
The Use of Multimethods and Method Combination in a
CLOS Based Window Interface

Hans Muller, hmuller@sun.com
John Rose, jrose@sun.com

James Kempf, jkempf@sun.com
Tayloe Stansbury, tayloe@sun.com

Sun Microsystems, 12-40
Symbolic Computing Department

2550 Garcia Ave.
Mountain View, CA 94043

Topic Area: User Interfaces
Keywords: portable window interface, CLOS, method combination, multimethods

Abstract

Solo is a portable window interface written in the Common Lisp Object System (CLOS) object-oriented
programming language. Solo provides a virtual window machine which is targeted to a host window system
by implementing a set of host window system specific classes and methods for Solo’s host window system
driver protocol. The interface presented by Solo to an application insulates it from differences in the host
window system, facilitating application portability. Solo distinguishes itself from other object-oriented
window systems by exploiting certain features of CLOS. CLOS method combination simplifies initialization
of windows while preserving easy extensibility of the basic classes. Generic dispatch on multiple arguments, a
feature unique to CLOS, allows a simpler and more flexible input event dispatching protocol. A powerful
event description language simplifies the specification of keyboard and mouse events. A prototype
implementation runs on the server based X11 and NeWS host systems, and on the frame buffer based Lucid
Window Toolkit,

1. Introduction

The increasing demand for easy to use
applications has encouraged a proliferation of
window systems on a wide variety of hardware
and software platforms, There is little
agreement, however, on how the programmatic
interface to a window system should be
designed. From the application developer’s
viewpoint, this divergence in window interfaces
increases the amount of effort needed in porting
an application. Many outstanding window-
based applications are available only on a
single hardware or software platform because

window system dependence is designed into
the application. Others are available only on
platforms for which they were not designed
after a long delay .

Common Lisp [Steele841 and the Common
Lisp Object System (CLOS) [BDGKKMBB]
are language standards supporting portable
object-oriented programming. As such, they
provide an excellent substrate for building
portable applications. However, the
development of window-based applications in
Lisp has been hampered by the lack of a
suitable programmer’s interface. Most
portable interfaces, such as Common Windows
[Intellicorp86], are not object-oriented; neither
are network-oriented interfaces like X
[Scheifler861. Object-oriented interfaces like

October 1-6, 1989 OOPSLA ‘89 Proceedings 239

that supplied by Symbolics [Symbolics86] are
typically weak in the area of portability.
Furthermore, many window interfaces dictate
aspects of look and feel, or weigh down their
windows with complex semantics.

The example of lightweight, server-based
window systems, such as X and NeWS
[Sun87], and new ideas about how to factor
user interface management software into
separate toolkit and support layers [Myers891
provided motivation for the design of Solo, an
extensible, lightweight portable window
interface in CLOS. Solo provides a virtual
machine for managing windowing user
interfaces across many hardware and software
platforms. Fig. 1 illustrates the system
architecture into which Solo fits. The Solo
virtual machine runs on a host window system,
which can be either frame buffer based, such as
the Lucid Window Toolkit [Lucid88a] or server
based, such as X or NeWS. Complex window
semantics (e.g., borders or scrollbars) and
other specific look and feel components are
implemented by a toolkit layer. Because Solo is
implemented in CLOS, it is specifically
designed to take advantage of innovative

language features provided by CLOS to make
both extension and porting straightforward.

In the next section, the basic features of the
Solo virtual window machine are presented.
Section 3.0 describes how object-oriented
programming is used to structure Solo for easy
portability. The same mechanisms (inheritance,
generic functions) which make customization of
Solo for application developers straightforward
also facilitate implementation on a new host
window system. Section 4.0 describes how
Solo uses method combination [Moon861 to
facilitate customization of initialization for user
defined canvases. In Section 5.0, the event
handling system for Solo is described, with
special emphasis on how generic dispatching
on multiple parameters [Bobrow86] eases
customization for user defined canvases. These
features distinguish Solo from other object-
oriented window systems, since they use

language constructs which are unique to CLOS.
Section 6.0 presents the event description
language for specifying complex input events
involving mouse and keyboard state. Section
7.0 makes some comparisons between Solo
and other window systems, Section 8.0 briefly

Fig. 1 Solo Window Interface Architecture

Application

User Interface Toolkits

Solo

Common Lisp/CLOS

Host Window System

240 OOPSLA ‘89 Proceedings October 1-6, 1989

describes the current implementation status,
and Section 9.0 summarizes the paper.

