
Rethinking the Human-Readability Infrastructure

Christopher Hall
UC Santa Barbara

chall01@cs.ucsb.edu

Abstract
Character encodings and text editing widgets and applica-
tions together form the current human-readability infras-
tructure. We outline an alternative human-readability infras-
tructure that is simultaneously appropriate for textual for-
mats and binary runtime data structures. Our approach con-
sists of a binary metaformat and corresponding language-
independent structure editor. Here we describe our prototype
editor, its suitability to supersede text editors, and several
case studies that explore its immediate and repeat benefit to
various content domains.

Keywords human-readability, structure editing, metafor-
mat, computer literacy, computational literacy

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Interactive environments; E.2 [Data Stor-
age Representations]: Object representation; I.7.2 [Doc-
ument/Text Processing]: hypermedia, markup languages;
K.3.2 [Computer and Information Science Education]: Lit-
eracy

1. Introduction
In general, text encodings are considered “human readable”
and binary encodings are not. Examples of human-readable
formats include: source code files, comma separated values
(.csv), nearly every encoding used in the web stack (HTTP,
.html, .css, .js, .json, .xml), TeX typesetting (.tex), and of
course flat Text Files (.txt). Each of these have an encoding
defined to consist solely of character codes (in some char-
acter encoding) and can thus be displayed legibly in a text
editor or on a terminal without specific understanding of the
language of the content. Increasingly, UTF8 is the universal
standard text encoding because it combines the extensibility
of Unicode with a backwards compatibility to ASCII. The
ubiquity of UTF8 represents a major unification in the long

and complex history of character encodings and internation-
alization.

Command line interfaces, text editors, and text field wid-
gets in graphical user interfaces, each allow a user to di-
rectly author strings of characters (flat text) and therefore
author content in any human-readable format. Flat text ap-
pears at the borders between the user and the application,
and often between two distinct programs as communication
over network, clipboard, or inter-process interfaces. Parsers
take flat text in and convert it to a machine-friendly encod-
ing paradigm. Renderers perform the inverse, transforming
data out to flat text for human-readability. While software
itself has a generally recursive nature, interaction with flat
text is where structure and abstraction (the major ingredients
of software) bottom out. Specifically, strings are often com-
ponents of compound structures, yet strings cannot them-
selves have arbitrarily complex inner structures; flat text is
very bare and literal in its presentation. The lack of struc-
ture and abstraction brings many disadvantages, including
the need for content-altering escape sequences, the overload-
ing of whitespace as a token delimiter, the lack of binary
encoded numbers, and the line endings debacle (differences
between operating system conventions), but worst of all, the
inability to express arbitrarily elaborate contextual informa-
tion or explicit cross-links and indirect derivations between
data. Regardless of its limitations, flat text is all that users are
given (as far as open-ended asynchronous interactions with
raw data go) because of its monopoly on human-readability.
Even when software has some choice in the matter “the
transparency and interoperability benefits of textual formats
are sufficiently strong that most designers have resisted the
temptation to optimize for performance at the cost of read-
ability” (Raymond 2003).

Based on three observations, we find that there is an op-
portunity to alleviate this bottleneck along with its engineer-
ing and human-computer interaction trade-offs:

1. The bit sequences of textual format encodings like UTF8
are not somehow intrinsically understandable to a human;
“human readability” just colloquially implies that it is
a standard encoding understood by most text editors.
The sense of intrinsic readability merely comes from
the ubiquity of tools that render ASCII and unicode.
(You are guaranteed to find a text rendering stack in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FPW’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3905-6/15/10...$15.00

http://dx.doi.org/10.1145/2846656.2846657

1

the core of every OS / user environment) Technically,
any format could achieve this same status if it and
its editors are general-purpose enough to warrant an
equal ubiquity.

2. The machine-friendly output of parsers is itself a class
of encoding with consistent characteristics. Binary for-
mats and programming language runtimes use quan-
tities to structure information. This is true whether
those quantities (scalars to indicate lengths/sizes/spans)
are implicit (imposed by the context) such as with the bit
widths of fields in a network protocol header, or explicit
(exist within the data itself) such as with the free-list or
byte allocation records of dynamically allocated arrays in
a runtime heap.

