
Versatile Language Semantics with Reflective Embedding

Tom Dinkelaker
Technische Universität Darmstadt

Hochschulstr. 10, 64289 Darmstadt, Germany
dinkelaker@informatik.tu-darmstadt.de

Abstract
Often, for one programming language, various implementa-
tions exist that have subtle but important variations in their
syntax and semantics. While current technology provides
good support for syntax variability in form of syntax ex-
tensions, there is only limited support for semantic vari-
ability in language implementations. My thesis is about a
novel approach for adaptable language implementations that
uses a meta-object protocol to embed language abstractions
into the host language and that uses reflective techniques to
adapt the language implementation. The techniques devel-
oped in my thesis open up several possibilities for adaptation
in language implementations not addressed by related work.
Similarly to the role of a meta-object protocol in general-
purpose languages for adapting object-oriented abstractions,
the meta-object protocol allows to adapt language abstrac-
tions of advanced language features, such as the abstractions
of aspect-oriented programming and domain abstractions in
domain-specific languages.

Categories and Subject Descriptors D.3.3 [Software En-
gineering]: Language Constructs and Features—Classes and
Objects, Frameworks

General Terms Design, Languages

Keywords Embedded Domain-Specific Languages, Meta-
Object Protocols, Aspect-Oriented Programming

1. Motivation
Often, for one programming language, various implemen-
tations exist that have subtle but important variations in
their syntax and semantics. For example, there is a myr-
iad of domain-specific languages (DSLs) for state machines,
or there are various implementations of the aspect-oriented
programming (AOP) [5] paradigm for the same base lan-

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10.

guage. Variations in languages exist because of the diver-
sity in applications. Actually in every problem domain or
programming paradigm, there can be a dis-consensus on the
right syntax and semantics.

In traditional language development, for every new syn-
tax and semantics, a new language is implemented from
scratch resulting in high development costs. Current lan-
guage development approaches target to improve these costs,
e.g., using extensible compilers or run-times as well as
component-based, model-driven, or generative language de-
velopment. While current technology provides good support
for syntax variability in form of syntax extensions, there is
only limited support for semantic variability in language im-
plementations. In general, meta protocols are not available
for most languages, particularly for new languages, such as
DSLs.

DSLs facilitate writing programs in a certain applica-
tion domain by providing direct means to express domain-
specific abstractions and operations. Although using a DSL
results in more declarative code, DSL programs may also
suffer from tangling and scattering in the presence of domain-
specific crosscutting concerns. To improve modularization
in DSL programs, aspect-oriented features could be used to
modularize crosscutting concerns. But, while AOP infras-
tructures exist for most general-purpose languages, AOP is
in general not available for arbitrary DSLs, since aspects
must be composed in a special way.

Embedded domain-specific languages [4] have been pro-
posed to avoid the high development costs for DSLs. Roughly,
an embedded language is implemented as a library in a host-
ing language. On the one hand, a new language can be im-
plemented without implementing a new parser and compiler.
And on the other hand, the most host language’s features are
reused for the embedded language. Thus, the development
cost is significantly reduced and new language features can
incrementally be added. While it is commonly agreed that
embedded DSLs are the fasted way to implement a DSL, it
remains an open question whether this approach can be used
to embed advanced language features, such as aspects.

The motivation of this thesis is to combine the research
in embedded DSLs with the research of advanced language
features, such as reflective programming [7, 6] and aspect-

825



oriented programming [5]. By using reflective programming
in DSLs and aspect-oriented languages, we would like to
leverage the same flexibility that is provided by reflective
programming for general-purpose languages to these lan-
guages. By using DSLs in reflective programming, we would
like to leverage domain-specific reflective languages that al-
low more declarative and therefore allow robust adaptations.

In the following, the research hypothesis is summarized
in Sec. 2, the plans for an evaluation are presented in Sec. 3,
and finally, Sec. 4 reports future work.

2. Thesis
My thesis is:

Adopting reflective techniques for embedding lan-
guages enables languages that are open for syntacti-
cal and semantics extensions at the application level,
and open for composability.

My research combines the approaches of reflective pro-
gramming [7, 6] with embedding languages [4]. The ap-
proach is therefore called reflective embedding. The ap-
proach uses reflective features of the host language in form
of a meta-object protocol (MOP) [6] that is used to enable
open syntax, semantics, and compositions of languages. Re-
flective embedding is demonstrated in the Groovy language,
but it could also be implemented in other languages provid-
ing similar reflective features, such as Ruby or CLOS.

