
The Use of Multimethods and Method Combination in a 
CLOS Based Window Interface 

Hans Muller, hmuller@sun.com 
John Rose, jrose@sun.com 

James Kempf, jkempf@sun.com 
Tayloe Stansbury, tayloe@sun.com 

Sun Microsystems, 12-40 
Symbolic Computing Department 

2550 Garcia Ave. 
Mountain View, CA 94043 

Topic Area: User Interfaces 
Keywords: portable window interface, CLOS, method combination, multimethods 

Abstract 

Solo is a portable window interface written in the Common Lisp Object System (CLOS) object-oriented 
programming language. Solo provides a virtual window machine which is targeted to a host window system 
by implementing a set of host window system specific classes and methods for Solo’s host window system 
driver protocol. The interface presented by Solo to an application insulates it from differences in the host 
window system, facilitating application portability. Solo distinguishes itself from other object-oriented 
window systems by exploiting certain features of CLOS. CLOS method combination simplifies initialization 
of windows while preserving easy extensibility of the basic classes. Generic dispatch on multiple arguments, a 
feature unique to CLOS, allows a simpler and more flexible input event dispatching protocol. A powerful 
event description language simplifies the specification of keyboard and mouse events. A prototype 
implementation runs on the server based X11 and NeWS host systems, and on the frame buffer based Lucid 
Window Toolkit, 

1. Introduction 

The increasing demand for easy to use 
applications has encouraged a proliferation of 
window systems on a wide variety of hardware 
and software platforms, There is little 
agreement, however, on how the programmatic 
interface to a window system should be 
designed. From the application developer’s 
viewpoint, this divergence in window interfaces 
increases the amount of effort needed in porting 
an application. Many outstanding window- 
based applications are available only on a 
single hardware or software platform because 

window system dependence is designed into 
the application. Others are available only on 
platforms for which they were not designed 
after a long delay . 

Common Lisp [Steele841 and the Common 
Lisp Object System (CLOS) [BDGKKMBB] 
are language standards supporting portable 
object-oriented programming. As such, they 
provide an excellent substrate for building 
portable applications. However, the 
development of window-based applications in 
Lisp has been hampered by the lack of a 
suitable programmer’s interface. Most 
portable interfaces, such as Common Windows 
[ Intellicorp86], are not object-oriented; neither 
are network-oriented interfaces like X 
[ Scheifler861. Object-oriented interfaces like 
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that supplied by Symbolics [Symbolics86] are 
typically weak in the area of portability. 
Furthermore, many window interfaces dictate 
aspects of look and feel, or weigh down their 
windows with complex semantics. 

The example of lightweight, server-based 
window systems, such as X and NeWS 
[Sun87], and new ideas about how to factor 
user interface management software into 
separate toolkit and support layers [Myers891 
provided motivation for the design of Solo, an 
extensible, lightweight portable window 
interface in CLOS. Solo provides a virtual 
machine for managing windowing user 
interfaces across many hardware and software 
platforms. Fig. 1 illustrates the system 
architecture into which Solo fits. The Solo 
virtual machine runs on a host window system, 
which can be either frame buffer based, such as 
the Lucid Window Toolkit [Lucid88a] or server 
based, such as X or NeWS. Complex window 
semantics (e.g., borders or scrollbars) and 
other specific look and feel components are 
implemented by a toolkit layer. Because Solo is 
implemented in CLOS, it is specifically 
designed to take advantage of innovative 

language features provided by CLOS to make 
both extension and porting straightforward. 

In the next section, the basic features of the 
Solo virtual window machine are presented. 
Section 3.0 describes how object-oriented 
programming is used to structure Solo for easy 
portability. The same mechanisms (inheritance, 
generic functions) which make customization of 
Solo for application developers straightforward 
also facilitate implementation on a new host 
window system. Section 4.0 describes how 
Solo uses method combination [Moon861 to 
facilitate customization of initialization for user 
defined canvases. In Section 5.0, the event 
handling system for Solo is described, with 
special emphasis on how generic dispatching 
on multiple parameters [Bobrow86] eases 
customization for user defined canvases. These 
features distinguish Solo from other object- 
oriented window systems, since they use 

language constructs which are unique to CLOS. 
Section 6.0 presents the event description 
language for specifying complex input events 
involving mouse and keyboard state. Section 
7.0 makes some comparisons between Solo 
and other window systems, Section 8.0 briefly 

Fig. 1 Solo Window Interface Architecture 
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describes the current implementation status, 
and Section 9.0 summarizes the paper. 

