
Relations as Semantic Constructs in an
Object-Oriented Language

James Rumbaugh
General Electric

Corporate Research and Development
Schenectady NY

ABSTRACT 1 .l What are relations

The relation as a semantic construct in an object-ori-
ented language clearly expresses associations and con-
straints among objects which would otherwise be
buried in implementation code. The externalization of
references between objects permits a symmetric, non-
redundant conceptual model which merits its own spe-
cial notation and predefined operations. The object-
relation model, which combines the object-oriented
model with the entity-relationship model from data
base theory, is particularly useful for designing and
partitioning systems of interrelated objects. Relations
can be implemented efficiently using hash tables. The
model proposed here has been fully implemented in an
object-oriented language written by the author which
has been used to implement several production applica-
tions.

1. INTRODUCTION

The relation is a semantic construct supported by rela-
tional data bases [Codd] and semantic data models
[Chen, Loomis, Teorey] which is not well supported
in object-oriented programming, as exemplified by lan-
guages such as Smalltalk [Goldberg]. It is possible to
program relations using existing object-oriented con-
structs, but only by writing a particular implementa-
tion in which the programmer is forced to specify
details irrelevant to the logic of an application. It is
not possible to separate the abstraction from the
implementation with the same clarity as found in the
relational data models. This paper describes how rela-
tions can be added to object-oriented languages so that
they complement existing concepts yet greatly enhance
expressive power,

A relation associates objects from n classes. The state
of a relation can be described as a set of elements, each
element consisting of one object from each of the n
classes. A relation expresses associations often repre-
sented in a programming language as pointers from one
object to another, but in a more symmetric form, as a
relation is not unidirectional in the way that a pointer
is. Operations can be applied uniformly to a relation as
a whole, rather than singling out one of the objects in
the relation as the target of a method. The state of a
relation can be changed by operations to add or delete
elements: the state can be queried by operations to test
membership of elements, to select a subset of ele-
ments whose values satisfy some condition, and to iter-
ate over the entire set of elements. The ability to
apply operations to the entire relation, rather than sim-
ply individual objects in it, allows many expressions
to be written concisely.

A relation is an abstraction stating that objects
from certain classes are associated in some way: the
association is given a name so that it can be manipulat-
ed. It is a natural concept used in ordinary discourse.
For example, the statement “Jim Jones works for
Acme Products” implies that “works for” is a rela-
tion between persons and companies and that the
objects “Jim Jones” and “Acme Products” satisfy this
relation.

1.2 Object-oriented languages lack relations

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage.
the ACM copyright notice and the title of the publication and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

C 1987 ACM 0-89791-247-O/87/0010-0466 $I .50

Object-oriented languages express classification (the
grouping of objects into classes) and generalization
(the refinement of classes into subclasses) well, but
do not contain syntax or semantics to express rela-
tions directly. Any program can implement particular
relations on an ad hoc basis, but the abstraction may
get lost in the implementation mechanisms. Different
aspects of a relation can be implemented by methods
on the participating object classes, but this distributes
the information about the relation among different

466

Rumbaugh

OOPSLA ‘87 Proceedings October 4-&I987

classes, rather than gathering the information into a
single object which can be manipulated as a unit.

A collection subclass “relation” can be implement-
ed which has methods that implement various relation-
al operations. An object of this class holds sets of n-
tuples containing the related objects. Writing pro-
grams is easier, because the user of the class need not
duplicate the implementation mechanisms hidden
inside the class. Such relation objects must be instanti-
ated by the application program at run time.

Providing a class “relation” is basically an imple-
mentation tool which does not raise * relations to the
same semantic level as generalization (the class-sub-
class hierarchy), which is supported in most object-ori-
ented languages with built-in syntax and semantics.
There is no logical necessity for providing a declara-
tive syntax and semantics for generalization; such
behavior could be implemented on an ad hoc basis and
called for explicitly. Object-oriented languages have
built-in constructs for generalization because it is a
natural concept that people use in ordinary discourse;
it allows algorithms to be written more concisely and
more clearly; and it is common enough to justify
building it into a language. Relations are also natural,
productive, and common in abstracting applications.
An object-oriented language is more expressive if rela-
tions are a primitive declarative construct, on the same
footing as classes.

1.3 Why relations should be a semantic construct

It is important that relations be considered a semantic
construct, and not simply an implementation con-
struct. Object-oriented programming has become
important because it provides a way of thinking about
a problem that is different from previous approaches,
such as functional decomposition. An object-oriented
data model structures the formulation of a design
from its beginning. The use of relations as a semantic
construct can have a major impact on the formulation
and elucidation of a design, but only if they are consid-
ered as semantic constructs of similar weight to class-
es and generalization.

