TCH versions of classes stat-
ically, and then apply the purpose-specific transformations
at run time. The TCH phase is implemented only once per
language. When implemented, it can be reused with any
general instrumentation process.

The class name transformation, if performed naively, com-
promises the integrity of the instrumented code in several
contexts, including inheritance, reflection, and exception
handling. In this section we study the problems that emerge
and present techniques to resolve them. Together with the
modification of class names, the presented solutions con-
stitute the previously mentioned TCH transformations. In
this section, the term instrumented class means class result-
ing from applying the TCH transformations on the original
class.

2.1 Root class
Most modern object-oriented languages, e.g., Java, Small-

talk and C#, have an object class at the top of their class
hierarchy (java.lang.Object in Java, Object in Smalltalk,
System.Object in C#). Due to the name change, the in-
strumented object class (IOC) is not the top hierarchy class,
but a subclass of the original object class (OOC).

Figure 4 presents a high-level view of the class hierarchy
transformation. In the new class hierarchy, the IOC is a di-
rect subclass of the OOC. Since the IOC is not the root class,
the language may have certain special classes that are not
its subclasses. For example, in C#, the TCH transforma-
tion cannot replace the superclass of an array class, because
arrays are implicitly defined (using the [] operator at the
source code level). As a result, despite the TCH transfor-
mation, arrays remain subclasses of System.Object and are
not subclasses of TCH.System.Object. Classes that do not
subclass the IOC are denoted irregular classes. These classes
present a few problems that are discussed and resolved in
Section 2.2.

2.2 Irregular classes
The presence of irregular classes is problematic mainly in

languages with static typing, e.g., Java, C# and O’Caml.
Languages with dynamic typing (such as Smalltalk) may be
affected by it, depending on whether the purpose-specific
instrumentation modifies OOC behavior.

In statically typed languages, TCH class renaming trans-
forms all uses of OOC in the original code, e.g., local vari-
ables, class fields, and method parameters, into uses of IOC.
Thus, a variable of type OOC that originally could have
referenced an irregular class, e.g., an array class, is trans-

class TCH. IntArrayWrapper
extends TCH. Object
{
private int [] a r ray ;
// cons t ruc tor , s u b s t i t u t e s NEWARRAY
public TCH. IntArrayWrapper (int s i z e){

ar ray = new int [s i z e] ;
}
// s u b s t i t u t e s IALOAD
f ina l public int load (int index){
return ar ray [index] ;

}
// s u b s t i t u t e s IASTORE
f ina l public void s t o r e (int index ,

int value){
ar ray [index] = value ;

}
}

Figure 5: A possible wrapper for a Java integer ar-
ray. Accessor methods are final to enable inlining.

formed to a variable that is unable to do so, because irregular
classes do not subclass IOC. For example, in instrumented
C# code, a local variable of type TCH.System.Object can-
not contain a reference to an array of integers whose direct
superclass remains System.Object, despite the class name
transformation. To solve this problem, OOC references are
not replaced by IOC references in the instrumented code.
Rather, they are left as they are, in order to allow them
to reference the irregular classes (see Figure 2). The only
exception to this rule is made in the code that originally
creates an OOC instance: after instrumentation it creates
an IOC instance.

Another problem with irregular classes is that they are
not affected by the changes made by a purpose-specific in-
strumentation in the implementation of IOC. For example,
if a field myID and a method id() returning this field are
added to IOC, only the subclasses of IOC will have an ID.
This problem, which is relevant also in languages with dy-
namic typing, may be resolved by applying the transforma-
tions applied to the IOC directly to the implementation of
irregular classes. In the above example, all irregular classes
should be augmented with the ID field and ID method. Un-
fortunately, this solution is inapplicable to classes that do
not have a class definition, but rather are defined implic-
itly, e.g., array classes. In these special cases, the problem
is solved by defining a wrapper class around the implicitly
defined classes. This wrapper should subclass the IOC, thus
inheriting all its functionality. All references to the origi-
nal class should be replaced with references to the wrapper.
Figure 5 illustrates a wrapper for a one-dimensional Java
integer array. In all the instrumented bytecode the invo-
cations of the bytecode instructions newarray, iaload and
iastore should be replaced by invocations of the wrapper
constructor, and methods load and store respectively.

In statically typed languages, a variable of type OOC that
points to a subclass of IOC needs to be downcast to IOC
whenever accessing a method or a (public) field added to
IOC by the purpose-specific instrumentation. If the object
referenced by a variable of type OOC is an instance of an ir-
regular class, then it needs to be downcast to its own class,

292

before accessing the additional member. (If the irregular
class was not augmented with these members, the code ac-
cessing them must be skipped.)

2.3 Classes with special semantics
Some languages attribute special semantics to certain

classes (or other class-like constructs, e.g., Java interfaces).
For instance, in Java, only a subclass of java.lang.Throw-
able can be thrown as an exception. Only a class imple-
menting the java.io.Serializable interface can be mar-
shaled into a bitstream. The renaming causes the instru-
mented classes to lose their special semantics, often violat-
ing the integrity of the instrumented code. For example, in
the instrumented code the argument of a throw statement
in Java is no longer a subclass of java.lang.Throwable,
but rather a subclass of TCH.java.lang.Throwable, which
is illegal.

Since the special semantics are class-specific, so in theory
should be the solution. In practice, a general technique pre-
sented below solves the problem for those cases of special
class semantics of which we are aware. (Note that very few
system classes have unusual semantics.)