2. The Solo Virtual Window Machine 

The Solo virtual window machine is a collection 
of generic functions and classes that present an 
abstract window interface to application 
programmers. Solo provides a single 
lightweight window class called a canvas. A 
canvas represents an unadorned rectangular 

area that serves as a receiver for input events 
and a destination for graphical output. 
Canvases can be either transparent or opaque. 
A transparent canvas does not obscure output 
to underlying canvases. All canvases are 
opaque with respect to input events. Canvases 
have no borders, titles, or other ornamentation, 
consistent with the design goal of providing the 
canvas as a simple window component from 
which more complex components can be built. 

Fig. 2 Canvas Class and Protocol 

Class Definition: 

(defclass canvas (drawable event-dispatch display-specific-mixin) 
((parent :initarg :parent :reader parent) 

(children :initarg :children) 
(depth :initarg :depth :reader depth) 
(bounding-region :initarg :bounding-region) 
(transparent :initarg :transparent :reader transparent) 
(mapped :initarg :mapped :reader mapped) 
(retained :initarg :retained :reader retained) 
(interests :type list :initarg :interests)) 

(:default-initargs :parent *default-display* :children nil 
:transparent nil :mapped nil :retained nil 
:interests nil :event-dispatch-process nil 
:event-dispatch-queue nil)) 

Generic Function Protocol: 

initialize-instance :around canvas &rest args 
parent canvas 
(setf parent) parent-canvas canvas 
children canvas 
(setf children) child-canvases canvas 

bounding-region canvas 
(setf bounding-region) bounding-region canvas 
status canvas 
(setf status) status canvas 
retained canvas 
(setf retained) canvas symbol 
interests canvas 
(setf interests) interests canvas 

mapped canvas 
(setf mapped) mapped canvas 
receive-event canvas interest event 
deliver-event canvas interest event 
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Solo maintains canvases in a parent/child 
hierarchy, using a list of children stored in the 
parent canvas structure, and a parent pointer 
stored in the child canvas structure. Children 
lists are sorted according to occlusion. Child 
canvases are clipped to the parent’s boundary. 
Each canvas records its parent upon creation. 
A newly created canvas is placed at the front of 
the parent’s list of siblings. At the root of the 
parent/child hierarchy is an instance of a host 
window system specific display class, 
corresponding to a physical display device like 
a workstation console. Solo maintains a default 
display on which canvases are created if no 
other display is indicated, and multiple displays 
can be active in Solo at one time. Solo even 
allows different host window systems to 
coexist, so an application can access different 
window systems from within the same Lisp 
image. 

Each canvas has a set of slots which determine 
its size, placement, parent, children, 
transparencies, sensitivity to input, and other 
properties. Fig. 2 contains the definition of the 
canvas class and the method protocol for slot 
access and event handling. All canvas 
operations other than input and output are 
effected by changing the value of some canvas 
slot. For example, the bounding-region slot 
contains a region object which models the 
physical boundaries of the canvas on the 
display surface. In order to resize a canvas, a 
new region with new boundaries is deposited 
in the bounding-region slot. Slot accessor 
methods on canvas slots like bounding- 

region additionally update other relevant data 
structures and cause changes in canvas state 
to be visually manifested, besides simply 
depositing a new value in the slot or returning 
the existing value. 

By connecting slot access to the update of 
other data structures (a technique sometimes 
known as active values [Stefik86] 
[Schaffert86]), methods to expose, bury, move, 
and resize canvases can be written in terms of 

updates to canvas slots. The focus on 
updatable slots in the design makes performing 
operations on canvases more declarative, since 
a change to a slot is effected simply by 
specifying its new value, rather than by giving 
an algorithm for achieving that value. This is in 
contrast to the imperative design of other 
window systems, where the emphasis is on 
operations (e.g., move, resize) which modify 
window state, possibly in a complex manner. 
In imperative designs, user access to window 
state is often supplied as an afterthought, or 
sometimes even omitted. As a convenience, 
Solo provides a library of conventional window 
operations such as expose,bury,destroy, etc. 