Relations are particularly useful in the design of
larger systems containing many classes that interact,
because relations abstract interactions among classes in
a natural way. In an, existing object-oriented language,
such interactions are buried in the instance variables
and methods of the classes, so that the overall struc-
ture of the system is not readily apparent. Represent-
ing a system by an object model containing classes and
relations among the classes abstracts the high-level
static structure of the system, without having to speci-
fy a particular implementation of the classes and their
methods. Such a high-level model is useful in parti-

tioning systems into subsystems independently of the
implementation of the parts. Our experience has
shown that relations are more important to the design
of large systems than generalization, because relations
affect the partitioning of a system into its parts,
while a generalization hierarchy is often confined to a
single module within a system.

1.4 Relations can be implemented

Relations can be implemented efficiently. The alleged
inefficiency of many relational data bases has several
causes: many relational data base management systems
only support relations among attribute values, rather
than among objects directly; they fail to provide (or
users fail to use) appropriate indexing mechanisms;
they perform too many operations to the disk, rather
than caching data in memory; and they are not imple-
mented as well as they could be, given the theoretical
state of the art. Relations can be implemented in an
object-oriented language using hash tables for constant-
time access, regardless of the size of a relation.

The author has implemented an object-oriented lan-
guage, the Data Structure Manager (DShQ which adds
syntactic and semantic support for relations to exist-
ing object-oriented concepts. This language has been
used to write production applications at several GE
sites, Applications include interactive graphics, simula-
tions, text processing, and the DSM system itself.
Our experience has shown that the addition of this con-
cept greatly simplifies conceptualization and imple-
mentation of many applications and provides a better
fit to real-world problems than the original obje-ct-
oriented model.

1.5 Organization of this paper

This paper presents the object-relation model, which
combines the concepts of objects, classes, and methods
from the object-oriented model [Goldberg] with the
concept of relations from the entity-relationship mod-
el [Chen]. The object-relation model is discussed on
two levels: logicat and implementation. Section 2
describes relations as logical constructs, independent
of their implementation. Section 3 discusses the diffi-
culties of using conceptual relations in existing object-
oriented languages. Section 4 describes how to extend
an object-oriented language to implement relations.
Section 5 discusses some possible objections to this
model. Section 6 discusses an actual implementation of
these concepts in an object-oriented language. Section 7
mentions some open issues. Appendix A briefly
describes the author’s object-oriented language DSM,
which implements the object-relation model.
Appendix B summarizes a graphical notation for dia-
gramming object models and shows a small example

October 4-8,1987

Rumbaugh

OOPSLA ‘87 Proceedings 467

of a data model. Appendix C discusses previous work
in semantic data modeling which includes many of the
basic concepts both of object-oriented data models and
the object-relation model.

2. RELATIONS AS LOGICAL CONSTRUCTS

2.1 Definitions

A relarion exists among an ordered list of object class-
es. The number of classes participating in the relation
is its degree. The ordering of the classes in the rela-
tion is significant; in general, relations are not sym-
metric. Each class in the list of classes is called a
field, identified by its position. Alternatively, each
field can be assigned a unique role name to identify it
within the relation. A class can appear more than once
among the fields of a relation, in which case it is par-
ticularly important to keep the ordering straight or
use role names.

A relation contains a set of elements, each a tuple
of objects, one for each field of the relation. The class
of each object must match the class of its field (it can
be a subclass). The form of a relation is fixed but its
contents can change over time. Since a relation is a set,
each element in it is unique, but a value in a particular
field can appear many times in association with differ-
ent values for other fields. Note that in this paper,
relations exist directly among objects, unlike Codd’s
model for relational data bases, in which relations
exist only among attribute values and not among
objects themselves. Allowing objects to appear direct-
ly in relations greatly simplifies models for complex
structures.

2.2 Syntax

The concept of a relation is a natural one, and corre-
sponds to real-world concepts. Relations represent
information about the associations among different
objects, rather than information about objects in isola-
tion. For example, consider the relation between per-
sons and the companies they work for. Such a relation
could be written:

RELATION Works-for
(employee: Person, employer: Company)

A diagram of this relation is shown in Figure la.
Object classes are shown as boxes containing the name
of the class. Relations are shown as lines connecting
two classes, with the name of the relation near the
line. The black dot indicates that each company may be
associated with many persons.