In order to regain the special semantics of an instrumented
class, we make it a direct subclass of its original version.
This solves the problem, because it creates an ‘is a’ re-
lationship between the instrumented class and its original
counterpart. For instance, in the case of Java’s throwable
class, the instrumented class TCH.java.lang.Throwable be-
comes a subclass of java.lang.Throwable (Figure 1(b)) and
therefore can be used in a throw statement. This solution
also works for all of Java’s special interfaces. When this
technique is applied, additional irregular classes are created.

The above solution would not be possible unless the orig-
inal special classes could be subclassed. For example, it
would not work if Java’s throwable class were a final class.
(In Java, final classes cannot be subclassed.) It would
also fail if the original class was not a direct subclass of the
OOC. Fortunately, those classes with special semantics can
be subclassed and directly subclass the OOC.

2.4 Illegal method overriding
In most languages with static typing, an inherited method

cannot be overridden by a method with a different return
type and the same argument types. In previous sections
we saw cases of instrumented classes subclassing their orig-
inal counterparts. In section 2.1, we describe how an IOC
is made a direct subclass of an OOC. In section 2.3 we
show how instrumented classes regain their special seman-
tics by subclassing their original versions. One consequence
of the TCH class name transformation is that an instru-
mented class may contain a method that differs from the
original method only by a return type. (Method arguments
remain the same if a method does not have object refer-
ence arguments.) Therefore, subclassing a non-TCH class
by its instrumented version can lead to a violation of method
overriding rules. For example, in Java, the return type of
the method toString() in IOC is TCH.java.lang.String,
which is different from its return type in OOC.

We solve this problem by renaming the problematic meth-
ods, and modifying the code to use the new names, which are
produced by adding the prefix ‘TCH ’ to the original names.
For example, when creating the IOC, its toString() method
is renamed TCH toString().

2.5 Object constants
Most languages contain object constants. For instance, in

Java, string literals are objects of type java.lang.String.
In pure object-oriented languages like Smalltalk, all con-
stants and strings, e.g., 1977, 0.333 and ‘hi’, are objects.

Since object constants are instances of the original system
classes, they are not compatible with the rest of the code,
which is instrumented to use the TCH classes. We solve
this problem by replacing each object constant of a class A

with an instance of TCH.A. For example, in Java, each string
literal is replaced with a corresponding instance of TCH.ja-
va.lang.String. (A regular string may be converted into
a TCH string by using the underlying character array of
the former to create an instance of the latter.) The above
problem exists both in statically and dynamically typed lan-
guages. In the latter, if object constants are not converted
to the TCH form, they will not be affected by the instru-
mentation.

2.6 Runtime exceptions
Runtime environments, e.g., JVM or .NET Common

Language Runtime (CLR), may throw runtime exceptions.
These exceptions are not TCH objects.

In statically typed languages the exceptions are caught
on the basis of their class. The TCH class name transfor-
mation causes the rewritten catch statements to catch the
TCH exceptions but miss the runtime exceptions. To solve
this problem we modify each catch statement to catch both
the instrumented and the original versions of the exception
classes associated with it. In both dynamically and statically
typed languages, a caught runtime exception is converted,
before the execution of an exception handler, to an instance
of the corresponding TCH class. This ensures that the ex-
ception handler will process a TCH version of the exception.

2.7 Reflection
The TCH approach modifies class names and method

names (Section 2.4). Consequently, it must be adapted to
preserve the behavior of the reflection mechanisms of a lan-
guage. Since reflection may be implemented differently in
each language, there is no generic solution for this problem.
However, the following simple technique allows the support
of the basic features of reflection in most languages.

In the instrumented code, when invoking reflection re-
lated methods, we perform translation between the original
and the instrumented class (or method) names. Each in-
put parameter of a reflection method designating the name
of a class (or a method) is converted to the TCH form (by
addition of the TCH prefix). Each output (usually the re-
turn type) designating the name of a class (or a method) is
converted to the non-TCH form. (Note that if a name is al-
ready in the desired form, we leave it as is.) The translation
is performed inside the reflection-related methods.

For example, consider the methods forName and getName

of the Java class java.lang.Class. The former method re-
turns an instance of java.lang.Class that corresponds to
its single string parameter. The latter method, which does
not have any parameters, returns the name of a class rep-
resented by the given instance of java.lang.Class. In the
instrumented code, the class name parameter of forName,
’SomeClass’ is converted to ’TCH.SomeClass’. Therefore,
the returned instrumented class object represents the in-
strumented class rather than the original class. Thus, if

293

class TCH. F i l e extends TCH. Object {
private F i l e or ig Imp l ;
// cons t ruc t o r
public F i l e (TCH. St r ing name){

or ig Imp l =
new F i l e (name . TCH toOrigStr ing ()) ;

}
// wr i te a by te to a f i l e
public void wr i t e (byte b){

or ig Imp l . wr i t e (b) ;
}
// read a by te from a f i l e
public byte read (){
return or ig Imp l . read () ;

}
. . . // o ther API methods

}

Figure 6: Implementation of an instrumented na-
tive class using the delegation pattern (in Java-like
coding style). Note the string conversion in the con-
structor.

we use the returned class to create an instance, we will
create an instance of the instrumented class and not the
original. Similarly, the instrumented string returned by
getName, ’TCH.SomeClass’ is translated to ’SomeClass’.
Consequently, if the returned string is compared to a hard-
coded class name string, the result of the comparison will
be correct because the hardcoded names remain in non-TCH
form, despite the TCH transformations.