In addition, there is an event dispatching 
protocol associated with the canvas class. 
This event dispatching system delivers mouse 
events, keyboard events, and other window 
system generated events to canvases. For 
example, when an attribute of a canvas (such 
as its stacking order) is changed 
asynchronously (i.e., not by application 
program control), a notification event is 
generated, containing the name of the slot to be 
changed and its new value. When this event is 
delivered to the canvas, the slot value is 
actually changed. Section 5 contains more 
detail on the Solo event dispatching system. 

The Solo image class is a generalization of 
what some window systems call a bitmap. 
Images are two dimensional arrays of integer 
pixels. To make an image visible, it must be 
copied to a canvas with copy-area. Images 
support two capabilities that canvases do not: 

It is possible to read back the value of a 
pixel at some location in an image, 

Images can be stored and restored in 
specially formatted files. 

Applications that use server window systems 
like X or NeWS need to be able to control on 
which side of the client/server connection 
image instances are cached, for performance 
reasons. An application that reads or writes 
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individual pixels extensively should keep the 
image on the client side but an application that 
repeatedly copies an image to a canvas should 
cache the image on the server side. 
Applications can advise Solo about where to 
store image data by setting the image object’s 
host slot. The value of this slot can be either 
:client or : server. Solo may transfer the 
image between the server and client when the 
value of this slot is changed. 

Solo’s handling of colors and graphics state, 
such as line styles, hatching, etc., is entirely 
conventional and follows that of Xl 1. There 
are classes modeling colors and graphics 
context. Method protocols for manipulating 
graphic attributes and for communicating client 
wishes to the host window system are 
available. Fonts are currently handled similarly 
to Xl 1 Release 3 [Scheifler88b]. While the 
inclusion of X-specific window features in Solo 
may seem to bias Solo towards an X host, the 
protocol presented by Solo to the application is 
entirely free of any assumptions about the host 
window system. Whether or not a particular 
host window system provides semantically 
equivalent operations will influence the amount 

of code necessary to port Solo to the host, but 
applications built on Solo need not be modified. 

3. Object-Oriented Host Window 
System Interface 

The emphasis in most other work on object- 
oriented window systems has been on 
employing the extensibility provided by 
inheritance and generic operations to support 
easier customization of the user interface for 
applications software. Equally as important, 
however, is the ease with which the window 
system software itself can be customized to 
match different configurations of host graphics 
hardware and software. With the proliferation 
of graphics hardware and host window system 
software, maintaining a window system 
designed to run on a variety of hardware and 
software configurations has become analogous 
to the problem of maintaining a compiler for a 
variety of machine architectures [Brooks86]. 

Solo uses inheritance and generic operations to 
facilitate modularization of host specific code, 
and even to allow different releases of the 
same host which have incompatibilities to be 

Fig. 3 Host Window Specific Display Classes 
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accommodated in the same Lisp image. Fig. 3 
illustrates the host window system class 
structure currently available in Solo. A root 
abstract superclass, window-system, provides 
a common ancestor for all window systems. 

Under the root class are subclasses 
representing the various host window 
systems. Each host may also have 
subclasses, representing different releases of 
the same window system. An example is the 
xllr2-window-system andxllr3-window- 

system classes in the figure. Between Xl 1 
Release 2 [Scheifler88a] and Xl 1 Release 3, 
an incompatibility in the way fonts are specified 
arose. The incompatibility was accommodated 
by subclassing the x-window-system class 
with the two subclasses, one for each release, 
and implementing the host-specific font method 
protocol differently for each subclass. The 
window system class instances themselves 
have little state, just a string identifying their 
host, and are primarily used to dispatch to the 
appropriate device driver methods. 

Solo specifies a porting interface called the host 
window system driver protocol which must be 
supported by each window system class. The 
driver protocol matches the Solo abstract 
window interface with the underlying host 
window system. Window system features 
provided by the host window system need not 
be reimplemented in Solo. When porting to a 
new host window system, host-specific 
methods must be provided for the following 
operations: 

Global event dispatching, 

Image to host window system transfer, 

Canvas to host window system window, 

Display to host window system display, 

Font handling, 

Color handling, 

Two dimensional graphics. 