3. Computing is no longer technologically constrained by
purely textual typewriters and teletypes as the common
denominator for input/output convenient to human users.
Bitmapped displays are ubiquitous, and parametric
graphics can abstract quantity-based syntax (outlined
in observation 2) in a human-readable way.

We see a path forward which can lead to an unprece-
dented unification of runtime binary data, human-readable
text encodings, user interfaces, and program code, where ev-
erything on the spectrum can be made of the same primitives
and live within each other. This paper will focus on the foun-
dational ingredients to this end.

2. Approach
Our approach is to place quantity-based syntax underneath
text encoding to give them the general structure and compu-
tational benefits of runtime data structures, while also plac-
ing graphical syntax on top of text editors (and text entry
widgets) to preserve (or buy back) the human-readability
that would otherwise be lost. We define quantity-based syn-
tax as the category of encoding that declares its structural
segmentation using scalar quantities as opposed to token de-
limiters (a common pattern in binary formats and runtime
heaps but has never been given a categorical name). And we
refer to graphical syntax as any visual non-character-based
means to express the organization or structure of informa-
tion in a human-readable way, such as nested box outlines
(a common pattern in diagramming and graphical user in-
terfaces). This two-part strategy enables a higher low-water
mark for general information such that flat text never again
has to be resorted to for the sake of human interactivity.

The encoding must be extremely light weight in order to
be suitable for use in place of any format, including individ-
ual strings, and the editor paradigm must be suitable for use
in place of any text editing, including terminal I/O and text
fields in GUIs. We have designed a novel metaformat called
Infra (as in infrastructure) to address these shortcomings and
to unify the universal properties of runtime data structures
and transport formats, with the properties of human-readable

formats. A detailed description of Infra will be presented in
a future paper.

Below, we will focus on this new human-readable medium
from the perspective of a paradigm of editor that is as free-
form as flat-text editors, but still edits at a syntactic level.
We will refer to our reimagined text editors as Data Edi-
tors. They can be considered to edit data structures where
text editors are only for editing text. Their graphical syntax
abstracts-away the binary quantities used by the encoding
to express tree structures and leaf primitives. This paper fo-
cuses on the design of our prototype Data Editor and the
general concept of Language-Independent Structure Editing
as a paradigm to supersede text editing.

2.1 Related Work
The most related type of free-form editor for abstract syntax
is The Berkeley Boxer Project (diSessa and Abelson 1986),
which is a successor in spirit to Logo (Papert 1980), as
reimagined from the perspective of the graphical user inter-
face era. It does not have a grammar in mind for all content
because it is not primarily designed around being a struc-
ture editor; only the lines of source code that the user at-
tempts to execute are required to be valid statements in its
language. The Boxer project refers to itself as a computa-
tional medium and shares our long term goals of making
personal computing more self-similar by blurring the lines
between documents, data structures, source code, applica-
tions, and user interfaces, offering a transparent, exploratory,
and reconstructible end-user environment. We are particu-
larly fond of Boxer’s vision, but find that its model has not
quite achieved generality and that its development has been
discontinued. Symptoms of this include: box names cannot
themselves contain boxes, there is no structural distinction
for metadata, the output box generated by an execution and
the hideable “closet” box have invisible special-form struc-
tural relationships that can not be inspected or emulated by
the user, the user interface prevents certain characters from
being typed literally yet has no provisions in the model to es-
cape them. The major limitation of highly unified and highly
constructive environments such as Boxer, Wolfram’s Com-
putable Document Format (CDF), and the Smalltalk user en-
vironment (Goldberg 1984), is that they require wholesale
adoption of an exclusive programming language and mono-
lithic runtime stack, making them unsuitable for use in place
of the individual “strings” or user interfaces within a soft-
ware application.

2.2 Prototype Editor and UI Widget
We have implemented a prototype data editor and ported
it to a custom widget in a user interface toolkit as a proof-
of-concept. This has helped us to gather a list of the mini-
mum features and design decisions an implementation needs
to make in order to support content agnostic / language-
independent structure editing. Each of the following sections
will name a general consideration and give a brief descrip-

2

Figure 1. Our Data Editor as a UI toolkit widget, displaying
some raw data and visualizing its inline parametrized struc-
ture codes as language independent graphics made primarily
of recursively nested boxes outlining spans of content. Here,
“The” and “the” happen to be direct children of the top level
and are therefore not boxed. The cursor is currently on the
“fox” token.

tion of our prototype’s means of addressing it. By no means
is there only one way of addressing them. Design polish and
enhancements in the usability space are left as future work.