The value of a relation is a set of object tuples
which represents part of the state of the world at a
particular moment. For example, the “Works for”

walks for
PERSON l - COMPANY

Figure la. Data Model of a Relation

Jim Jones

Acme Products

Joe Blow works for

,JanesmithgLGq

Figure lb.
Object Instances and Elements of the Relation

relation might have elements (“Jim Jones”, “Acme
Products”), (“Joe Blow”, “Acme Products”), and
(“Jane Smith”, “Widget Works”). This situation is
diagrammed in Figure lb; object instances are drawn as
boxes connecting to related objects by lines. Note that
the relation exists between the objects themselves, not
their attributes, although in giving examples we iden-
tify objects by their unique attributes (such as their
names).

2.3 Update operations

The value of a relation can be changed by adding ele-
ments to it or deleting elements from it; these opera-
tions correspond to changes in the real-world situation
abstracted by the relation. Each operation requires one
value for each field. For example, the following
sequence of operations (written in a C++ style synta4)
would produce the state of the “Works for” relation
shown in the figure:

Works-for.add (Jim Jones, Acme Products)
Works-for.add (Joe Blow, Acme Products)
Works-for.add (Jane Smith, Widget Works)

The value of a relation is a set, so adding an element
that already exists does not change its value. Similar-
ly, deleting an element not present in the relation does
not change its value. In such cases, a particular imple-
mentation might choose to raise an exception or silcnt-
ly ignore it.

468

Rumbaugh

OOPSLA ‘87 Proceedings October 4-8, 1987

2.4 Query operations

The value of a relation can be queried with operations
to test membership of an element, select all the ele-
ments that match certain fields, or scan all the ele-
ments.

2.4.1 Testing membership

A membership test requires one value for each field,
and returns a boolean value. Here are some member-
ship tests of the “Works for” relation:

Works-for.test-member (Jim Jones,
.Widget Works) returns False

Works-for.test-member (Jim Jones,
Acme Products) returns True

Works-for.test-member (Acme Products,
Jim Jones) returns False

The order of the objects within an element is signifi-
cant, as shown by the last example.

2.4.2 lncfexing by fields

Relational data bases support general queries which
select from a relation all the elements whose fields
satisfy an arbitrary boolean expression. Such generali-
ty may not need to be a primitive in an object-oriented
language, but at the least it is necessary to be able to
select all the elements in which one or more designat-
ed fields match specified values. The index operation is
defined on some subset of the fields of a relation,
called the index set. A value is required for each field
in the index set; the index operation returns the set of
elements whose fields match the index values. Since
the index values are already known, it is convenient to
ignore them in the returned values, and consider the
operation as returning a set of elements of reduced
degree. Indexing a binary relation by one field returns
a set of values from the other field. For example, to
find all employees of a company:

Works-for.index-2 (Acme Products)
returns {Jim Jones, Joe Blow)

Works-for.index-2 (Widget Works)
returns (Jane Smith}

Works-for.index-2 (Marvelous Manufacturing)
returns { }

The suffix “-2” indicates that the in&x set is the sec-
ond field. Either field in a binary relation can serve as
an index. To find a person’s employer:

Works-for.index-1 (Jim Jones)
returns {Acme Products}

There is one index operation for each subset of fields.
For a relation of degree n, any subset k of the n fields
can serve as an index, returning a set of elements

drawn from the remaining n-k fields. An implementa-
tion would not necessarily need to support all n!
modes of indexing.

2.4.3 Scanning elements

Since a relation is a set, an operation to scan all its ele-
ments is necessary. The scan operation applies a speci-
fied operation to each element of the relation in turn.
The order of scan depends on the implementation; a
Program should assume that the elements are
unordered. General queries can be constructed using the
scan operation, but the index operation is more direct
when it can be used.

Given these basic operations, various composite oper-
ations can be constructed, such as deleting all occur-
rences of a value in a given field. A particular imple-
mentation might define some of these composite opera-
tions as primitives for efficiency.

2.5 Cardlnality

It is often convenient to constrain a relation by speci-
fying the cardinality of one or more of its fields. The
cardinality is the number of different values from the
specified field that can be associated with a given set
of values for the other fields. Cardinality can be speci-
fied as an integer interval. For example one car is asso-
ciated with four tires and from four to eight spark
plugs. Most of the time, it is sufficient to distinguish
scalar fields (cardinality zero or one, “one” fields)
from set fields (cardinality zero to unbounded,
“many” fields). For example, if each person works
for a single company, then the “Works for” relation
is many-to-one from persons to companies, that is,
many persons may be associated with each company,
but one company is associated with each person. In gen-
eral, every object of a class need not appear in the rela-
tion. An unemployed person would not appear in the
“works for” relation. In some cases, it is useful to
indicate that the cardinality of a relation must be non-
zero. For example, if we replace “Person” with
“Employee” in the “Works for” relation, every
instance of class “Employee” must be associated with
an instance of class “Company”; class “Employee” is
said to be etistence dependent on class “Company”.