2. The Solo Virtual Window Machine

The Solo virtual window machine is a collection
of generic functions and classes that present an
abstract window interface to application
programmers. Solo provides a single
lightweight window class called a canvas. A
canvas represents an unadorned rectangular

area that serves as a receiver for input events
and a destination for graphical output.
Canvases can be either transparent or opaque.
A transparent canvas does not obscure output
to underlying canvases. All canvases are
opaque with respect to input events. Canvases
have no borders, titles, or other ornamentation,
consistent with the design goal of providing the
canvas as a simple window component from
which more complex components can be built.

Fig. 2 Canvas Class and Protocol

Class Definition:

(defclass canvas (drawable event-dispatch display-specific-mixin)
((parent :initarg :parent :reader parent)

(children :initarg :children)
(depth :initarg :depth :reader depth)
(bounding-region :initarg :bounding-region)
(transparent :initarg :transparent :reader transparent)
(mapped :initarg :mapped :reader mapped)
(retained :initarg :retained :reader retained)
(interests :type list :initarg :interests))

(:default-initargs :parent *default-display* :children nil
:transparent nil :mapped nil :retained nil
:interests nil :event-dispatch-process nil
:event-dispatch-queue nil))

Generic Function Protocol:

initialize-instance :around canvas &rest args
parent canvas
(setf parent) parent-canvas canvas
children canvas
(setf children) child-canvases canvas

bounding-region canvas
(setf bounding-region) bounding-region canvas
status canvas
(setf status) status canvas
retained canvas
(setf retained) canvas symbol
interests canvas
(setf interests) interests canvas

mapped canvas
(setf mapped) mapped canvas
receive-event canvas interest event
deliver-event canvas interest event

October 1-6, 1989 OOPSLA ‘89 Proceedings 241

Solo maintains canvases in a parent/child
hierarchy, using a list of children stored in the
parent canvas structure, and a parent pointer
stored in the child canvas structure. Children
lists are sorted according to occlusion. Child
canvases are clipped to the parent’s boundary.
Each canvas records its parent upon creation.
A newly created canvas is placed at the front of
the parent’s list of siblings. At the root of the
parent/child hierarchy is an instance of a host
window system specific display class,
corresponding to a physical display device like
a workstation console. Solo maintains a default
display on which canvases are created if no
other display is indicated, and multiple displays
can be active in Solo at one time. Solo even
allows different host window systems to
coexist, so an application can access different
window systems from within the same Lisp
image.

Each canvas has a set of slots which determine
its size, placement, parent, children,
transparencies, sensitivity to input, and other
properties. Fig. 2 contains the definition of the
canvas class and the method protocol for slot
access and event handling. All canvas
operations other than input and output are
effected by changing the value of some canvas
slot. For example, the bounding-region slot
contains a region object which models the
physical boundaries of the canvas on the
display surface. In order to resize a canvas, a
new region with new boundaries is deposited
in the bounding-region slot. Slot accessor
methods on canvas slots like bounding-

region additionally update other relevant data
structures and cause changes in canvas state
to be visually manifested, besides simply
depositing a new value in the slot or returning
the existing value.

By connecting slot access to the update of
other data structures (a technique sometimes
known as active values [Stefik86]
[Schaffert86]), methods to expose, bury, move,
and resize canvases can be written in terms of

updates to canvas slots. The focus on
updatable slots in the design makes performing
operations on canvases more declarative, since
a change to a slot is effected simply by
specifying its new value, rather than by giving
an algorithm for achieving that value. This is in
contrast to the imperative design of other
window systems, where the emphasis is on
operations (e.g., move, resize) which modify
window state, possibly in a complex manner.
In imperative designs, user access to window
state is often supplied as an afterthought, or
sometimes even omitted. As a convenience,
Solo provides a library of conventional window
operations such as expose,bury,destroy, etc.

In addition, there is an event dispatching
protocol associated with the canvas class.
This event dispatching system delivers mouse
events, keyboard events, and other window
system generated events to canvases. For
example, when an attribute of a canvas (such
as its stacking order) is changed
asynchronously (i.e., not by application
program control), a notification event is
generated, containing the name of the slot to be
changed and its new value. When this event is
delivered to the canvas, the slot value is
actually changed. Section 5 contains more
detail on the Solo event dispatching system.

The Solo image class is a generalization of
what some window systems call a bitmap.
Images are two dimensional arrays of integer
pixels. To make an image visible, it must be
copied to a canvas with copy-area. Images
support two capabilities that canvases do not:

It is possible to read back the value of a
pixel at some location in an image,

Images can be stored and restored in
specially formatted files.