Naturally, the amount of support a particular 
host gives for a particular capability will 
determine the amount of code needed to 
implement that capability in Solo. In the worst 
case, if no host window system is available, 
Solo could be implemented directly on the 
graphics hardware. 

4. Method Combination and Object 
Initialization 

Solo uses method combination internally to 
simplify application level extensions of class 
instances having system resources allocated 
on a server. Initialization of instances is 
arranged so that window system specific object 
state is synchronized with the server after all 
client side initializations, including 
initializations for subclasses, are finished. 
Initialization proceeds in two phases. The first 
phase validates the initial values of slots and 
performs client-side initializations. The 
second phase communicates information to the 
server after other initialization methods, 
including subclass methods, have completed. In 
frame buffer based window system, the second 
phase might be used to flush internally buffered 
initializations to the frame buffer. Subclasses 
have the opportunity to customize both before 
and after server initialization. CLOS method 
combination provides the linguistic support. 

Fig. 4 illustrates an example of how client side 
objects with server side resources are 
initialized. The figure diagrams the 
initialize-instance methodexecution 
sequence for the vertical-scrollbar 
subclass of canvas. In CLOS, the class 
standard-object is the superclass of all 
standard instances, and it supplies a default 
initialize-instance method.Subclasses 
typically customize initialization by writing 
:after methodson initialize-instance. 
The canvas class itself implements two 
initialization methods: 

244 OOPSLA ‘89 Proceedings October 1-6, 1989 



l A : after method, which handles custom 
client side initialization for canvas alone, 

l A : around method, which handles 
communication with the server. 

The : around method initially does any host 
window specific actions to start buffering or to 
tell the server that a new window is coming, 
then invokes the CLOS call-next-method 

local function. call-next-method calls the next 
most specific method for the generic function 
invocation, which, in this case, causes the 
primary/ : after method complex to be invoked. 
Within this complex, application specific 
customizations of canvas, such as the 
scrollbar and vertical-scrollbar classes 
in the figure, have customized initialization 
using the recommended CLOS methodology, 
namely by writing : after methods on 
initialize-instance. Thesecustomizations 
run before server initialization. 

After the primary and : after methods have 
run, control returns to the : around method, 
which then finishes initialization of server 
resources. When server resource initialization 
is completed, the : around method sets the 

status slot in the new canvas to the value 
:realized. If the canvas subclass has 
initializations which must be executed 
immediately after the allocation of server 
resources, it defines an : after method on the 
(setf status) operation specialized to match 
: realized. As an example of how CLOS eql 

specializers and multiple dispatch simplify 
customization in Solo, the following code might 
be part of the scrollbar protocol: 

(defmethod (setf status) 
((n (eql :realized)) (s scrollbar)) 

(call-next-method) 
(post-server-initialization s) 

n) 

The two-phase initialization process requires 
that all window classes run their first phase 
initializations, and then all window classes run 
their second phases. This control structure can 
be implemented using CLOS method 
combination, but not with the simpler 
“message to super” semantics supported by 
other object-oriented languages. In addition, 
subclasses which have special needs for server 
communication, perhaps as a result of a 

Fig. 4 hitialization Of a vertical-scrollbar /nStanCe 
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particular feature provided by a host window 
system port, can achieve finer control by 
customizing : around methods on initialize- 
instance. 

5. Event Handling System 

Because Solo mediates between the host 
window system and the application, it must 
map user generated events, like changes in 
mouse and keyboard state, and window 
system events, like requests to repaint 
damaged portions of the screen, into 
application specific code. Other Lisp-based 
window systems have handled this with 
special purpose mechanisms like a table of 
callback functions. Solo uses a generic function 
dispatching on multiple parameters to 
implement the mapping. Using the generic 
function feature of CLOS instead of a special 
purpose mechanism gains a uniform and 
commonly understood dispatching design that 
can trivially be extended to accommodate new 
event types and incremental changes to event 
driven application code. In addition, a way to 
control the flow of events from the window 
system to the application must be provided, 
since not all windows will be interested in all 

the events which they could potentially receive. 
This is especially critical when the underlying 
window system is a server, like X or NeWS, 
because the cost of sending an event between 
the client and the server is high. Solo uses 
interest objects to restrict which events are 
delivered to a particular canvas and to 
subdivide the event space along application 
specific boundaries. 