The cardinality of each field can be declared as fol-
lows:

RELATION Works-for (employee: Person!‘,
employer: Company/O-l)

where the cardinality is shown as an interval range and
the star shows an unbounded cardinality. In a diagram,
a black dot shows a set of values, a “many” value. A
simple line shows a single required value, a “one” val-

October d-a,1987

Rumbaugh

OOPSLA ‘87 Proceedings 469

ue. An open circle shows a single value that is option-
al, a “zero or one” value.

Cardinality constraints represent an important
aspect of the real-world situation being abstracted
which is absent in many models. The constraints can-
not be validated from within the model, but must be
determined by the real-world situation and its rele-
vance to a particular application. For example, the
relation “married-to” would be one-to-one in the
United States, but one-to-many in Saudi Arabia. On
the other hand, if the “married-to” relation represents
marriage partners over time, then it would be many-
to-many even in the United States. Choosing cardinali-
ty constraints forces the designer to confront assump-
tions early which are frequently buried in the code.
They also force the designer to decide how special cas-
es and exception conditions will be handled.

The cardinality of the set returned by an indexing
operation is necessarily consistent with the cardinality
of the relation. For example, because “Works for” is
a many-to-one relation, indexing it by “Person”
yields a set containing a single company object. An
implementation can take advantage of this constraint
to store an associated value as a scalar rather than a
set. An implementation of the operations must guaran-
tee that cardinality constraints always remain valid
and that duplicate elements do not appear in the rela-
tion, by rejecting operations that would violate the
constraints or defining side effects that preserve the
constraint.

2.6 Similarities between classes and relations

A class and a relation can both be thought of as
objects with fixed descriptions and variable states
which reference other objects. The description part of
a class includes its superclasses and subclasses,
instance variables, and methods; the state part is the
set of instances of the class. The description part of a
relation includes its degree, cardinality, and list of
fields; the state part is the set of elements of the rela-
tion. Specification of an object-relation model for an
application requires that the descriptions of the rele-
vant classes and relations be given. Execution of an
algorithm based on the model generates successive
states of the objects.

2.7 Qualified Relations

So far only binary relations have been discussed in
detail, although the semantics of relations have been
described for relations with any number of fields. A
special kind of ternary relation, called a qualified rela-
tion, arises frequently enough to merit special treat-
ment. They come about as follows: Often a one-to-
many relation exists between two classes: call them

the source class and the target class. Each object in the
source class is related to a set of objects in the target
class. To distinguish among the set of target objects,
they are given names unique within the set. A set of
names is associated with each source object, naming the
target objects associated with it. Each set of names is
local to the source object it qualifies. Another source
object might ‘share all, some, or none of the names. A
name qualifies the source object to identify a unique
target object. A source object and a name, taken as a
pair, are associated with a unique target object. There
is one-to-one relation between the (source object,
name) pair and the target object. Equivalently, there is
a ternary relation among the (source object, name, tar-
get object) classes. Such a relation is called a qualified
relation.

Qualified relations occur when there is a set of
names, or some other set of qualifiers, that serves to
distinguish the target elements in a one-to-many or
many-to-many relation. For example, a directory in a
file system contains many files; a file name unique
within the directory distinguishes them. A qualified
relation could be declared as:

RELATION File-system
(Directory[filename:Name]ll, File(l)

to show that each (directory, name) pair identifies a
unique file and each file identifies a unique (directory,
name) pair. The brackets indicate that the name quali-
fies the directory, similar to an array index which
qualifies an array. The cardinality applies between the
(directory, name) pair and the file. If links are sup-
ported, each file could have many names, so the decla-
ration would be:

RELATION Link-file-system
(Directory[filename:Namel(‘, Filell)

to show that each (directory, name) pair identifies a
unique file but each file is associated with a set of
(directory, name) pairs. Figure 2 shows a diagram for
this many-to-one qualified relation.

Directory Name

File
_ Link-file-system

Figure 2. Qualified Relation

Examples of qualified relations come to mind when-
ever a set of names or other identifiers is associated
with an object. For example, the name of a state iden-

470

Rumbaugh

OOPSLA ‘87 Proceedings October 4-8, 1987

tifies a particular state associated with a country; the
name of a city identifies a particular city associated
with a state; the name of a street identifies a particu-
lar street associated with a city:

RELATION World-country
(World[Name]]l, Countryll)

RELATION Country-state
(Country[Name]]l, Statell)

RELATION State-city (State[Name]ll, Cityll)
RELATION City-street (City[Name]ll, StreetIt)

The fist relation is included for uniformity, although
most applications would contain only a single instance
of “World”. Representation of the information as a
qualified relation makes its bidirectional status clear.
Given the names of a country, state, city, and street, a
unique street object can be found. Conversely, given a
street object, unique names can be found for the coun-
try, state, city, and street.