Applications that use server window systems
like X or NeWS need to be able to control on
which side of the client/server connection
image instances are cached, for performance
reasons. An application that reads or writes

242 OOPSLA ‘89 Proceedings October 1-6, 1989

individual pixels extensively should keep the
image on the client side but an application that
repeatedly copies an image to a canvas should
cache the image on the server side.
Applications can advise Solo about where to
store image data by setting the image object’s
host slot. The value of this slot can be either
:client or : server. Solo may transfer the
image between the server and client when the
value of this slot is changed.

Solo’s handling of colors and graphics state,
such as line styles, hatching, etc., is entirely
conventional and follows that of Xl 1. There
are classes modeling colors and graphics
context. Method protocols for manipulating
graphic attributes and for communicating client
wishes to the host window system are
available. Fonts are currently handled similarly
to Xl 1 Release 3 [Scheifler88b]. While the
inclusion of X-specific window features in Solo
may seem to bias Solo towards an X host, the
protocol presented by Solo to the application is
entirely free of any assumptions about the host
window system. Whether or not a particular
host window system provides semantically
equivalent operations will influence the amount

of code necessary to port Solo to the host, but
applications built on Solo need not be modified.

3. Object-Oriented Host Window
System Interface

The emphasis in most other work on object-
oriented window systems has been on
employing the extensibility provided by
inheritance and generic operations to support
easier customization of the user interface for
applications software. Equally as important,
however, is the ease with which the window
system software itself can be customized to
match different configurations of host graphics
hardware and software. With the proliferation
of graphics hardware and host window system
software, maintaining a window system
designed to run on a variety of hardware and
software configurations has become analogous
to the problem of maintaining a compiler for a
variety of machine architectures [Brooks86].

Solo uses inheritance and generic operations to
facilitate modularization of host specific code,
and even to allow different releases of the
same host which have incompatibilities to be

Fig. 3 Host Window Specific Display Classes

window-system

lucid-window-toolkit x-window-system news-window-system

xllr2-window-system xllr3-window-system

October I-6, 1989 OOPSLA ‘89 Proceedings 243

accommodated in the same Lisp image. Fig. 3
illustrates the host window system class
structure currently available in Solo. A root
abstract superclass, window-system, provides
a common ancestor for all window systems.

Under the root class are subclasses
representing the various host window
systems. Each host may also have
subclasses, representing different releases of
the same window system. An example is the
xllr2-window-system andxllr3-window-

system classes in the figure. Between Xl 1
Release 2 [Scheifler88a] and Xl 1 Release 3,
an incompatibility in the way fonts are specified
arose. The incompatibility was accommodated
by subclassing the x-window-system class
with the two subclasses, one for each release,
and implementing the host-specific font method
protocol differently for each subclass. The
window system class instances themselves
have little state, just a string identifying their
host, and are primarily used to dispatch to the
appropriate device driver methods.

Solo specifies a porting interface called the host
window system driver protocol which must be
supported by each window system class. The
driver protocol matches the Solo abstract
window interface with the underlying host
window system. Window system features
provided by the host window system need not
be reimplemented in Solo. When porting to a
new host window system, host-specific
methods must be provided for the following
operations:

Global event dispatching,

Image to host window system transfer,

Canvas to host window system window,

Display to host window system display,

Font handling,

Color handling,

Two dimensional graphics.

Naturally, the amount of support a particular
host gives for a particular capability will
determine the amount of code needed to
implement that capability in Solo. In the worst
case, if no host window system is available,
Solo could be implemented directly on the
graphics hardware.

4. Method Combination and Object
Initialization

Solo uses method combination internally to
simplify application level extensions of class
instances having system resources allocated
on a server. Initialization of instances is
arranged so that window system specific object
state is synchronized with the server after all
client side initializations, including
initializations for subclasses, are finished.
Initialization proceeds in two phases. The first
phase validates the initial values of slots and
performs client-side initializations. The
second phase communicates information to the
server after other initialization methods,
including subclass methods, have completed. In
frame buffer based window system, the second
phase might be used to flush internally buffered
initializations to the frame buffer. Subclasses
have the opportunity to customize both before
and after server initialization. CLOS method
combination provides the linguistic support.

Fig. 4 illustrates an example of how client side
objects with server side resources are
initialized. The figure diagrams the
initialize-instance methodexecution
sequence for the vertical-scrollbar
subclass of canvas. In CLOS, the class
standard-object is the superclass of all
standard instances, and it supplies a default
initialize-instance method.Subclasses
typically customize initialization by writing
:after methodson initialize-instance.
The canvas class itself implements two
initialization methods:

244 OOPSLA ‘89 Proceedings October 1-6, 1989

l A : after method, which handles custom
client side initialization for canvas alone,

l A : around method, which handles
communication with the server.