Fig. 5 illustrates the overall structure of the 
event dispatching system in Solo. The event 
dispatching system is divided into two parts: 

l A global event dispatching loop, which 
receives raw window system events 
from the host window system, converts 
them into low-overhead event structures 
within Lisp, and delivers them to 
canvases which have expressed interest 
in them, 

l A local event dispatching loop, which 
queues the low-overhead event 
structures from the global event 
dispatcher and runs canvas specific 
methods in the order events were 
received. 

Fig. 5 Solo Event Handling System 

Host Window System Event Stream 

loop: 
next-display-event 
event-canvas 
match-event 
deliver-event 
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Each display object in Solo has associated with 
it a global event dispatching loop. The local 
event dispatching loops may be constructed on 
a per canvas basis, or a group of canvases may 
be managed by the same local loop. Although 
this input architecture is most conveniently 
implemented with the event dispatching loops 
in separate lightweight processes, the design 
does not require multiprocessing support, since 
the dispatching system could run at interrupt 
level. 

The following code sketches the 
implementation of the global event dispatcher: 

(loop 
(let* 

((e (next-display-event display) 1 
(c (event-canvas e)) 
(i 

(match-event e 
(interests c)))) 

(when i 
(setf (event-interest e) i) 
(deliver-event 

c i e)))) 

Each raw event generated by the underlying 
window system is received from the display by 
the genericfunction next-display-event and 
converted into an event structure. Event 
objects themselves are small, unnested 
structures that can be quickly created and 
quickly reclaimed by ephemeral garbage 
collection. The next-display-event generic 
function maps the window associated with the 
event by the host window system into a 
canvas. The event is matched against the 
canvas’ interest list by the match-event 

generic function. If there is a matching interest, 
the event is passed along to a local event 
dispatcher by the deliver-event generic 
function. The specification of the default 
deliver-event method requires it to queue 
the event for the canvas’ local event dispatcher. 

Local event dispatching is handled by a loop 
similar to the following: 

(loop 
(let ((e (next-event))) 

(receive-event 
(event-canvas e) 
(event-interest e) 
e) 1) 

The next-event function returns events in the 
time order they occurred. The event is 
delivered to the canvas along with the 
matching interest by the receive-event 

generic-function. The default receive-event 

method dispatches on both the canvas and the 
interest arguments. 

Subclasses of the interest class are usually 
created by specifying a value for the interest’s 
event-specfication slot. Forexamplea 
scro1Iba.r canvas that interpreted a left mouse 
button down action as “scroll the top of the 
canvas to here” could define an interest like: 

(defclass scroll-top-to-here (interest) 
0 
(:default-initargs 

:event-specification 
'(:mouse (:button :left :down) t))) 

PlaCiIIg an iIIStaIKC Of scroll-top-to-here on 
the scrollbar canvas’ interest list would cause 
left mouse button down events to be delivered 
to the application’s local event dispatcher. The 
event specifications are encoded using the 
event specification language described in the 
next section. 

Customizations of dispatching are possible on 
both the global and local dispatching levels. 
On the global level, applications may specialize 
deliver-event to use a different queueing 
mechanism from the one provided by Solo. For 
example an application that wanted to handle 
A(2 keyboard interrupts by immediately 
interrupting the application rather than by 
queuing the event would create an interest that 
matched “C and then define a method on 
deliver-event: 
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(defclass control-c (interest) 
0 
(:default-initargs 

:event-specification 
'(:keyboard #\control-c))) 

(defmethod deliver-event 
(c (i control-c) e) 

(declare (ignore e)) 
(interrupt-application c)) 

On the local dispatching level, applications can 
write methods on receive-event to specialize 
on any combination of the class, interest, and 
event arguments. For example, to complete the 
implementation of the scrollbar canvas, the 
scroll-top-to-here interest could be used to 
specialize receive-event: 

(defmethod receive-event 
(c (i scroll-top-to-here) e) 
"Scroll the top of the canavs to 

(event-y event) in extent 
coordinates" 

. . . 