2.8 Built-in classes
Contemporary languages have system classes whose im-

plementation is integrated into the runtime. More specif-
ically, the implementation of a subset of their methods is
hardcoded. Such methods are called native in Java and
internalcalls in C#. Henceforth, we conform to Java termi-
nology and call them native methods. System classes that
contain native methods will be referred to as native classes.

Implementation of a native method is always bound to a
particular method in a particular class. It can be accessed
only by calling that method, but cannot be reused in the im-
plementation of another method (or in another class). For
example, consider the native method currentTimeMillis()

defined in the Java class java.lang.System. Its implemen-
tation, which queries the underlying OS for the current time,
cannot be incorporated into some other class. Therefore, af-
ter TCH class renaming, the native functionality is unavail-
able in the instrumented system classes. To correct this,
TCH must provide the instrumented system classes with an
alternative implementation that simulates the original API.
We accomplish this by using the original version of a class in
the implementation of its instrumented counterpart. This is
possible only because the TCH approach allows the original
and the instrumented versions of a class to coexist.

In most cases, an instrumented version of a native class is
implemented as a wrapper around the original class. The
wrapper methods delegate invocations of the native API
methods to an encapsulated instance of the original class.
Figure 6 illustrates the implementation of the instrumented
version of a hypothetical class File that originally had na-

tive API methods to access the file it represents. If neces-
sary, the wrapper methods convert the parameters and the
return type from TCH form to the original form and vice-
versa.

Normally, only a small portion of the system classes are
native. Most of these are related to reflection, GUI, I/O,
and networking. In Java they constitute about 3% of the
system classes. A much smaller portion is required to run
most programs that do not contain a GUI. We have success-
fully executed various applications, including SPECjbb, and
applications that perform I/O and networking.

2.9 Applicability discussion
Some techniques used to alleviate the side effects of the

TCH approach are language specific. Therefore, in theory
there can be a language to which TCH would be inapplica-
ble.

TCH is a general methodology and not an algorithm.
Thus, the techniques to alleviate its side effects should be
perceived as guidelines rather than specific instructions. If
a certain issue cannot be resolved by the proposed tech-
niques, then language-specific solutions should be sought.
The strength of TCH is in the fact that once all issues are
resolved for a particular language, it can be automatically
employed by any general purpose instrumentation in that
language.

3. FACILITATING INSTRUMENTATION
OF SYSTEM CLASSES

Code instrumentation can be performed statically, be-
fore the execution begins, or dynamically at run time. The
special status of system classes makes their transformation
problematic in both modes. TCH eliminates most of the dif-
ficulties, because, after renaming, the instrumented versions
of system classes are no longer part of the standard class li-
braries but are rather user classes, which are much easier to
instrument. In contrast to the instrumentation frameworks
that allow arbitrary transformations of all system classes,
TCH does not require modification of any components of
the language infrastructure, e.g., the compiler or the run-
time.

In this section, due to a variety of language-specific mech-
anisms and issues, we focus our discussion on Java. How-
ever, most of it is valid for other frameworks with dynamic
loading, including the .NET platform.

3.1 Static instrumentation
If the instrumentation does not modify the class names,

static instrumentation of system classes must force the run-
time to use the instrumented versions instead of the origi-
nals. This may not always be possible, because the system
classes may be deeply integrated into the runtime.

In Java, most popular JVMs, e.g., Sun and IBM JDKs,
provide a command line option that allows the user to spec-
ify the path from which system classes should be loaded.
In the JDKs mentioned above, it is also possible to change
the implementation of system classes by modifying the con-
tents of the file rt.jar in which most of the system classes
are stored. Unfortunately, neither option is standardized.
Therefore, in theory, there may be a valid JVM that does
not allow static instrumentation of system classes.

With TCH class name transformation, the instrumented
system classes become user classes. Therefore, they are

294

loaded as ordinary user classes, not instead of, but in addi-
tion to their original versions, rendering the need to replace
them or update their loading path obsolete. Thus, TCH
avoids potential portability problems.

Runtime environments can make assumptions regarding
the structure and loading order of system classes. If these
assumptions do not hold, a runtime may terminate abnor-
mally, often without a comprehensive error message. For ex-
ample, most JVM implementations make assumptions about
the size of the classes java.lang.Object, java.lang.Class
and java.lang.String. If the instrumentation process aug-
ments one of these classes with a field, the JVM crashes. It
will also crash if the loading order is changed as a result of
instrumenting the above classes. Note that these problems
arise not only in static but also in dynamic instrumenta-
tion. TCH lets the JVM keep the original definitions of the
problematic classes, thus avoiding these difficulties.

3.2 Dynamic instrumentation
The main advantage of dynamic instrumentation is that it

does not require a priori knowledge of the classes used by a
program (closed world assumption). Since reflection allows
the loading of classes whose identity is determined at run
time, it may be impossible to determine the transitive clo-
sure of classes used by a program. Moreover, classes created
at run time can only be instrumented dynamically.

The most important challenge in dynamic instrumenta-
tion is to intercept all the classes employed by an ap-
plication. In most runtimes, it is difficult to intercept
system classes. In Java, there are two main obstacles.
Both are related to the Java class loading mechanism,
which is used by most contemporary frameworks to im-
plement dynamic instrumentation. First, a subset of sys-
tem classes (approximately 200 in Sun JDK 1.4.2) is al-
ready loaded by the JVM, before the class loading mech-
anism can be modified to enable rewriting. Since most
of these preloaded classes are used extensively by non-
trivial applications, it is important that they can be in-
strumented. (Among the preloaded classes are: java.lang.-
Integer, java.lang.String, java.util.HashMap, java.-

lang.Thread.) Second, the class loading mechanism at-
tempts to ensure that the system classes are defined by the
bootstrap class loader. Since the bootstrap class loader is
integrated into the JVM, the user cannot gain any control
over it without modifying the JVM, which is highly unde-
sirable. Consequently, it is hard to modify the definition of
a system class.