The : around method initially does any host
window specific actions to start buffering or to
tell the server that a new window is coming,
then invokes the CLOS call-next-method

local function. call-next-method calls the next
most specific method for the generic function
invocation, which, in this case, causes the
primary/ : after method complex to be invoked.
Within this complex, application specific
customizations of canvas, such as the
scrollbar and vertical-scrollbar classes
in the figure, have customized initialization
using the recommended CLOS methodology,
namely by writing : after methods on
initialize-instance. Thesecustomizations
run before server initialization.

After the primary and : after methods have
run, control returns to the : around method,
which then finishes initialization of server
resources. When server resource initialization
is completed, the : around method sets the

status slot in the new canvas to the value
:realized. If the canvas subclass has
initializations which must be executed
immediately after the allocation of server
resources, it defines an : after method on the
(setf status) operation specialized to match
: realized. As an example of how CLOS eql

specializers and multiple dispatch simplify
customization in Solo, the following code might
be part of the scrollbar protocol:

(defmethod (setf status)
((n (eql :realized)) (s scrollbar))

(call-next-method)
(post-server-initialization s)

n)

The two-phase initialization process requires
that all window classes run their first phase
initializations, and then all window classes run
their second phases. This control structure can
be implemented using CLOS method
combination, but not with the simpler
“message to super” semantics supported by
other object-oriented languages. In addition,
subclasses which have special needs for server
communication, perhaps as a result of a

Fig. 4 hitialization Of a vertical-scrollbar /nStanCe

:around primary :after

/

standard-object 1
canvas

canvas

1 1 scrjlbar

vertical-scrollbar
(to server)

October l-6, 1989 OOPSLA ‘89 Proceedings 245

particular feature provided by a host window
system port, can achieve finer control by
customizing : around methods on initialize-
instance.

5. Event Handling System

Because Solo mediates between the host
window system and the application, it must
map user generated events, like changes in
mouse and keyboard state, and window
system events, like requests to repaint
damaged portions of the screen, into
application specific code. Other Lisp-based
window systems have handled this with
special purpose mechanisms like a table of
callback functions. Solo uses a generic function
dispatching on multiple parameters to
implement the mapping. Using the generic
function feature of CLOS instead of a special
purpose mechanism gains a uniform and
commonly understood dispatching design that
can trivially be extended to accommodate new
event types and incremental changes to event
driven application code. In addition, a way to
control the flow of events from the window
system to the application must be provided,
since not all windows will be interested in all

the events which they could potentially receive.
This is especially critical when the underlying
window system is a server, like X or NeWS,
because the cost of sending an event between
the client and the server is high. Solo uses
interest objects to restrict which events are
delivered to a particular canvas and to
subdivide the event space along application
specific boundaries.

Fig. 5 illustrates the overall structure of the
event dispatching system in Solo. The event
dispatching system is divided into two parts:

l A global event dispatching loop, which
receives raw window system events
from the host window system, converts
them into low-overhead event structures
within Lisp, and delivers them to
canvases which have expressed interest
in them,

l A local event dispatching loop, which
queues the low-overhead event
structures from the global event
dispatcher and runs canvas specific
methods in the order events were
received.

Fig. 5 Solo Event Handling System

Host Window System Event Stream

loop:
next-display-event
event-canvas
match-event
deliver-event

246 OOPSLA ‘89 Proceedings October 1-6, 1989

Each display object in Solo has associated with
it a global event dispatching loop. The local
event dispatching loops may be constructed on
a per canvas basis, or a group of canvases may
be managed by the same local loop. Although
this input architecture is most conveniently
implemented with the event dispatching loops
in separate lightweight processes, the design
does not require multiprocessing support, since
the dispatching system could run at interrupt
level.

The following code sketches the
implementation of the global event dispatcher:

(loop
(let*

((e (next-display-event display) 1
(c (event-canvas e))
(i

(match-event e
(interests c))))

(when i
(setf (event-interest e) i)
(deliver-event

c i e))))

Each raw event generated by the underlying
window system is received from the display by
the genericfunction next-display-event and
converted into an event structure. Event
objects themselves are small, unnested
structures that can be quickly created and
quickly reclaimed by ephemeral garbage
collection. The next-display-event generic
function maps the window associated with the
event by the host window system into a
canvas. The event is matched against the
canvas’ interest list by the match-event

generic function. If there is a matching interest,
the event is passed along to a local event
dispatcher by the deliver-event generic
function. The specification of the default
deliver-event method requires it to queue
the event for the canvas’ local event dispatcher.