Because CLOS allows specialization of any 
combination of method arguments, applications 
which define their own event types can choose 
to recognize them for application specific 
canvases by specializing on the new event 
type: 

(defmethod receive-event 
((c spreadsheet) i (e update)) 

. . . 

or, with only one specializer, thus extending 
the event repertoire for all canvases: 

(defmethod receive-event 
(c i (e update)) 

. . . 

This kind of flexibility is much harder achieve in 
single dispatch languages, where the choice of 
which parameter to dispatch on (canvas or 
event) requires either an explicit coding of the 
second parameter’s type in a typecase 

statement, or that an additional method be 
defined to relay the second dispatch 
[Ingalls86]. 

Finally, applications can send internal events 
without going through the dispatching loop by 
calling the nongeneric function send-event. 

This function is a client-callable interface to 
deliver-event which matches the event 
against the canvas’ interest list and, if there is 
a matching interest, delivers the event to the 
canvas. Ineffect, send-event and deliver- 

event are two entry points for the same 
behavior, but they have completely different 
roles in application code. The role of send- 

event is to be called by clients, to process its 
arguments slightly, and then to call deliver- 

event, while deliver-event is not called 
directly by clients, but is specialized by client 
classes. The parameter set of deliver-event 

is designed for convenient specialization rather 
than for convenient calling. 

6. Event Description Language 

Event interests for mouse and keyboard events 
are specified using a sophisticated event 
description language. The space of window 
system generated events can be quite large, 
consisting of various combinations of mouse 
and keyboard events. For example, the 
combination of three mouse buttons, two 
possible actions for each button (up or down), 
five keyboard modifier keys (control, shift, 
meta, hyper, and super), and one or two mouse 

buttons acting as modifiers yields over a 
thousand events. Most applications will 
typically only need access to a fraction of 
these; nevertheless, a concise syntax for 
specifying input events simplifies the task of 
customizing event interests. 
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Event interest subclass instances contain a 
slot called event-specification that contains 
a representation of the set of events matched 
by the interest. The syntax for specifying event 
interests is complex, but most of the 
complexity exists to support precise 
specification of mouse “gestures”, i.e. 
combinations of mouse movements, mouse 
buttons, and keyboard modifier keys. The BNF 
in Fig. 6 specifies the syntax for an event 
description. 

An example from the event specification 
language syntax is the grammar production 
mouse, for a mouse event. The action element 
subdivides the space of mouse events into 
three general categories: 

l button - a mouse button has gone up or 
down or a mouse button “click” has 
occurred. A mouse click occurs when a 
mouse button goes up and down in about 
the same spot over a short time interval, 

l crossing - the mouse cursor has crossed 
a canvas boundary, 

l move - the mouse cursor has moved. 

The modifier element specifies the state of 
the keyboard modifier keys and the other 
mouse buttons. If modifier is nil then the 

event specification will only match events 
where none of the modifiers are down, if it is t 

then the specification will match mouse events 
with any combination of modifiers down. If the 
modifier is a single keyword then the 
corresponding modifier key must be down. 
Finally the modifier state may be represented 
by a logical expression written in terms of and, 

or, and modifier keywords. For example, to 
specify either control-shift or control-meta: 

(or (and :control :shift) 
(and :control :meta)) 

Note that both the keyboard modifier keys 
(control, shift, meta, hyper, and super) and the 
mouse buttons may be used as modifier 

elements. A mouse button may only be used 
for modifier if it is not part of the action. 

If the action element corresponds to a button 
transition, the syntax for specifying the 
transition is: 

(:button (button-name I t) 
( button-action I t ), 

Specifying t for the second or third argument 
means any button or any button action (up, 
down, or click). The second argument may also 
be a keyword that identifies an individual 
button or an expression that specifies a set of 

Fig. 6 Event Specification Language Syntax 

event := mouse I keyboard I damage ( notification ( (or {event]+) 
keyboard := (:keyboard {character I t) [:upl [:down]) 
damage := (:damaqe) 
notification := (:notification operations+) 
mouse := (:mouse action {modifier I t I nil)) 
action := button I (:crossinq [:enter] [:exit]) I (:move) 
button := (:button {button-name 1 t] [button-action ( t]) 
button-name := :left ( :middle 1 :right I 

(or button-name*) 1 (and button-name*) 
button-action := click := :clickl I :clickZ :click3 I :click4 I 

:click I :up I :down I (or button-action+) 
modifier := :control I :shift 1 :meta I :hyper I 

:super I :left I :middle 1 :right I 
(or modifier*) ) (and modifier*) 

operations := :status ) :mapped I :bounding-region I :children I :parent 
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alternative individual buttons, button chords, or [ Szekely881, a CLOS based user interface 
a combination of both. For example to specify toolkit, makes heavy use of active values like 
either the left or right button moving up or Solo, but at the toolkit rather than at the 
down: window system level. 