The qualifier need not be a name, as long as it dis-
tinguishes target objects. The following declarations
show some more examples:

RELATION Gategins
(Gate[pin-number:lnteger]]l, PinIl)

RELATION State-machine
(initiaI:State[input:Token]]‘, final:Statell)

RELATION Officers
(Company[Office]]*,officer:Person]l)

The fist relation associates gates with pins on the
gate, using the pin number. Each pin on a gate has a
unique pin number. The second relation describes a
state machine. An initial state and an input token pro-
duce a final state. A given final state may have been
produced by more than one (initial state, input token)
combination. The third relation describes the officers
of a company. In this example, “Office” is an object
class that describes the office, rather than a name.
Each office is held by one person; one person can hold
several offices, in the same or different companies.

Operations on a qualified relation are simply special
cases of the n-relation. To add or delete an element or
test membership, the values of all three fields must
be given. There are 3! indexing sequences possible on
three fields, but it is convenient to require that the
quahfier field not be given without the source field,
i.e. to disallow searches that start with the index
field. There is no mathematical justification for this
restriction, but it permits the qualified relation to be
manipulated as an extended binary relation, which sim-
plifies both the notation and the implementation. (For
those situations where this restriction is unacceptable,
a full ternary relation can be used.) A qualified rela-
tion can be indexed by the first field and qualifier

field to yield values from the second field. It can be
indexed by the second field to yield pairs of values
from the first field and the qualifier field. This can be
factored on the first field to yield a table of qualifier
values indexed by values from the first field. Finally,
it can be indexed by the first field alone to yield a
table of values from the second field indexed by val-
ues from the qualifier field. These can be written:

Link-file-system.index-lq (Directory, Name)
returns File

Link-file-system.index-2 (File)
returns Table [File] of Name

Link-file-system.index-1 (Directory)
returns Table [Name] of File

A qualified relation is appropriate wherever a name of
local scope is used to discriminate among a set of relat-
ed objects. In general, a name is a qualifier on a set of
objects. Whenever a name is felt to be global or
unique, the model can usually be recast in a more gen-
eral form; on deeper inspection unique names are found
to be unique with respect to some other object, such as
a catalog, organization, and so on. Programs written
with the assumption of unique names often have to be
rewritten later; it is better to represent names using
qualified relations from the beginning. In most appli-
cations, we have used qualified relations heavily; as
many as half the relations in certain applications are
qualified relations.

2.8 Other Relations

Other variations on ternary relations can be defined,
but they are of lesser utility than qualified relations.
We have developed a general formulation for relations
of any degree, in which cardinality constraints are
expressed by listing all the subsets of fields that form
candidate keys of the relation. A set of fields could be
an index set, provided the possible index sequences are
specified in advance and used by the system to maintain
indexing tables. This approach will be described in
detail in a future paper. We have found that relations
with more than three fields are rarely if ever needed in
practice.

3. RELATIONS IN STANDARD OBJECT
ORIENTED LANGUAGES

A standard object-oriented language (such as
Smalltalk) has two kinds of abstraction structuring
mechanisms which relate different objects: instuntia-
tion (“an instance or’) and generalization (“a kind
of’, the class hierarchy). Instantiation is a relation
between class descriptor objects and instances of the
class. Generalization is a relation between pairs of
class descriptor objects, the superclass and the sub-

Odober 4-8,1987

Rumbaugh

OOPSLA ‘87 Proceedings 471

class. These special relations are built into the seman-
tics of the language and are supported by special syn-
tax; they cannot be accessed as discrete objects. Rela-
tions between ordinary object instances are not sup
ported by syntax or semantics. They can be simulated
by the use of instance variables that refer to other
objects. If the relation must be traversed in more than
one direction, an instance variable is required in each
participating object.

3.1 Implementing relations using instance
variables

Representing a relation between two objects as an
instance variable in each object fails to capture the
semantics of the relation. The information about the
relation is distributed among two classes, rather than
being specified in one place, making it harder to under-
stand and maintain. The constraint that related objects
must mutually reference each other cannot be explicit-
ly expressed. A programmer cannot represent a rela-
tion between two classes without choosing an imple-
mentation, including choice of instance variables and
methods, and exposing much of the implementation.
The conceptual and implementation levels cannot be
kept distinct in representing relations, because there is
no semantic support for relations in languages such as
Smalltalk.