Local event dispatching is handled by a loop
similar to the following:

(loop
(let ((e (next-event)))

(receive-event
(event-canvas e)
(event-interest e)
e) 1)

The next-event function returns events in the
time order they occurred. The event is
delivered to the canvas along with the
matching interest by the receive-event

generic-function. The default receive-event

method dispatches on both the canvas and the
interest arguments.

Subclasses of the interest class are usually
created by specifying a value for the interest’s
event-specfication slot. Forexamplea
scro1Iba.r canvas that interpreted a left mouse
button down action as “scroll the top of the
canvas to here” could define an interest like:

(defclass scroll-top-to-here (interest)
0
(:default-initargs

:event-specification
'(:mouse (:button :left :down) t)))

PlaCiIIg an iIIStaIKC Of scroll-top-to-here on
the scrollbar canvas’ interest list would cause
left mouse button down events to be delivered
to the application’s local event dispatcher. The
event specifications are encoded using the
event specification language described in the
next section.

Customizations of dispatching are possible on
both the global and local dispatching levels.
On the global level, applications may specialize
deliver-event to use a different queueing
mechanism from the one provided by Solo. For
example an application that wanted to handle
A(2 keyboard interrupts by immediately
interrupting the application rather than by
queuing the event would create an interest that
matched “C and then define a method on
deliver-event:

October 1-6, 1989 OOPSLA ‘89 Proceedings 247

(defclass control-c (interest)
0
(:default-initargs

:event-specification
'(:keyboard #\control-c)))

(defmethod deliver-event
(c (i control-c) e)

(declare (ignore e))
(interrupt-application c))

On the local dispatching level, applications can
write methods on receive-event to specialize
on any combination of the class, interest, and
event arguments. For example, to complete the
implementation of the scrollbar canvas, the
scroll-top-to-here interest could be used to
specialize receive-event:

(defmethod receive-event
(c (i scroll-top-to-here) e)
"Scroll the top of the canavs to

(event-y event) in extent
coordinates"

. . .

Because CLOS allows specialization of any
combination of method arguments, applications
which define their own event types can choose
to recognize them for application specific
canvases by specializing on the new event
type:

(defmethod receive-event
((c spreadsheet) i (e update))

. . .

or, with only one specializer, thus extending
the event repertoire for all canvases:

(defmethod receive-event
(c i (e update))

. . .

This kind of flexibility is much harder achieve in
single dispatch languages, where the choice of
which parameter to dispatch on (canvas or
event) requires either an explicit coding of the
second parameter’s type in a typecase

statement, or that an additional method be
defined to relay the second dispatch
[Ingalls86].

Finally, applications can send internal events
without going through the dispatching loop by
calling the nongeneric function send-event.

This function is a client-callable interface to
deliver-event which matches the event
against the canvas’ interest list and, if there is
a matching interest, delivers the event to the
canvas. Ineffect, send-event and deliver-

event are two entry points for the same
behavior, but they have completely different
roles in application code. The role of send-

event is to be called by clients, to process its
arguments slightly, and then to call deliver-

event, while deliver-event is not called
directly by clients, but is specialized by client
classes. The parameter set of deliver-event

is designed for convenient specialization rather
than for convenient calling.

6. Event Description Language

Event interests for mouse and keyboard events
are specified using a sophisticated event
description language. The space of window
system generated events can be quite large,
consisting of various combinations of mouse
and keyboard events. For example, the
combination of three mouse buttons, two
possible actions for each button (up or down),
five keyboard modifier keys (control, shift,
meta, hyper, and super), and one or two mouse

buttons acting as modifiers yields over a
thousand events. Most applications will
typically only need access to a fraction of
these; nevertheless, a concise syntax for
specifying input events simplifies the task of
customizing event interests.

248 OOPSLA ‘69 Proceedings October 1-6, 1969

Event interest subclass instances contain a
slot called event-specification that contains
a representation of the set of events matched
by the interest. The syntax for specifying event
interests is complex, but most of the
complexity exists to support precise
specification of mouse “gestures”, i.e.
combinations of mouse movements, mouse
buttons, and keyboard modifier keys. The BNF
in Fig. 6 specifies the syntax for an event
description.

An example from the event specification
language syntax is the grammar production
mouse, for a mouse event. The action element
subdivides the space of mouse events into
three general categories:

l button - a mouse button has gone up or
down or a mouse button “click” has
occurred. A mouse click occurs when a
mouse button goes up and down in about
the same spot over a short time interval,

l crossing - the mouse cursor has crossed
a canvas boundary,

l move - the mouse cursor has moved.