Creating text segments Simply typing characters will ap-
pend them to the currently selected text segment, or create
a UTF8 segment if the selection is not a text segment or if
the tree is empty. Pressing spacebar will insert a new text
segment to follow the current one and move the cursor to
it. This segments each ‘word’ into its own logical token by
default. Shift-space will instead insert a literal space charac-
ter into the token without moving to a new one. When the
cursor is set to character-scope editing (discussed later), the
mapping for these two actions of spacebar are reversed for
convenience.

Creating / converting quantity segments The creation of
Integer and Floating-point segments is done by typing the
number into its own segment as if it were meant to be text,
then upon focus leaving the segment, it is detected as being
a whole or fractional quantity and converted to the most ef-
ficient binary encoding. In the case of fractional numbers,
since not every decimal value can be expressed exactly as a
binary floating point number, the binary encoding is tested
for round-trip coherence by converting it back to the ‘short-
est decimal representation’ using the Grisu3 or Dragon4
algorithms (Loitsch 2010). Numbers are converted to the
shortest byte-width encoding that can contain the value with-
out loss of precision. The byte-width will be incrementally
increased if the Dragon4 algorithm fails to convert back to
the literal digits originally entered by the user, and will sim-
ply remain a textual segment if no level of conventional byte-
width binary encoding suffices. Numeric segments are ren-
dered in a distinct style for user awareness and default to
a monospaced font for alignment. At any time the user can
manually override the segment type chosen by the automatic
decision through context menus. This policy provides the
same numeric stability that we are used to from classical text

editing, but does take advantage of the encoding efficiency
when it can, as well as allow any software reading the data
to unambiguously understand the intended magnitude of a
value. As there are many ways to textually format a number,
with preferred decimal markers, digit groupings, scientific
notation, etc., the user’s local region settings are used to ini-
tially interpret the intended magnitude as well as tailor the
display of the numbers they view to use those preferences
to create consistency. This is an example of pulling seman-
tic negotiation to the authoring user’s end of the pipeline to
give them more capacity for being explicit, while also allow-
ing the consuming user to benefit from increased tailoring.

Visualize a List’s items horizontally When segments are
laid out end to end, padding is left on either side to serve
the role of whitespace. Line wrap or horizontal scrolling
modes can be toggled by the user. Tall thin vertical bars are
drawn between segments upon selection or hover in order to
provide visual delineation as well as to discern actual space
characters in tokens versus interstitial padding.

Honor ‘new lines’ symbol to display a List’s items vertically
Pressing the enter key adds the ‘new lines’ symbol into the
metadata of the currently selected List segment if it is not al-
ready present. Shift-enter removes it if it is present. Double
tapping enter toggles its presence. The layout algorithm per-
forms horizontal distribution of a list’s segments by default,
and vertical when the symbol is found in metadata. This sim-
ulates newline characters in classical text editing, but exists
only once for the list as a whole rather than after each line.
While this assumes that a list is intended to be either entirely
vertical or horizontal in its layout, mixed orientations can be
achieved through nesting sub-groups together.

Visualize nesting (containment) A thin outline is drawn
around the segment to visually group it. This straightfor-
ward approach is ubiquitous across mediums for communi-
cating containment - from whiteboard illustrations, to UML,
engineering diagrams, and graphical user interface toolk-
its in general. Background color can be used to commu-
nicate relative nesting depth, which helps to visually iden-
tify all the items that sit at the same depths. Figure 1 de-
picts boxes outlining user-entered content containers. They
chose to communicate a grouping across “quick brown fox”,
“jumped over” and “lazy dog”. The list of three profile
records are each grouped internally as well as grouped as
a mini database. Note that the explicitly typed segmenta-
tion makes the scope of Tina’s last name, “van der Waal”,
unambiguous regardless of the fact that it contains spaces.