For example, consider the implementation of the
“Works for” relation shown in Figure 3. Each person
has a pointer to the employer. while each company has
a pointer to a set of pointers to employees.The follow-
ing class declaration fragment implements the
“Works for” relation using pointers:

CLASS Person
INSTANCE VARIABLES

employer : Company
METHODS

put-employer (Company)
CLASS Company
INSTANCE VARIABLES

employee : Set of Person
METHODS

add-employee (Person)
delete-employee (Person)

The instance variables Person.employer and Compa-
ny.employee are related, but there’ is no way to
express this constraint in an object schema declaration.
Public update methods Person.put-employer, Compa-
ny.add-employee, and Company.delete-employee must
maintain the constraint as elements of the relation
change by updating instance variables employer and
employee. A method such as Person.put-employer
must have access to the instance variables of

ComDanv

Person
- -

Person Person

Logical Structure

Company

Person Person Person

Implementation Structure

Figure 3. Implementation of “Works for’
relation using pointers

“Company” (perhaps using the “friend” mechanism of
C++). The alternative is another layer of private meth-
ods, such as Company.raw-add-employee, which allow
the public methods, such as Person.put-employer, to
cause the instance variable to be updated. (Calling
Company.add-employee within Person.put-employer
would cause an infinite loop.) If the language lacks
the “friend” mechanism, it may be impossible to hide
the raw update methods yet still allow the public
methods to be written, without exposing the internal
structure to public view and the danger of inconsisten-
cy. In any case, each update method involves modifica-
tions to several instance variables.

A simple update requires several lines of code to
implement.. This leads to opaque code and introduces
the danger of inconsistencies in the data structures if
one pointer is updated independently. Another disad-
vantage of representing relations between objects as
pointers is that an ins&e variable must be reserved
in each object instance for each relation that an object
of a given class can participate in. This is no problem
for a dense relation, in which most or all instances of
a class will participate in the relation, but it tends to
discourage the use of sparse relations, since the cost
must be paid by every instance of the class, even if few
instances participate in the relation.

472

Rumbaugh

OOPSLA ‘87 Proceedings October 4-8, 1987

3.2 Duality of relations and instance variables vided for method application.

Relations and instance variables can be mapped into
one another. It is easy to represent a binary relation as
a pair of instance variables on the respective classes,
each of which holds a set of values from the other
class. The two instance variables are mutually depen-
dent; this constraint must be expressed in the method
code rather than the object schema. This mapping
increases the mechanism baggage that the designer
must deal with; relations provide more semantic infor-
mation in a more transparent form. On the other hand,
an attribute of a class can be represented by a many-to-
one relation between the class and the class of the
attribute. Attributes and many-to-one relations are
both logically equivalent to discrete partial functions.
The replacement of an attribute by a relation does not
increase the complexity of the representation for the
designer, because the same amount of information
needs to be specified. Use of a relation can reduce the
complexity of the algorithm, because a relation can
inherently be traversed in either direction, while an
instance variable can be followed only in the
“forward” direction. We have found it profitable to
represent all attributes as relations in the initial
design of an object model, and to consider instance
variables as simply implementation optimizations for
cases where traversal in the “reverse” direction is not
needed.

- The compiler can automatically generate methods on
the participating object classes to access and update
the relations.

- Object classes will have a list of relations they par-
ticipate in, represented in a uniform way. This infor-
mation can be used in writing generic methods to
destroy objects and clean up relations they partici-
pate in, to copy objects and objects they are related
to, and to pretty-print objects along with objects
they are related to.

- Most importantly, treating relations as important
built-in semantic constructs changes the way pro-
grammers abstract and formulate problems. Think-
ing in terms of objects and generalization hierar-
chies is generally unfamiliar at first, but eventually
changes the way a programmer thinks about a prob-
lem. We have found from experience that making
relations a first-class semantic construct affects a
programmer’s way of thinking about a problem
from the design stage all the way through to the
coding. This new way of thinking is particularly
useful for formulating and partitioning designs.

4. IMPLEMENTATION OF RELATIONS IN AN
OBJECT-ORIENTED LANGUAGE

4.1 Syntax

3.3 Why adding a relation class is not enough

In a standard object-oriented language it is possible to
define a collection class “relation” whose instances
represent the values of particular relations and whose
methods implement the operations proposed for rela-
tions. This is useful in simplifying the implementa-
tion of relations, but it fails to separate the relation
as a logical construct from the relation object as an
implementation tool. Individual relation objects must
he instantiated at run time as part of the application
code. It is desirable to build syntactic and semantic
support for relations in the language, similar to the
support for classes, for the following reasons:
- There may be more than one possible impiementa-

tion of a logical relation. A programmer should be
able to choose the implementation using an option
flag on the declaration, without changing the code
that uses the declaration or even most of the decla-
ration itself,

The syntax of declaring relations should be parallel to
the syntax for declaring classes, in accord with their
joint status as first-class semantic constructs. An
object class schema declaration consists of both class
definitions and relation definitions, neither subordi-
nate to the other. The definition of a relation requires
the information described under the logical model,
namely its name, degree, cardinality constraints, and a
list of object classes for the fields. Each field can be
given an optional name for convenience. The compiler
automatically instantiates and initializes each declared
relation at program initiation. When a program begins
execution, each relation contains no elements, just as
each class contains no instances. The names of relations
have global scope, as do the names of classes.