To enable an open syntax, reflective embedding uses the
MOP to embed language abstractions into the host language.
A language is decomposed into language components. A
language component consists of (1.) an interface that defines
syntax abstractions (i.e., the keywords), (2.) an implemen-
tation of this interface that binds the syntax abstractions to
(3.) a language model that provides the concrete semantics.
These artifacts are packed together as a library in the host
language. In the language components, each of the above
three parts can be replaced to adapt the implementation. At
runtime, the MOP implicitly maps the language abstractions
used in programs to method calls on meta-level classes in
the language model.

To enable open semantics, reflective embedding uses re-
flective features to extend the implementations of existing
language abstractions for alternative semantics. For exam-
ple, alternative language semantics can enable an interpre-
tation that provides certain guarantees, an optimized execu-
tion, or other semantic analyzes of the same program. In a
nutshell, reflection is used to extend the language semantics
by overriding the methods that are called on the language
model classes for executing the semantics.

To enable open compositions, reflective embedding uses
reflective features to compose several language components.
In a nutshell, extensible composition operators are provided
for composing syntax and semantics of language compo-
nents as if the composed parts would have been implemented

as one language component. Internally, in the composition
operators, the MOP delegates the usage of a keyword in a
program that is given in the composed syntax to the right lan-
guage component. Different styles of composition are sup-
ported. A language component can be extended using an in-
heritance mechanism. Several components can be composed
using black-box composition and gray-box composition.

3. Evaluation
For a qualitative evaluation, the flexibility of the concept is
validated by solving existing problems in four case studies.

Case Study 1: Versatile Semantics for DSLs. The se-
mantics of a given DSL is subject to evolution and to dis-
consensus on the right semantics. For example, a state ma-
chine can be realized either as a Moore or a Mealy automa-
ton. Similarly, the execution semantics of UML state ma-
chines has several variations [1], such as various implemen-
tation strategies for transition selection and event consump-
tion. Despite this, semantics variations in DSL implementa-
tions have only been little explored by means of extensible
DSL compilers and interpreters. The need for supporting
application-specific semantic variability for DSLs is compa-
rable to the need for adapting the semantics of a general-
purpose language implementation in a particular application
targeted by meta-object protocols [6].

Reflective embedding enables meta-level architectures
for DSLs. In a nutshell, while a language designer imple-
ments a DSL as a library using reflective embedding, an-
other language designer in the user domain can adapt the
language implementation using the MOP. The adaptability
is enabled because the language is embedded in a host lan-
guage and the MOP of the host language makes the language
abstraction adaptable. We instantiate the approach by build-
ing a DSL for state machines that supports variations in state
machine semantics that have been demanded previously in
literature [1] but that are currently not supported in related
DSL approaches.

Case Study 2: Versatile Semantics for AOP. Reflective
embedding can be used to embed abstractions of a program-
ming paradigm, such as AOP. Additionally when using re-
flective embedding, the paradigm semantics stays open for
extensions. A problem with the existing AOP technology
is that alternative semantics for aspect-oriented abstractions
can be defined only by compiler experts using extensible
aspect compiler frameworks and infrastructure. Application
developers are prevented from tailoring the language seman-
tics in an application-specific manner.

To address this problem, in [2], we present a new archi-
tecture for aspect-oriented languages with an explicit meta-
interface to language semantics, called a meta-aspect pro-
tocol. We demonstrate the benefits of such a meta-level ar-
chitecture for AOP by presenting several scenarios in which
programs use the meta-interface of the language to tailor its
semantics to a particular application execution context.

826



Case Study 3: Enabling AOP for DSLs. The reflec-
tive embedding of domain abstractions and programming
paradigm abstractions can be combined to improve the mod-
ularization of crosscutting concerns in DSL programs. Like
programs written in general-purpose languages, programs
written in DSLs may also suffer from tangling and scattering
in the presence of domain-specific crosscutting concerns. An
open problem is that there is no adequate generic approach
to enable dynamic AOP for DSLs.