Show/hide subtrees At the moment, the tab key toggles
between full and minimized display for a subtree. A similar
interaction acts as The Berkeley Boxer Project’s main means
of navigating through content. It has no scrolling functional-
ity and is designed around small screen resolutions.

Balance line-wrapping within and across segments Line
wrapping rules treat segments as atomic if they can, but

3

try to balance the line-wrapping within the segment (if it is
composite) with line-wrapping across the other segments at
that hierarchy level.

Manage the scope / depth of the cursor Since the four di-
rectional arrow keys are tied up with performing the intuitive
spatial cursor navigation expected from classical text edit-
ing, shift-up and shift-down or page-up and page-down are
used to move along the additional dimension of scope.

Creating container (List) segments The ctrl key is the
mascot for ‘creating’ structure in our prototype. Holding ctrl
and pressing an arrow key will create a List segment. Left
and Right will create a List to the left or right of the cursor
respectively. Down will create a List as a child within the
selection. Up will wrap the selection in a List, similarly to
alt-down discussed below.

Hierarchical rearrangement The alt key is the mascot for
‘moving’ structure in our prototype. Holding alt and press-
ing an arrow key will move the selection through the tree. Up
will pull it up to the parent List. Left and Right will swap the
selection with the left and right siblings respectively. Down
will wrap the selection in a List (pulling it down in the hier-
archy depth) similarly to ctrl-up discussed above.

Visualize empty subtree placeholders We use a centered
dot, similar to an interpunct, to give ‘nothingness’ a repre-
sentation that can be used as a handle for that location in the
structure.

Visualizing Meta Finding a robust layout for organizing
metadata in relation to its data has been tricky. We find the
most appropriate general means is to give it a full structural
sense of separation. Our prototype uses a unique pane within
the workspace to stack each layer of meta. However, during
experiments, inline layouts were strongly desired to make
certain kinds of data structure use cases more readable.

Navigate to Meta and back The escape key moves the
cursor to the meta-container of the current selection. The
meta segment is created if necessary. Shift-escape does the
inverse, moving the cursor back towards the root by one
level.

Create and visualize internal references Since references
are about having the same content in more than one place
at the same time (at least logically), we figured copy/paste
might be a reasonable model to leverage. When pasting
content, it starts out as an inline reference to that original
subtree and is visually marked as such by an arrow pointing
in from the left edge of the segment’s frame. Figure 1 shows
the the second occurrence of “Jim” is a reference. If either
location displaying “Jim” is edited, both will change. A
special use for alt-up is to pull a stand-alone copy of the
content ‘up’ out of the reference frame, to no longer be a
reference.

3. Case Studies
The following are some specific before and after type sce-
narios to illustrate the immediate potential of the paradigm
we have conceptualized and implemented. An exploration
of long term potential after we have defined an Infra-based
computational model is left as future work. Any one of the
sub-domains we explore below could of course be equiva-
lently or better served by domain specific tools and designs,
but our emphasis is on the ability for a strategic initial invest-
ment in the right single paradigm to lift the general founda-
tions required by all domains. A consistency of tools is valu-
able for literacy, transparency, algorithm reuse, and reduc-
tion of per-domain implementations of non domain-specific
interfaces (such as basic GUI properties dialogs that essen-
tially just act as form-field editors but for domain-specific
schema).

3.1 URL
URLs are one of the most formally structured type of plain
text that end-users encounter on a daily basis, potentially
on-screen a vast majority of the time spent using a web
browser. They are also an interesting case study because
the practicality of both reading and writing them by hand
has diminished as they tend to increasingly include embed-
ded URLs (such as redirection URLs for tracking purposes),
which are mangled by escape sequences. A common situ-
ation we can use to study particularly unreadable URLs is
a Google search result. A query of “URLs” turns up a ref-
erence to http://en.wikipedia.org/wiki/Uniform_
resource_locator but actually links to:

https://www.google.com/url?sa=t&rct=j&q=&e
src=s&source=web&cd=6&cad=rja&uact=8&ved=0C
DkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2F
wiki%2FUniform_resource_locator&ei=tE8sVe-i
F4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS
_g70me4Kw&bvm=bv.90491159,d.eXY

If a user or developer wanted or needed to fetch the
actual destination URL, finding it is one thing (especially
being careful about which character it ends on), but us-
ing it is another. Copying and pasting the URL gives you
http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUnif
orm_resource_locator which is not a valid URL due
to the escaping. Perhaps a savvy user has memorized that
%2F is a ‘/’ and %20 is a space, etc. and can perform the
necessary surgery to resuscitate the URL.