The modifier element specifies the state of
the keyboard modifier keys and the other
mouse buttons. If modifier is nil then the

event specification will only match events
where none of the modifiers are down, if it is t

then the specification will match mouse events
with any combination of modifiers down. If the
modifier is a single keyword then the
corresponding modifier key must be down.
Finally the modifier state may be represented
by a logical expression written in terms of and,

or, and modifier keywords. For example, to
specify either control-shift or control-meta:

(or (and :control :shift)
(and :control :meta))

Note that both the keyboard modifier keys
(control, shift, meta, hyper, and super) and the
mouse buttons may be used as modifier

elements. A mouse button may only be used
for modifier if it is not part of the action.

If the action element corresponds to a button
transition, the syntax for specifying the
transition is:

(:button (button-name I t)
(button-action I t),

Specifying t for the second or third argument
means any button or any button action (up,
down, or click). The second argument may also
be a keyword that identifies an individual
button or an expression that specifies a set of

Fig. 6 Event Specification Language Syntax

event := mouse I keyboard I damage (notification ((or {event]+)
keyboard := (:keyboard {character I t) [:upl [:down])
damage := (:damaqe)
notification := (:notification operations+)
mouse := (:mouse action {modifier I t I nil))
action := button I (:crossinq [:enter] [:exit]) I (:move)
button := (:button {button-name 1 t] [button-action (t])
button-name := :left (:middle 1 :right I

(or button-name*) 1 (and button-name*)
button-action := click := :clickl I :clickZ :click3 I :click4 I

:click I :up I :down I (or button-action+)
modifier := :control I :shift 1 :meta I :hyper I

:super I :left I :middle 1 :right I
(or modifier*)) (and modifier*)

operations := :status) :mapped I :bounding-region I :children I :parent

October 1-6, 1989 OOPSLA ‘89 Proceedings 249

alternative individual buttons, button chords, or [Szekely881, a CLOS based user interface
a combination of both. For example to specify toolkit, makes heavy use of active values like
either the left or right button moving up or Solo, but at the toolkit rather than at the
down: window system level.

(:button (or :left :right)

(or :up :down))

7. Comparison with Other Work

Currently, Common Windows [Intellicorp86] is
the most widely used portable window toolkit
in Common Lisp. Common Windows has
provided some applications with platform
independence, but because Common Windows
is not object-oriented, it lacks extensibility.
This makes user defined extensions of
windows hard to do. Inclusion of user interface
policy in the Common Windows design also
hinders customization. The design is based on
the Interlisp-D window toolkit [Xerox85], and
windows in Common Windows come bundled
with various components, the look and feel of
which cannot be changed.

In relation to object-oriented window systems
in other languages, Solo does not provide a
complete application framework. The interface
implemented by Solo is lower level than the
Smalltalk model/view/controller [Goldberg831
or MacApp [Schmucker86], though Solo’s
event dispatching system could easily support
application frameworks of that nature. in
general, the Solo design has stressed a simple,
lightweight window model and event based
input dispatching, to minimize the amount of
code at the interface between the application
and the host window system.

Solo differs from other CLOS-based window
systems in a number of ways. Unlike CLUE
[Kimbrough88], Solo is not tied to a single host
window system, but is designed to be portable.
The Solo model of event dispatching requires
specialization of at most two (and usually only
one) generic functions, rather than many, as in
DELI [Pettingill88]. In addition, Common Lisp
streams are implemented on top of Solo, not as
part of it, while DELI includes a mixin class
supporting stream operations as part of the
basic window class definition. The goals of
Solo are similar to the Window System
Independent Interface (WSII) portion of DELI.
Solo differs from Silica [Rao88] in that Silica
exposes host window system specific
components in the application interface. Silica
also has a complex semantic model, involving
contracts and window trees, in comparison
with Solo’s rather simple model, and Silica
does not specify an object-oriented interface to
the host window system as does Solo. CORAL

Solo synthesizes a number of useful ideas from
other window systems. The canvas class is
similar to that provided by NeWS, as is the
basic input model, but the utilization of CLOS
allows window system clients to customize
window classes even for host window systems
running on frame buffers or with
nonprogrammable servers, such as X. As
mentioned in Section 2, font handling and
graphic contexts are similar to X. The window
operations are like those of Common Windows.