4.2 Methods

- The compiler can implicitly instantiate and initial-
ize relations at the beginning of program execution,
just as object classes are instantiated and initialized.

- The language can provide special syntax to simplify
operations on relations, just as special syntax is pro-

The methods applicable to relations are attached to
class ‘%elation”. There are subclasses for special cas-
es, such as “Binary relation” or ‘Qualified relation”.
The methods are the ones described under the logical
model, namely “add element”, “delete element”,
“index” (in several varieties, according to the index
fields supplied), “test membership”, and “scan.” The
methods would be invoked on the relation object

October 4-8,1987

Rumbaugh

OOPSLA ‘87 Proceedings 473

itself. This is similar to invoking a class method on a
class, such as “new”, in that the name of the object in
both cases is a proper name known to the compiler,
and designates a predefined object initialized implicit-
ly as a consequence of making a declaration. It is not
necessary for users to define new methods on particu-
lar relations, because they are not classes and do not
describe instances. (It is possible to define new refa-
tion subclasses corresponding to individual relations
or groups of relations for the purpose of overriding
the predefined methods. This would define a relation
hierarchy, similar to the class hierarchy, and permit
new methods to be defined on some relations. We have
not explored this concept yet.)

The methods that update a relation must guarantee
that the cardinality constraints are never violated. An
implementation may define whether an update that
would violate a cardinality constraint is rejected with
an error status, or whether the conflicting elements
are deleted from the relation as an implicit side-effect
of the operation, as long as the resulting state is valid.

For purposes of information hiding it is desirable
to restrict access to a relation to the classes participat-
ing in it. Methods on participating classes can access
the relation freely, as with instance variables in class-
es, but methods on other classes have access to the
relations only indirectly, through methods on the
affected classes.

To closely model natural ways of thinking about
relations, it is convenient to support two complemen-
tary ways of applying methods to them. The first way
treats a relation as an object to which a method is
applied. For example, the syntax for adding an ele-
ment to the ‘Works for” relation might be

works-for.add
(Susan-Hill, Marvelous-Manufacturing)

and the syntax for indexing by a value from the first
field might be

works-for.index-1 (Susan-Hill)
returning “Marvelous~Manufacturing”. The second
way treats a relation as analogous to an attribute on
one of the participating classes; the target of the
method is an object from one of the classes, rather
than the relation as a whole. For example, the syntax
to add a worker to a company might be

Marvelous-Manufacturing.add-worker
(Susan-Hill)

An alternate form would be

Susan-Hill.put-employer
(Marvelous-Manufacturing)

Both forms have the same effect. A good object-orient-
ed language preprocessor can automatically generate
access methods on the participating classes using role
names; an option flag on the relation declaration indi-
cates that the generated methods are wanted.

pii%J r7zik-j
Figure 4. Collection class hierarchy

474

Rumbaugh

OOPSLA ‘87 Proceedings October 48,1987

4.3 Relation objects

Relation objects can be implemented so that access is
efficient. The most straightforward implementation is
to have an actual relation object for each declared rela-
tion. Class “Relation” is a subclass of class
“Unordered Collection” and is similar to class “Set”
(Figure 4). Relation objects contain a description part
and a variable-length value part. The description part
contains the degree of the relation, a list of fields, and
the cardinality constraint. It may be unnecessary to
implement fully general cardinality constraints: in
practice, it is useful to support cardinality “zero or
one” and cardinality “many”. The value of a relation
is a set of tuples of values from the respective object
classes. The value could be represented as a set object,
but this would make indexing inefficient, as it would
be necessary to scan the set to find field values that
match the arguments.