If browsers used the LfS paradigm, the infra-URLs would
be something along the lines of:

The URL could of course still be displayed as a long
scrolling line, but for this figure we pressed enter on the
‘query’ field to display its items in a vertical orientation.
The cursor is currently highlighting the embedded URL as
a whole, which has its own substructure intact. The meta-
data tags that mark the ‘types’ of elements with URL tax-
onomy are not being shown. The canonical use of metadata

4

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_locator
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator&ei=tE8sVe-iF4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS_g70me4Kw&bvm=bv.90491159,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator&ei=tE8sVe-iF4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS_g70me4Kw&bvm=bv.90491159,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator&ei=tE8sVe-iF4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS_g70me4Kw&bvm=bv.90491159,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator&ei=tE8sVe-iF4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS_g70me4Kw&bvm=bv.90491159,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator&ei=tE8sVe-iF4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS_g70me4Kw&bvm=bv.90491159,d.eXY
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CDkQFjAF&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator&ei=tE8sVe-iF4m8ggSZi4T4AQ&usg=AFQjCNFVKoOa_HlcuDeUu8wYS_g70me4Kw&bvm=bv.90491159,d.eXY
http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator
http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUniform_resource_locator

for describing URLs would be up to the hypothetical spec-
ification for infra-URLs. An obvious candidate would be a
straight conversion of the original syntax. The following is a
diagram of what that looks like with the metadata tags dis-
played above the cell they describe, and then again, as a tem-
plate exercising the full taxonomy of URLs:

Figure 2. Original url: https://mail.google.com/ma
il?ui=2&shva=1#inbox

Figure 3. Full taxonomy

Not only are infra-URLs easier to read, they remain natu-
rally in a ‘parsed’ state and are also easier and faster to man-
age programmatically as well. They would no longer have
byte value constraints and can shed the need for Base64 en-
coding and decoding. Had we also simulated that projection
in our case study, the hashcode-like portions of the URLs
would have been rendered as some more compact sum-
mary visualization for large integers. Language-independent
structure editors could offer all sorts of graphics enabled
visualization to help summarize or collapse subtrees, espe-
cially if it can be known what portions of content are not
necessarily interesting to the user at the moment.

The hypothetical study imagines that URLs would always
be written, generated, viewed, edited, and processed as infra-
URLs, but for this mock-up, we pasted classical plain text
URLs into our prototype widget, which happens to have a
small library of parsers for automatically converting non-
infra languages to language-independent structure, includ-
ing a module for URLs.

3.2 Twitter Hashtags
There are a number of characters that Twitter hashtags can-
not contain. Originally, Twitter did not have the concept of
hashtags and were formalized through popular convention.
The originator of the folk ‘syntax’ (use of the ‘#’ prefix)
was a software engineer with a specific interest in social me-
dia. Though the invented convention is simple and stands

out well enough with a rare but easily typed character, it is
far from general. A user cannot express where the hashtag
content is meant to end, and whitespace is the de facto to-
ken terminator. Since only single words are unambiguous
in this context, the convention is to chain words together in
the portmanteau fashion familiar to programmers. Hashtags
have come to serve such a critical purpose for spontaneously
aggregating topics, that Twitter has solidified them with se-
mantics and parses them for automatic conversion to hyper-
links in the user interface. Besides being limited to 140 char-
acters, Twitter is a free-form natural language domain for
users to express themselves, but that freedom is bottlenecked
by low-level syntactic issues.

Figure 4. Two-faced hashtags

Figure 4 features a collection of hashtags that have actu-
ally been used by users that may not have noticed that they
were expressing themselves ambiguously and could be mis-
interpreted as well as grouped in with tweets of very dif-
ferent sentiment. In the case of #opportunityisnowhere, the
intended optimistic phrase “opportunity is now here”, can
actually be misread as the opposite and rather pessimistic
phrase “opportunity is nowhere”. We leave it as an exercise
for the reader to explore the multiple expansions of the other
examples.