Existing portable load-time instrumentation frameworks,
such as JMangler [13], Javassist [7], JOIE [8], BCEL [9], As-
pectWerkz [2], and JBoss AOP [4], do not instrument system
classes (due to the problems mentioned above). The frame-
works that are capable of instrumenting system classes, e.g.,
[12] and [10], compromise portability by modifying the JVM
or the underlying DLLs. Our recent communication with the
representatives of JMangler, AspectWerkz, and JBoss AOP
has revealed their desire to perform dynamic transformation
of system classes as well as their inability to accomplish this.

The TCH approach accomplishes dynamic instrumenta-
tion of Java system classes. TCH does not suffer from
the problems mentioned above because it renames system
classes, thus transforming them into user classes. Since
most runtimes (with dynamic loading) allow dynamic instru-
mentation of user classes, TCH effectively allows all system

i f the name of requested class starts

with ‘ tch . ’ :

read the original class

produce i t s tch version

apply the purpose−spec i f i c transformations

otherwise : load the class in the usual way

Figure 7: Dynamic class loading procedure

classes to be instrumented without any modification of the
runtime infrastructure. To the best of our knowledge, TCH
is the only technique that achieves this in Java.

3.2.1 TCH-based dynamic instrumentation in Java
In Java and similar frameworks, such as .NET Common

Language Runtime, TCH supports dynamic instrumenta-
tion in the following way. Let AppMain be the class that
contains the main method of the application to be executed.
At the beginning of the execution, we convert the string
parameters of the main method into TCH form. Then, we
hook into the class loading system either by installing a cus-
tom class loader, as is done in Javassist, or by replacing the
definition of the system class loader (java.lang.ClassLo-
ader), as is done in JMangler. After that, we instruct the
adapted class loading system to load TCH.AppMain, and then
employ reflection to execute its main method.

When asked to load a class whose name begins with
‘TCH.’, e.g., TCH.somePackage.SomeClass, the adapted class
loading mechanism fetches the definition of the correspond-
ing original class (somePackage.SomeClass) from the load-
ing path, and then sequentially applies to it the TCH and
purpose-specific transformations, as described in the begin-
ning of Section 2. When asked to load a class whose name
does not begin with ‘TCH.’, the adapted class loader loads
the class without applying any transformations to it. The
above procedure is summarized in Figure 7.

The entire twin hierarchy, including the system classes, is
produced on the fly. The implementation of TCH versions of
native system classes described in Section 2.8 is hardcoded
into the transformer and thus can also be generated dynam-
ically. Alternatively, the TCH versions of system classes
can be produced statically, while the TCH versions of user
classes are produced dynamically.

4. TCH OVERHEAD ANALYSIS
We estimate the overhead of TCH using sequential ap-

plications from the Java Grande Forum (JGF) Benchmark
Suite (version 2.0) [6] and the SPECjbb benchmark [5],
which is probably the most important existing benchmark
for server-side Java. We compare the throughput of the
original programs with their TCH counterparts, which are
produced statically. The measurements were performed on
Intel’s dual-processor machine, 2x1.7 GHz with 1 GB mem-
ory, using Sun JDK 1.4.2.

The sequential benchmarks in the JGF benchmark suite
are divided into three categories. The first one measures
the performance of low level operations such as arithmetic,
casts, assignments, allocation of data, exceptions, loops, and
method invocations. The applications in the second cate-

295

Table 1: JGF Benchmark Suite – microbenchmark results. Due to space limitations we present only a subset
of benchmarks. The throughput difference of the omitted benchmarks is insignificant.