In [3], we present a framework that supports aspect-
oriented features for domain-specific base languages. We
use reflective techniques to extend the interpretation of DSL
implementations, such that domain-specific join points are
intercepted and control is transferred to the framework that
composes in domain-specific aspects. Using this framework
to implement domain-specific aspect languages has several
advantages. First, the framework facilitates the implementa-
tion of new aspect languages because large parts of aspect-
oriented semantics can be reused. Second, both base pro-
grams and advice can be written in different DSLs. Third,
the framework can compose aspects into DSL programs even
as late as at runtime.

Case Study 4: Domain-specific Meta-Protocols. A well-
known critique on meta-object protocols is that they are too
powerful in that they allow to perform program and language
adaptations that may result in incorrect programs.

To address this problem, we propose to use domain-
specific abstractions on top of meta-protocols. Instead of
using the full power of the protocol, the programmer uses
a domain-specific language to specify adaptations on a
more abstract level. These abstract adaptation specification
is then actually performed through the implementation of
that domain-specific language. This DSL internally calls
the underlying meta-protocol that then performs the more
technical operations. Because of that abstract specification
and because the specification can be analyzed in the DSL
implementation before actually executing the adaptation,
the obtained domain-specific meta-protocol allows to de-
velop more robust adaptations. We have instantiated a sim-
ple domain-specific language for specifying the detection
and resolution of aspect interactions that is implemented on
top of our meta-aspect protocol.

For a quantitative evaluation, the plan is to evaluate the
development and the runtime costs of reflective embedding.

Development Costs. The plan is to measure the costs for
implementing new languages and compare them to the costs
of traditional stand-alone implementations. For evaluating
the approach’s quality for developing DSLs, we are devel-
oping an open source project that develops the same DSL
(for implementing state machines) using different traditional
implementation technologies, and we compare the qualities
of the obtained language implementations with the one ob-
tained using our approach. For evaluating the approach’s

quality for developing new aspect-oriented languages, we
will measure the development costs of implementing exist-
ing domain-specific aspect languages, such as COOL and
RIDL, and compare them to the costs of implementing the
languages from scratch. Besides general metrics, such as
lines of code, the reuse when growing a DSL implementa-
tion is measured, e.g., when incrementally adding new do-
main abstractions or when reusing aspect-oriented features
from the AOP framework and comparing it to what it would
cost for a stand-alone implementation.

Runtime Costs. The runtime costs of the DSLs in the case
studies are measured using benchmarks and compared with
related implementations. For DSLs without aspect-oriented
features, as for DSLs in general no adequate benchmarks are
available, new benchmarks will be designed to measure the
runtime overhead imposed by the indirections necessary for
enabling versatile language semantics by comparing execu-
tion time to stand-alone DSLs. For measuring the overhead
imposed by the meta-aspect protocol, the execution times
will be compared to the ones of existing aspect-oriented
compilers and run-times without versatile AOP semantics.
For DSLs with aspect-oriented features, we will compare to
existing domain-specific aspect language implementations.

4. Future Work
Currently, we are comparing reflective embedding to other
language implementation techniques, such as other embed-
ding approaches, component-oriented language implemen-
tations, and monads. Improving performance by using a spe-
cialized meta-object protocol is future work.

References
[1] F. Chauvel and J.-M. Jézéquel. Code Generation from UML

Models with Semantic Variations Points. In UML MoDELs,
volume 3713 of LNCS, 2005.

[2] T. Dinkelaker, M. Mezini, and C. Bockisch. The Art of the
Meta-Aspect Protocol. In International Conference on Aspect-
Oriented Software Development (AOSD.09), 2009.

[3] T. Dinkelaker, M. Monperrus, and M. Mezini. Untangling
Crosscutting Concerns in Domain-specific Languages with
Domain-specific Join Points. In Workshop on Domain-specific
Aspect Languages (co-located with AOSD), 2009.

[4] P. Hudak. Modular Domain Specific Languages and Tools. In
P. Devanbu and J. Poulin, editors, International Conference on
Software Reuse, pages 134–142. IEEE Press, 1998.

[5] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-Oriented Programming. In
ECOOP, pages 220–242, 1997.

[6] G. Kiczales, J. d. Rivières, and D. G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, 1991.

[7] P. Maes. Computational Reflection. PhD thesis, Vrije
Universiteit Brussel, 1987.

827


	Motivation
	Thesis
	Evaluation
	Future Work