In a hypothetical world that regularly used LfS, the wid-
gets used to compose tweets would have been future-proof
and ready for a folk syntax to come along and take advantage
of Infra’s self-similarity. A sub-structure has all the expres-
sive potential as the root structure. The pound-sign # could
still be used to demarcate a hashtag of course, but to elimi-
nate the need to escape it when not intending to write a hash-
tag (such as “we’re #1!”), the convention could be to put the
in the tag’s metadata. Either way, these case study hashtags
might have looked something like figure 5.

Figure 5. Un-impoverished communication

Even though hashtags are of little consequence in the big-
ger picture, we find this case study to be a compelling repre-
sentative of unfortunate moments when modern communi-
cations technology ironically reduces our ability to express
ourselves the way we intend. Mainstream pop-culture writ-
ing has not been devoid of spaces between words since their

5

https://mail.google.com/mail?ui=2&shva=1##inbox
https://mail.google.com/mail?ui=2&shva=1##inbox

invention over a thousand years ago (Wingo 1972). Web do-
main names and identifier names in programming languages
are similarly impoverished.

3.3 Type Sensitive Sorting
When sorting a list of files/strings that have numbers in front
(e.g. a track number before the name). When the number
rolls over to an additional digit, string sorting rules would
place this item earlier in the list than the intended (non tex-
tual) interpretation would. Some users have padded values
with leading zeros to coax the desired sorting. In current
file managers special case logic has been added to handle
common variants of this issue. LfS would naturally allow
table-like sorting and would have avoided the need for this
complexity.

3.4 Copy / Paste Form Data
In general, copy and paste does not work across form fields.
Each field has to be transferred individually. LfS would
allow the structure between fields to be part of the selection
and therefore a part of the copy / paste.

4. Conclusion
We realize the importance of minimizing the end-user ap-
parent differences to classical text editing. This paradigm
intrinsically has extra dimensions of expression for the user
to manage, but having complete literacy is only necessary
to the extent that the user wishes to take advantage of them.
We feel that the minimum increase in computer literacy that
Language-Independent Structure requires in order to achieve
basic competence, is reasonable and fairly marginal, espe-
cially when considering them as a percentage of the exist-
ing learning-curves and nuances of computer literacy that

are common place now. The value proposition is fairly high:
being able to express information more explicitly, earning
new domains for human-readability and transparency, and
for the potential unifications between command line shells,
word processing, spreadsheets, web browsers, etc.

Overall, this approach scales down to represent a single
classical string, with a single byte of header overhead (equiv-
alent footprint of a null-terminated C string). At its most
ambitious, it scales up to approximate full application UIs
that can be, by nature, deconstructed by end users if the pol-
ished surface they have been given ever falls short of their
needs. They will have “a hood to lift” and a surface to ap-
ply their computational literacy to without ever having to
leave the realm of structure and abstraction. This platform
has the potential to unify all classes of editing, readily ab-
sorbing the roles of calculators, spreadsheets, word proces-
sors, CLIs, IDEs, and web browsers alike, in a more fluid,
granular, interoperable, and reusable way.

References
A. A. diSessa and H. Abelson. Boxer: a reconstructible computa-

tional medium. Communications of the ACM, 29(9):859–868,
1986.

A. Goldberg. SMALLTALK-80: the interactive programming envi-
ronment. Addison-Wesley Longman Publishing Co., Inc., 1984.

F. Loitsch. Printing floating-point numbers quickly and accurately
with integers. ACM Sigplan Notices, 45(6):233–243, 2010.

S. Papert. Mindstorms: Children, computers, and powerful ideas.
Basic Books, Inc., 1980.

E. S. Raymond. The art of Unix programming. Addison-Wesley
Professional, 2003.

E. O. Wingo. Latin punctuation in the classical age, volume 133.
Walter de Gruyter, 1972.

6

	1 Introduction
	2 Approach
	2.1 Related Work
	2.2 Prototype Editor and UI Widget

	3 Case Studies
	3.1 URL
	3.2 Twitter Hashtags
	3.3 Type Sensitive Sorting
	3.4 Copy / Paste Form Data

	4 Conclusion