Benchmark Original TCH Difference (%) Units

Arith:Add:Int 864733630 852847490 1.37 (adds/s)
Arith:Add:Long 192838016 188321840 2.34 (adds/s)
Arith:Add:Float 1484273.1 1482983.4 0.09 (adds/s)
Arith:Add:Double 1485996.2 1481910.2 0.27 (adds/s)
Arith:Mult:Int 116997232 116747128 0.21 (multiplies/s)
Arith:Mult:Long 59741112 60856160 -1.87 (multiplies/s)
Arith:Mult:Float 1522337 1519513.2 0.19 (multiplies/s)
Arith:Mult:Double 1464426.1 1457029 0.51 (multiplies/s)
Assign:Same:Scalar:Local 2362722050 2344758530 0.76 (assignments/s
Assign:Same:Scalar:Instance 911725950 917389310 -0.62 (assignments/s
Assign:Same:Scalar:Class 737395200 736152770 0.17 (assignments/s
Assign:Other:Scalar:Instance 295890272 296040640 -0.05 (assignments/s
Assign:Other:Scalar:Class 268851840 267262064 0.59 (assignments/s
Cast:IntFloat 50712684 50638232 0.15 (casts/s)
Cast:IntDouble 50532808 50759816 -0.45 (casts/s)
Create:Array:Int:16 7181555 6869601.5 4.34 (arrays/s)
Create:Array:Int:32 4960039 4688108 5.48 (arrays/s)
Create:Array:Long:1 9575687 9376753 2.08 (arrays/s)
Create:Array:Long:2 9238229 9014085 2.43 (arrays/s)
Create:Array:Long:64 1286189.8 1214997.6 5.54 (arrays/s)
Create:Array:Long:128 717790.56 672445.5 6.32 (arrays/s)
Create:Array:Object:1 9900894 9530014 3.75 (arrays/s)
Create:Array:Object:2 9549455 9252315 3.11 (arrays/s)
Create:Array:Object:4 9270639 9013093 2.78 (arrays/s)
Create:Array:Object:8 8566349 8227791 3.95 (arrays/s)
Create:Object:Simple 2048000 1788802.5 12.66 (objects/s)
Create:Object:Simple:Constructor 2032149.2 1788802.5 11.97 (objects/s)
Create:Object:Simple:1Field 1933169.8 1709515.9 11.57 (objects/s)
Create:Object:Subclass 2038216.5 1764908.6 13.41 (objects/s)
Create:Object:Complex 1678138.4 1481374.4 11.73 (objects/s)
Exception:New 196439.53 141303.75 28.07 (exceptions/s)
Exception:Method 185749.53 135227.94 27.20 (exceptions/s)
Loop:For 511600320 505679008 1.16 (iterations/s)
Loop:ReverseFor 511201248 482592032 5.60 (iterations/s)
Math:AbsLong 37215220 37261768 -0.13 (operations/s)
Math:AbsDouble 31678268 31813592 -0.43 (operations/s)
Math:MaxFloat 28885754 28957228 -0.25 (operations/s)
Math:MaxDouble 29534024 28959788 1.94 (operations/s)
Math:MinLong 33553144 31863088 5.04 (operations/s)
Math:MinDouble 29999084 28429638 5.23 (operations/s)
Math:SinDouble 8395163 8399036 -0.05 (operations/s)
Math:CosDouble 7619756.5 7624011 -0.06 (operations/s)
Math:AtanDouble 4082934.5 4059867.2 0.56 (operations/s)
Math:Atan2Double 3620613.5 3464433.8 4.31 (operations/s)
Math:FloorDouble 4026740 3768169.2 6.42 (operations/s)
Math:PowDouble 750348.06 788845.25 -5.13 (operations/s)
Math:RintDouble 4026344.2 3810941.5 5.35 (operations/s)
Math:RoundFloat 2788671 2745308.2 1.55 (operations/s)
Math:IEEERemainderDouble 422791.1 422895.84 -0.02 (operations/s)
Method:Same:Instance 159960944 158750080 0.76 (calls/s)
Method:Same:SynchronizedInstance 5423729 5422652 0.02 (calls/s)
Method:Same:FinalInstance 174646240 168646416 3.44 (calls/s)
Method:Same:Class 175735072 175511520 0.13 (calls/s)
Method:Other:Instance 31480450 31538018 -0.18 (calls/s)
Method:Other:InstanceOfAbstract 31528914 31538018 -0.03 (calls/s)
Method:Other:Class 39130644 39163380 -0.08 (calls/s)
Average of all JGF microbenchmarks 3.01

296

Table 2: Benchmark application results

Benchmark Original TCH Difference (%) Units

SPECjbb 6727 6524 3.02 (Operations/s)

Series 488.05 533.15 -9.24 (Coefficients/s)
LUFact 192.70 189.64 1.59 (Mflops/s)
HeapSort 634678.90 632111.25 0.40 (Items/s)
Crypt 2235.01 2239.02 -0.18 (Kbyte/s)
FFT 129814.42 138070.45 -6.36 (Samples/s)
SOR 16.84 16.14 4.15 (Iterations/s)
SparseMatmult 12.72 12.76 -0.24 (Iterations/s)

Euler 4.44 4.67 -5.18 (Timesteps/s)
MolDyn 181487.31 187443.61 -3.28 (Interactions/s)
MonteCarlo 406.16 277.48 31.68 (Samples/s)
RayTracer 1183.73 1249.95 -5.59 (Pixels/s)
AlphaBetaSearch 798061.56 798356.90 -0.04 (Positions/s)

gory are short codes that carry out specific operations fre-
quently used in Grande applications. The third category
consists of large scale applications that demonstrate Java’s
potential in tackling real problems.

With few exceptions, the comparison shows that the per-
formance of the rewritten bytecodes is close to their original
performance. Tables 1 and 2 summarize the results. The for-
mer presents the throughput of microbenchmarks from the
first section of the JGF benchmark suite. The latter presents
the results of SPECjbb and of the remaining applications
from the JGF benchmark suite. The “Difference” column
shows the difference between the original and instrumented
benchmarks. Let A and B be the throughputs of the origi-
nal benchmark and its TCH version respectively. The corre-
sponding value in the “Difference” column is 100*(A-B)/A.
Consequently, a positive value indicates higher throughput
of the original application.

The most significant performance difference in Table 1
is observed for object creation benchmarks (denoted by
the prefix “Create:Object”), and exception benchmarks (de-
noted by the prefix “Exception”). In both cases, the dif-
ference is caused by the increased cost of creating rewrit-
ten objects. This increased cost is due to the fact that
these objects’ inheritance chain is augmented with an addi-
tional class at the top of the hierarchy (java.lang.Object
or java.lang.Throwable; see Figure 1). As a result, an ad-
ditional constructor needs to be called during their creation.

The instrumentation overhead in SPECjbb (Table 2) is
only 3%. The most significant throughput difference among
the macrobenchmarks is observed in the Monte Carlo bench-
mark, whose throughput decreases by 32% as a result of the
instrumentation. The Monte Carlo benchmark extensively
uses the class java.util.Random, whose methods are often
inlined by the just-in-time compiler (JIT). However, the JIT
does not inline the counterparts of these methods in the in-
strumented code, which causes a decrease in performance.