(:button (or :left :right) 

(or :up :down)) 

7. Comparison with Other Work 

Currently, Common Windows [Intellicorp86] is 
the most widely used portable window toolkit 
in Common Lisp. Common Windows has 
provided some applications with platform 
independence, but because Common Windows 
is not object-oriented, it lacks extensibility. 
This makes user defined extensions of 
windows hard to do. Inclusion of user interface 
policy in the Common Windows design also 
hinders customization. The design is based on 
the Interlisp-D window toolkit [Xerox85], and 
windows in Common Windows come bundled 
with various components, the look and feel of 
which cannot be changed. 

In relation to object-oriented window systems 
in other languages, Solo does not provide a 
complete application framework. The interface 
implemented by Solo is lower level than the 
Smalltalk model/view/controller [Goldberg831 
or MacApp [Schmucker86], though Solo’s 
event dispatching system could easily support 
application frameworks of that nature. in 
general, the Solo design has stressed a simple, 
lightweight window model and event based 
input dispatching, to minimize the amount of 
code at the interface between the application 
and the host window system. 

Solo differs from other CLOS-based window 
systems in a number of ways. Unlike CLUE 
[Kimbrough88], Solo is not tied to a single host 
window system, but is designed to be portable. 
The Solo model of event dispatching requires 
specialization of at most two (and usually only 
one) generic functions, rather than many, as in 
DELI [Pettingill88]. In addition, Common Lisp 
streams are implemented on top of Solo, not as 
part of it, while DELI includes a mixin class 
supporting stream operations as part of the 
basic window class definition. The goals of 
Solo are similar to the Window System 
Independent Interface (WSII) portion of DELI. 
Solo differs from Silica [Rao88] in that Silica 
exposes host window system specific 
components in the application interface. Silica 
also has a complex semantic model, involving 
contracts and window trees, in comparison 
with Solo’s rather simple model, and Silica 
does not specify an object-oriented interface to 
the host window system as does Solo. CORAL 

Solo synthesizes a number of useful ideas from 
other window systems. The canvas class is 
similar to that provided by NeWS, as is the 
basic input model, but the utilization of CLOS 
allows window system clients to customize 
window classes even for host window systems 
running on frame buffers or with 
nonprogrammable servers, such as X. As 
mentioned in Section 2, font handling and 
graphic contexts are similar to X. The window 
operations are like those of Common Windows. 

8. Current Implementation Status 

A prototype implementation of Solo has been 
completed on the Xl 1 server based window 
systems, and on the Lucid Window Toolkit, a 
frame buffer based window system which runs 
on SunView 1 [Sun88a]. The X 11 port runs on 
both Xl 1 Release 2 and Xl 1 Release 3. The 
prototype was built in Sun Common Lisp 3.0 
[Lucid88b]. Sun Common Lisp 3.0 provides a 
lightweight process mechanism similar to stack 
groups on the Lisp Machine [Symbolics86], 
and this mechanism has been used in Solo. The 
public domain PCL implementation of CLOS 
[Kiczales%] was used to develop Solo. 
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In order to test the Solo application interface, 
the Generic Windows user interface toolkit 
[Schoen88] was implemented on Solo. Generic 
Windows provides facilities for user interface 
programming such as menus, titled windows, 
scrollbars, etc., similar to Common Windows, 
which are a level above the simple canvases 
provided by Solo. No major changes were 
required in the Solo design, and no features of 
Generic Windows were left out of the 
implementation. Finally, the Hyperclass AI 
application framework [Smith881 was brought 
up on top of the Generic Windows 
implementation. Hyperclass provides support 
for programming complex displays in a frame- 
based AI language. No significant difficulties 
were encountered. 