8. Current Implementation Status

A prototype implementation of Solo has been
completed on the Xl 1 server based window
systems, and on the Lucid Window Toolkit, a
frame buffer based window system which runs
on SunView 1 [Sun88a]. The X 11 port runs on
both Xl 1 Release 2 and Xl 1 Release 3. The
prototype was built in Sun Common Lisp 3.0
[Lucid88b]. Sun Common Lisp 3.0 provides a
lightweight process mechanism similar to stack
groups on the Lisp Machine [Symbolics86],
and this mechanism has been used in Solo. The
public domain PCL implementation of CLOS
[Kiczales%] was used to develop Solo.

250 OOPSLA ‘89 Proceedings October l-6, 1989

In order to test the Solo application interface,
the Generic Windows user interface toolkit
[Schoen88] was implemented on Solo. Generic
Windows provides facilities for user interface
programming such as menus, titled windows,
scrollbars, etc., similar to Common Windows,
which are a level above the simple canvases
provided by Solo. No major changes were
required in the Solo design, and no features of
Generic Windows were left out of the
implementation. Finally, the Hyperclass AI
application framework [Smith881 was brought
up on top of the Generic Windows
implementation. Hyperclass provides support
for programming complex displays in a frame-
based AI language. No significant difficulties
were encountered.

A draft specification for the window interface
part of Solo has been completed, for Solo users
and implementors who would like to port Solo
to other hosts. A set of driver protocol
methods for the C based Xl 1 library (Xlib) is
currently being written. The prototype Xl 1
driver was written for the Lisp based Xl 1
library (CLX) but was found to be too large for
supporting serious applications development.
In addition, a layer is being added to Solo to
support user interface toolkits. Although this
layer is designed in a look and feel independent
fashion, a binding to the XView implementation
of the OPEN LOOK [Sun88b] user interface
toolkit is underway. Toolkit components from
the XView OPEN LOOK toolkit are being
integrated with Solo. A draft specification of
the toolkit support layer is also in progress.

9. Summary

The Solo window interface implements a
virtual window machine which insulates
application programmers developing CLOS
applications from the underlying host window
system, providing application programmers
with portability between host window systems
and between releases of the same host
window system. The Solo design stresses a

simple window abstraction, called a canvas, on
top of which applications or toolkit developers
can build more complex components. Fonts,
colors, and graphics are handled
conventionally, in a manner similar to X 11, but
the application interface remains the same
regardless of the host window system.

The input system is sectioned into two parts, a
global event dispatcher which handles
processing events from the host and a per
canvas event dispatcher that canvas subclass
developers typically subclass. Active values on
canvas slots cause slot update to update
dependent state as well. Canvases express
interest in particular events which they want
delivered, or revoke interest in those events
which are no longer of concern. An event
description language allows different host
window system implementations or application
level software to precisely specify the mapping
between mouse and keyboard states and
generated input events. Event dispatching
need not be confined to input, however, and
customizations in the direction of event driven
interapplication communication are also
possible.

Object-oriented design was important in
constructing the interface to the host window
system. A port of Solo needs to implement a
host window system specific class and
methods for the host specific device driver
generic functions. The driver protocols match
the Solo abstract interface to the host window
system’s event handling, window and display
protocol, and graphics capabilities, such as
fonts and color. The host driver interface is
even flexible enough to handle incompatibilities
between releases of the same host window
system. Applications on Solo are thus
insulated from changes in the host between
releases, and, in the case of server based
window systems, can communicate with
servers running different releases of the host
from the same Lisp image. Communication
between an application and different hosts from

October 1-6, 1989 OOPSLA ‘89 Proceedings 251

within the same Lisp image, for example a
server based and a frame buffer based system,
is also possible.

[Intellicorp86] Common Windows Manual, Intellicorp,
Mountain View, CA, 1986.

A prototype implementation of Solo has been
developed on X and the Lucid Window Toolkit,
using Sun Common Lisp 3.0 and the public
domain PCL CLOS implementation. The
Generic Windows user interface toolkit, and
the Hyperclass AT application framework have
been moved to a Solo base. Currently, a set of
driver methods for the Xlib Xl 1 library are
being written, and a look and feel independent
toolkit interface is under development. The
toolkit interface is initially being bound to the
XView implementation of the OPEN LOOK
look and feel. A specification for the window
interface layer is available, and one for the
toolkit interface layer is in progress.

[KiczaIes88J “The Implementation of PCL,” talk given
at the First CLOS Users and Implementors Workshop,
Oct. 3 & 4, 1988.

[Kimbrough88] Common Lisp User Interface
Environment, Texas Instruments, Dallas, TX, 1988.

[Lucid88a] Sun Common Lisp 3.0: The Lucid Window
Toolkit, Lucid Inc. and Sun Microsystems, 1988.