5. APPLICATIONS OF TCH
We have employed TCH in Java to implement two byte-

code instrumentation-based systems: (i) a memory profiler,
and (ii) a distributed runtime for Java. In both systems the
instrumentation is performed using the Bytecode Engineer-
ing Library (BCEL) [9].

5.1 Memory profiler
Our memory profiler is a tool for gathering memory alloca-

tion statistics. It can be used to explore memory usage and
detect memory leaks in any Java program. The bytecode in-
strumentation is performed dynamically, by intercepting the
class loading process with the BCEL custom class loader.

The profiling transformation intercepts all bytecode in-
structions used in object and array creation (i.e., new,
newarray, anewarray, and multinewarray). It also in-
tercepts the system API calls that create new object
instances, i.e., java.lang.Object.clone(), and java.-

lang.reflect.Constructor.newInstance(Object[]). In
the bytecode, after each such allocation event, the profiler
transformer inserts a call to a special handler. This handler
may record any interesting data associated with the event,
e.g., the class of the created object, its size, the time of
its creation, etc. (The newly created object is passed as
a parameter to the handler.) The profiling transformation
augments each class with a method that returns its instance
size.

The profiler handler accesses the internal profiler logic,
which is implemented in pure Java. The implementation of
the profiler logic extensively uses system classes, e.g., java.-
lang.System, java.util.Hashtable, java.util.Linked-

List, java.util.Iterator, java.io.PrintStream, and ja-

va.io.FileOutputStream. For example, an instance of
class java.util.Hashtable is used for mapping between a
class name and a counter of allocated class instances. An
instance of java.util.LinkedList is used to record the
times of allocation events. Instances of class java.io.-

FileOutputStream are used to spool the collected data to
files. (The files are used during the execution because the ac-
cumulated data may be too large, especially in long-running
applications.)

TCH benefits the profiler in two ways. First, it allows the
profiler to explore applications that use the same system
classes that it uses in its implementation. While the ap-
plication uses the instrumented system classes, the profiler
logic employs their original counterparts. Thus, the origi-
nal functionality of system classes remains available to the
profiler. Without TCH, the profiler would have to use the
instrumented system classes, which would result in infinite
recursion. Second, TCH enables the profiler to instrument

297

Table 3: Profiler output – object and array allocations in SPECjbb

Class User classes System classes
count % count %

char[] 567268 22.27 1979950 77.73
TCH.java.lang.String 8099041 85.35 1390047 14.65
TCH.java.util.Hashtable$Entry[] 0 0.00 76188 100.00
TCH.java.util.Hashtable$Entry 0 0.00 38097 100.00
int[] 76235 99.65 270 0.35
java.lang.Object[] 700428 99.98 163 0.02

all system classes (dynamically). Consequently, it can col-
lect more accurate results. If the profiler instrumented only
user classes, then allocations performed within the system
classes would not be detected. If system classes are not
modified, then allocations of arrays and system class ob-
ject instances that are performed within the code of system
classes are impossible to intercept. By contrast, allocations
of user class instances can still be intercepted by modifying
their constructors.

Table 3 illustrates the importance of the second feature
in profiling of the SPECjbb benchmark. The table presents
the final values of creation counters of several classes used
by the benchmark. The columns “User classes” and “Sys-
tem classes” indicate the number of instances created in user
classes and system classes respectively. The table shows that
a large number of allocations occur within the code of the
system classes. For example, most character arrays (char[])
are allocated within the system classes. Moreover, the cre-
ation of the system classes java.util.Hashtable$Entry[]

and java.util.Hashtable$Entry occurs only within the
system code. Without the ability to instrument system
classes, all these allocations would remain undetected.

5.1.1 Related systems
The Cougaar Memory Profiler (CMP) [3] is a bytecode

instrumentation-based tool for memory profiling of Java
programs. The developer selects which classes should be
tracked and runs an automated class file editor (using
BCEL) to add profiling instructions to the constructors.
The profiler maintains pointers to the live instances and
can display various useful debugging information, e.g., the
total number of allocations of a profiled class, including the
number of live and garbage-collected instances. In contrast
to our memory profiler, the instrumentation is performed
statically, i.e., before the execution.

Until recently, CMP did not have any support for profiling
Java system classes. Currently, it allows the user to (stati-
cally) transform the classes in system packages. The instru-
mented classes are loaded into the JVM by means of the
command line option -Xbootclasspath, which allows an al-
ternative location of the system classes to be specified when
starting the JVM.

The CMP manual advises users to avoid modifying system
classes as much as possible in order to prevent the potential
loading errors that occur if the profiler’s code uses system
classes that are being analyzed. The manual states that “...
a call to ‘new HashSet()’ will fail if HashSet is profiled, due
to a stack overflow caused by the circular reference. Simi-
larly, if all of java.lang will be profiled, then Strings should

be carefully handled to avoid string allocations, including any
calls to System.out.” By contrast, TCH allows our memory
profiler to easily analyze any system class, even when this
system class is used in the profiler’s logic.