A draft specification for the window interface 
part of Solo has been completed, for Solo users 
and implementors who would like to port Solo 
to other hosts. A set of driver protocol 
methods for the C based Xl 1 library (Xlib) is 
currently being written. The prototype Xl 1 
driver was written for the Lisp based Xl 1 
library (CLX) but was found to be too large for 
supporting serious applications development. 
In addition, a layer is being added to Solo to 
support user interface toolkits. Although this 
layer is designed in a look and feel independent 
fashion, a binding to the XView implementation 
of the OPEN LOOK [Sun88b] user interface 
toolkit is underway. Toolkit components from 
the XView OPEN LOOK toolkit are being 
integrated with Solo. A draft specification of 
the toolkit support layer is also in progress. 

9. Summary 

The Solo window interface implements a 
virtual window machine which insulates 
application programmers developing CLOS 
applications from the underlying host window 
system, providing application programmers 
with portability between host window systems 
and between releases of the same host 
window system. The Solo design stresses a 

simple window abstraction, called a canvas, on 
top of which applications or toolkit developers 
can build more complex components. Fonts, 
colors, and graphics are handled 
conventionally, in a manner similar to X 11, but 
the application interface remains the same 
regardless of the host window system. 

The input system is sectioned into two parts, a 
global event dispatcher which handles 
processing events from the host and a per 
canvas event dispatcher that canvas subclass 
developers typically subclass. Active values on 
canvas slots cause slot update to update 
dependent state as well. Canvases express 
interest in particular events which they want 
delivered, or revoke interest in those events 
which are no longer of concern. An event 
description language allows different host 
window system implementations or application 
level software to precisely specify the mapping 
between mouse and keyboard states and 
generated input events. Event dispatching 
need not be confined to input, however, and 
customizations in the direction of event driven 
interapplication communication are also 
possible. 

Object-oriented design was important in 
constructing the interface to the host window 
system. A port of Solo needs to implement a 
host window system specific class and 
methods for the host specific device driver 
generic functions. The driver protocols match 
the Solo abstract interface to the host window 
system’s event handling, window and display 
protocol, and graphics capabilities, such as 
fonts and color. The host driver interface is 
even flexible enough to handle incompatibilities 
between releases of the same host window 
system. Applications on Solo are thus 
insulated from changes in the host between 
releases, and, in the case of server based 
window systems, can communicate with 
servers running different releases of the host 
from the same Lisp image. Communication 
between an application and different hosts from 
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within the same Lisp image, for example a 
server based and a frame buffer based system, 
is also possible. 

[Intellicorp86] Common Windows Manual, Intellicorp, 
Mountain View, CA, 1986. 

A prototype implementation of Solo has been 
developed on X and the Lucid Window Toolkit, 
using Sun Common Lisp 3.0 and the public 
domain PCL CLOS implementation. The 
Generic Windows user interface toolkit, and 
the Hyperclass AT application framework have 
been moved to a Solo base. Currently, a set of 
driver methods for the Xlib Xl 1 library are 
being written, and a look and feel independent 
toolkit interface is under development. The 
toolkit interface is initially being bound to the 
XView implementation of the OPEN LOOK 
look and feel. A specification for the window 
interface layer is available, and one for the 
toolkit interface layer is in progress. 

[KiczaIes88J “The Implementation of PCL,” talk given 
at the First CLOS Users and Implementors Workshop, 
Oct. 3 & 4, 1988. 

[Kimbrough88] Common Lisp User Interface 
Environment, Texas Instruments, Dallas, TX, 1988. 

[Lucid88a] Sun Common Lisp 3.0: The Lucid Window 
Toolkit, Lucid Inc. and Sun Microsystems, 1988. 

[Lucid88b] Sun Common Lisp 3.0: Advanced Users. 
Guide, Lucid Inc. and Sun Microsystems, 1988 

[Moon861 Moon, D., “Object-Oriented Programming 
with Flavors,” Proceedings of the First Annuul 
OOPSLA, SIGPLAN Notices, 21(11), pp. l-8, 1986. 

[Myers891 Myers, B., “User-Interface Tools: 
Introduction and Survey,” IEEE Software, pp. 15-23, 
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