[Lucid88b] Sun Common Lisp 3.0: Advanced Users.
Guide, Lucid Inc. and Sun Microsystems, 1988

[Moon861 Moon, D., “Object-Oriented Programming
with Flavors,” Proceedings of the First Annuul
OOPSLA, SIGPLAN Notices, 21(11), pp. l-8, 1986.

[Myers891 Myers, B., “User-Interface Tools:
Introduction and Survey,” IEEE Software, pp. 15-23,
January, 1989.

10. Acknowledgments

[Pettingill Pettingill, R., “The Deli Window
System: A Portable, CLOS Based Network Window
System Interface,” Proceedings of the First CLOS Users
and Implementors Workshop, pp. 121-124, Oct. 3 &4,
1988.

The authors would like to thank Steve Gadol
for his support of the Solo experimental
prototype and Robert Mori, who was
instrumental in helping with Xl 1 releases.

Il. References

[BDGKKM88] Bobrow, D., DeMichiel, L., Gabriel, R.,
Keene, S., Kiczales, G., and Moon, D., “Common Lisp
Object System Specification,” SIGPLAN Notices, 23,
September, 1988.

[Rao881 Rao, R., “Silica: A Window System Kernal,”
Proceedings of the First CLOS Users and Implementors
Workshop, pp. 125-128, Oct. 3 & 4, 1988.

[Schaffert86] Schaffert, C., Cooper, T., Bullis, B.,
Kilian, M, and Wilpolt, C., “An Introduction to
Trellis/Owl,” Proceedings of the First Annual
OOPSLA, SIGPLAN Notices, 21(11), pp. 9-16, 1986.

[Scheifler86] Scheifler, R., and Gettys, J., “The X
Window System,” ACM Transactions on Graphics,
5(2), 1986.

[Bobrow Bobrow, D., Kahn, K., Kiczales, G.,
Masinter, L., Stefik, M., and Zdybel, F.,
“CommonLoops: Merging Lisp and Object-Oriented
Programming,” Proceedings of the First Annual
OOPSLA, SIGPLAN Notices, 21(11), pp. 17-29, 1986.

[Scheifler88a] Scheifler, R., X Window System Protocol,
Version 1 I, Release 2, MIT, Cambridge, MA, 1988.

[Scheifler88b] Scheifler, R., X Window System Protocol,
Version 11, Release 3, MIT, Cambridge, MA, 1988.

[Brooks861 Brooks, R., Posner, D., McDonald, J.,
White, J.L., Benson, E., and Gabriel, R., “Design of an
Optimizing, Dynamically Retargetable Compiler for
Common Lisp,” Proceedings of the 1986 ACM
Conference on Lisp and Functional Programming, pp.
67-85, 1986.

[Schoen88] Schoen, E., Smith, R., and Atkinson, A.,
The Generic Window System, Schlumberger Palo Alto
Research, Palo Alto, CA, 1988.

[Schmucker86] Schmucker, K., Object-Oriented
Programming for the Macintosh, Hayden Books,
Hasbrouck Heights, NJ, 609 pp., 1986

[Goldberg@] Goldberg, A., and Robsen, D., Smalltalk- [Smith881 Smith, R., Schoen, E., and Atkinson, A.,

80: The Language and Its Implementation, Addison- Metaclass User’s Guide, Schlumberger Technologies,

Wesley, Reading, MA, 1983. Inc., 1988.

[Steele841 Steele, G., Common Lisp: The Language,
Digital Press, Marlborough, MA, 1984.

252 OOPSLA ‘89 Proceedings October 1-6, 1989

[Stefik86] Stefik, M, and Bobrow, D., “Object-Oriented
Programming: Themes and Variations,” AI Magazine,
6(4), pp. 40-62, 1986.

[Sun871 NeWS 1.1 Manual, Sun Microsystems,
Mountain View, CA, 1987.

[Sun88a] SunViewI Programmers Guide, Sun
Microsystems, Mountain View, CA, 1988.

[Sun88b] Open Look Graphical User Interface
Functional Specification,, Sun Microsystems, Mountain
View, CA, 1989.

[Szekely88] Szekely, P, and Myers, B., “A User
Interface Toolkit Based on Graphical Objects and
Constraints,” Proceedings of the Third Annual
OOPSLA, SIGPLAN Notices, 23(11), pp. 36-45, 1988.

[Symbolics86] Symbol& Lisp Machine Manual,
Symbolics, Inc., Cambridge, MA, 1986.

[Xerox851 Interlisp-D Reference Manual, Volume 3:
InputlOurput, Xerox Artificial Intelligence Systems,
Palo Alto, CA, 1985.

October 1-6, 1989 OOPSLA ‘89 Proceedings 253