5.2 Instrumenting Java bytecode
for distributed execution

We have employed the TCH approach to implement a
portable distributed runtime for multithreaded Java, which
we call JavaSplit [11]. JavaSplit uses bytecode instrumenta-
tion to transparently distribute the threads and objects of
a standard Java application among the available machines.
The instrumentation intercepts events that are interesting
in the context of distributed execution, such as thread cre-
ation, accesses to shared data, and synchronization. Shared
data is managed by an object-based distributed shared mem-
ory (DSM). All the runtime logic, including DSM, is imple-
mented in pure Java. Therefore, each node carries out its
part of the distributed computation using nothing but its lo-
cal standard (unmodified) JVM. JavaSplit employs IP-based
communication, accessing the network through the standard
Java socket interface.

The distinguishing feature of JavaSplit is its portability.
The use of standard JVMs in conjunction with IP-based
communication allows virtually any commodity workstation
to join JavaSplit. Moreover, a new node does not need to
install any software or hardware. It needs only to receive
the application bytecode and the runtime modules (both of
which it can get by means of the customizable class loading
mechanism).

The correctness and consistency of the JavaSplit system
depends on its ability to intercept various events such as ac-
cesses to shared data, lock operations, etc. Therefore, Java-
Split must be able to instrument any Java class required by
the original application, including the Java system classes.
Using TCH enables JavaSplit to achieve this goal by allevi-
ating the difficulties of transforming Java system classes, as
described in Section 3.

Many system classes are used in the implementation of the
JavaSplit runtime modules. In particular, we make extensive
use of classes from the java.util, java.io, and java.net

packages. The java.util package provides JavaSplit mod-
ules with complex data structures. The other two packages
are used for I/O and networking. TCH enables the origi-
nal versions of these classes, which are used by the runtime
modules, to coexist with their instrumented counterparts,
which are required by the application.

Without TCH we would have had to use the instrumented
versions of system classes in the runtime modules, or else

298

avoid using system classes in the runtime modules com-
pletely. Neither option is practical. The former would result
in erroneous behavior of the runtime modules, e.g., infinite
recursion. The latter would require reimplementing the data
structures from java.util, as well as the I/O and network-
ing facilities. While reimplementing data structures from
java.util would be a long, tedious task, reimplementing
the I/O and networking would require incorporating user-
defined native methods in the runtime code, thus compro-
mising portability.

5.2.1 Related systems
Like JavaSplit, J-Orchestra [16] partitions Java applica-

tions for distributed execution through bytecode instrumen-
tation. However, the goal of partitioning is different. While
JavaSplit creates a supercomputer from interconnected com-
modity workstations, J-Orchestra aims to split a centralized
application into distinct entities running on the most func-
tionally suitable sites. For example, J-Orchestra may ex-
ecute a computation intensive application with a GUI on
two machines: one with a fast processor and another with a
graphical screen. Unlike JavaSplit, which employs an object-
based distributed shared memory and monitors accesses to
the shared data, J-Orchestra uses proxies to access remote
objects. It substitutes method calls and direct object ref-
erences with remote method calls and proxy references re-
spectively.

The key difference between the two systems is in the treat-
ment of Java system classes with native dependencies (i.e.,
classes that have native methods or can be accessed from
such classes). In J-Orchestra they are perceived as unmodifi-
able code and therefore cannot be rewritten to access remote
objects through a proxy. This results in certain constraints
on the data placement. All instances of a system class with
native dependencies are placed on the same node. More-
over, any class that can be referenced from it must also be
placed on that node. Due to the strong class dependencies
within Java packages, this usually results in partitions that
coincide with package boundaries. In contrast, JavaSplit
supports arbitrary partitioning because TCH allows even
system classes with native dependencies to be rewritten for
distributed execution.

Addistant [15] is yet another system that partitions Java
programs. Like J-Orchestra, it aims at functional distribu-
tion, rather than high performance computing. It instru-
ments Java bytecode at load-time using the Javassist [7]
framework. Like J-Orchestra, it employs the remote proxy
model to bridge between objects on different nodes. As a
result of the difficulties described in Section 3.2, Addistant
is unable to transform system classes at load-time. There-
fore, it introduces several bytecode rewriting workarounds,
the applicability of which depends on the type of interaction
between the classes. The creators of Addistant admit that
even if all system classes could, like user classes, be rewrit-
ten, it would still be hard to modify them consistently, since
“...certain runtime systems such as a system class loader
depend on the definition of the system classes.” This is ad-
ditional evidence of the circular dependency introduced by
the requirement to use a single (instrumented) version of
a class. The use of TCH would allow Addistant to mod-
ify all system classes dynamically while avoiding the infinite
recursion problem.

Bootstrap
class loader

JVM

System classes User classes

Execution engine

Application
class loader java.lang.

ClassLoader

subclass

JMangler

BCA

Javassist
class loader

OS I/O Interface Library-based

read class file file contents

Figure 8: Summary of existing interception tech-
niques for JVM

6. RELATED INSTRUMENTATION
APPROACHES

The key idea in the TCH approach is creation of a hi-
erarchy of instrumented classes isomorphic to the original
one. This idea has been employed (for subsets of classes)
in the context of application partitioning [15, 16], mainly to
implement hierarchies of proxies used to access remote ob-
jects. The inheritance relationship between the proxy classes
is made identical to that of the original classes in order to
allow a variable of type proxy of A to contain a reference to
a proxy of any subclass of A.

J-Orchestra [16], already mentioned in Section 5.2.1, has
an instrumentation approach closest to that of TCH. It cre-
ates class hierarchies that mimic the structure of the orig-
inal one. It differs from TCH mainly in that each isomor-
phic hierarchy is created only for a subset of classes. For
two system classes with native dependencies, A and its sub-
class B, J-Orchestra generates two proxies, anchored.A and
anchored.B, the latter subclassing the former. For other
classes, J-Orchestra makes the names of the proxy classes
identical to the original class names, whereas the names of
the real application classes are augmented with the suffix
“ remote”. For example, two classes, A and its subclass B,
are renamed A remote and B remote, the latter subclassing
the former.

7. LOAD-TIME INSTRUMENTATION
FRAMEWORKS

In this section we overview the existing frameworks for dy-
namic instrumentation of Java bytecode, focusing on their
ability to intercept system classes. Figure 8 illustrates the
various approaches to class interception. Our main obser-
vation is that, without the use of TCH, only nonportable
techniques allow instrumenting system classes at run time.

299

7.1 Custom class loaders
The Java class loading mechanism allows users to in-

stall custom class loaders to intercept class files at load-
time. A custom class loader must subclass the system
class java.lang.ClassLoader. This strategy is employed
by Javassist [7], JOIE [8], and BCEL [9]. The applicabil-
ity of this approach is limited to applications that do not
use their own custom class loaders. This is because only
one class loader can affect the definition of a class when it
is being loaded. Without TCH, a custom class loader can-
not intercept all system classes because of the difficulties
described in section 3.2, such as the preloaded classes prob-
lem.

7.2 JVM dependent interception
The behavior of the class loading mechanisms can be af-

fected by modifying the implementation of the JVM. Binary
Component Adaptation (BCA) [12] introduces an adapta-
tion module for transforming the internal JVM data struc-
ture that represents a loaded class. Unlike most instrumen-
tation frameworks, BCA allows the system classes to be re-
defined. Unfortunately BCA requires a custom JVM, thus
compromising portability.

7.3 Library-based interception
Duncan and Hölzle [10] introduce library-based load time

adaptation. They intercept and modify the class files as they
are being fetched from the file system. This is achieved by
modifying a dynamically-linked standard library that is re-
sponsible for reading files. Like BCA, this approach allows
instrumentation of system classes at the expense of porta-
bility. It requires that a custom DLL be provided for every
operating system.

7.4 Class loader independent interception
JMangler [13] provides a portable interception facility,

which, unlike Javassist, BCEL and JOIE, allows the ap-
plication to use custom class loaders. This is achieved
by providing a modified version of the final method
defineClass() in the class java.lang.ClassLoader. Be-
cause the modified behavior is enforced for every subclass
of java.lang.ClassLoader, JMangler is activated whenever
an application-specific class is loaded. In contrast to BCA
and DLL-based load-time adaptation, this approach is lim-
ited because it cannot transform system classes without em-
ploying TCH.

8. CONCLUSION
We have presented TCH, a general instrumentation strat-

egy capable of instrumenting system classes while avoiding
the associated pitfalls. In contrast to those few approaches
[10, 12] that allow arbitrary transformations of system
classes, TCH does not modify the language infrastructure
and is therefore portable. Most existing instrumentation-
based systems do not transform system classes, thus making
an unnatural distinction between user-defined and system
classes. Consequently, these systems either invest consider-
able effort in finding context-specific solutions to overcome
their inability to transform system classes, or limit their
functionality to user classes. The TCH approach provides
these systems with an opportunity to overcome their limi-
tations and find simpler and more efficient ways to achieve
their goals without compromising portability.

9. REFERENCES
[1] The AspectJ home page. http://eclipse.org/aspectj/.

[2] The AspectWerkz home page.
http://aspectwerkz.codehaus.org.

[3] The Cougaar Memory Profiler home page.
http://cougaar.org/projects/profiler/ or
http://profiler.cougaar.org.

[4] The JBoss AOP project home page.
http://www.jboss.org/developers/projects/jboss/aop.jsp.

[5] The Standard Performance Evaluation Corporation.
SPEC JBB 2000. http://www.spec.org/osg/jbb2000/.

[6] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A benchmark suite for high
performance Java. Concurrency: Practice and
Experience, 12(6):375–388, 2000.

[7] S. Chiba. Load-time structural reflection in Java.
Lecture Notes in Computer Science, 1850:313–336,
2000.

[8] G. Cohen, J. Chase, and D. Kaminsky. Automatic
program transformation with JOIE. In 1998 USENIX
Annual Technical Symposium, pages 167–178, 1998.

[9] M. Dahm. Byte code engineering. In
Java-Informations-Tage, pages 267–277, 1999.

[10] A. Duncan and U. Hölzle. Load-time adaptation:
Efficient and non-intrusive language extension for
virtual machines. Tech. Rep. 99-09, Department of
Computer Science, February 1999.

[11] M. Factor, A. Schuster, and K. Shagin. JavaSplit: A
runtime for execution of monolithic Java programs on
heterogeneous collections of commodity workstations.
In IEEE Fifth Int’l. Conference on Cluster Computing,
pages 110–119, Hong Kong, December 2003.

[12] R. Keller and U. Hölzle. Binary component
adaptation. Lecture Notes in Computer Science, 1445,
1998.

[13] G. Kniesel, P. Costanza, and M. Austermann.
JMangler – a framework for load-time transformation
of Java class files. In IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM),
2001.

[14] T. Lindholm and F. Yellin. The JVM Specification,
2nd edition. Addison-Wesley, 1999.

[15] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of
“legacy” Java software. Lecture Notes in Computer
Science, 2072, 2001.

[16] E. Tilevich and Y. Smaragdakis. J-Orchestra:
Automatic Java application partitioning. In European
Conference on Object-Oriented Programming
(ECOOP), Malaga, Spain, June 2002.

300