4.3.1 Internal Structure

To permit efficient access for indexing, it is necessary
to build an index table for each desired index order.
For example, a binary relation can be accessed by field
1 to yield field 2. or by field 2 to yield field 1. Two
index tables are required, one mapping field 1 values
to field 2 values and one mapping field 2 values to
field 1 values. A qualified relation can be accessed by
field 1 to yield the qualifier and field 2, by field 1
and the qualifier to yield field 2, or by field 2 to
yield field 1 and the qualifier. Two index tables are
required, one mapping field 1 values to nested tables
mapping qualifier values to field 2 values, the other
mapping field 2 values to subtables mapping field 1
values to qualifier vaues. An index table is implement-
ed using hash tables, which permit a lookup operation
to be performed in constant time. (The time is larger
than a simple pointer access, but does not increase
with the size of the set to be searched. On the Sun-3
workstation, a call to find an integer in a hash table is
more efficient than a for-loop to search for an ‘integer
in an array of 8 or more elements.) For example, the
value in a binary relation would be stored in two hash
tables: one table mapping field 1 values to sets of
field 2 values, and another table mapping field 2 val-
ues to sets of field 1 values. Indexing by either field
would be equally efficient, essentially in constant
time regardless of the size of the relation, Testing
membership of an element would require two steps:
the field 1 value is used to index the first table,.
returning a set of field 2 values; then the field 2 value
is tested for membership in the set. Adding an ele-
ment would require that both tables be updated; for
most applications accessing a relation is much more

frequent that updating it, so it is desirable to optimize
access time at the expense of update time (and also at
the expense of space).

The cardinality constraints can be used to reduce the
storage space needed for fields of cardinality “one” by
storing scalar values in the appropriate hash table,
rather than sets of values. In order to maintain the car-

dinality constraints, it is necessary to check for con-
flicts before adding a new value to a constrained rela-
tion; any conflicting elements must be deleted from
all the hash tables before the new value is added. For
convenience of the programmer, an indexing operation
that returns a field of cardinal&y “one” can return a
scalar value, rather than a set containing a single ele-
ment.

Relation objects can be created at run time as well
as being defined in the object schema. Such anonymous
relations must be manipulated by object ID, as they
have no predefincd global name. A new, empty rela-
tion object is created by a class method “new” on
class “‘Relation”. Named relations can be considered as
special cases implicitly created by the compiler and ini-
tialized when the program begins execution.

4.3.2 hplementation Benefits

The use of relation objects as implementation con-
structs has certain advantages. Using relations exter-
nalizes information, rather than internalizing it as
part of object records. This makes the implementation
of sparse relations more efficient, It is possible to add
a new relation, without modifying the existing sfnrc-
ture of an object record; this might be important in a
system in which data types could be dynamically modi-
fied. A relation object groups information which
would otherwise be distributed among several objects,
and permits the application of operations to the rela-
tion as a whole, such as scanning or copying an entire
relation. Such operations are particularly useful in
implementing persistent storage of objects, that is,
storage of objects to a permanent data base between
program executions. The main theoretical problem
with persistent storage of objects is in representing
inter-object references in external storage, and remap-
ping all or some of the references into a new context
when the stored objects are reloaded into an existing
object set. If the use of pointers to objects is avoided
in implementing objects, then all inter-object refer-
ences reside in relations, which contain only object
IDS. The fact that all the inter-object references are in
one place, in a highly symmetrical form, can greatly
simplify the task of writing a persistent storage man-
ager.

October 4-8,1987

Rumbaugh

OOPSLA ‘87 Proceedings 475

5. POSSIBLE OBJECTIONS

An objection could be raised that use of relations com-
promises information hiding, because the classes
appearing in a relation must know about each other
and the behavior of one in updating a joint relation can
affect the other. This is true, but we do not feel that
this is a drawback, but a virtue. A relation represents
an inherent constraint between objects of two or more
classes. This constraint is not something to be hidden,
but rather to be specified abstractly, without impos-
ing an implementation. In a Smalltalk program, the
constraints would be buried within method code, hard
to recognize. This kind of “information hiding” hides
semantic information and exposes implementation
information, exactly backwards. Use of relations need
not compromise true information hiding. All accesses
to a relation can be restricted to methods defined on
the affected classes. Any access to an object from
another class must use one of the defined methods,
rather than accessing the object’s instance variables or
associated relations directly. For example, most class-
es will have a set of “get” and “put” methods to
manipulate the values of instance variables. In most
cases, these translate directly into reading or writing
the instance variable value, but in some cases there are
side effects of an update which may be hidden from
the caller. A similar set of “get” and “put” methods
could be defined for the relations affecting a class.
For example, the operation “put-employer” applied
to an instance of “Person” would update the “Works
for” relation. Unlike the update of an instance vari-
able, the update of a relation element would implicit-
ly affect more than one class. This is not a breakdown
of information hiding. A relation indicates a situation
in which two (or more) classes are interlocked in
some way. It simply would not make sense to update
au instance variable in one class, and leave the corre-
sponding instance variable in the related class unmodi-
fied. However, the traditional view of strict informa-
tion hiding in separate classes does not allow these
constraints to be specified cleanly, and as such is
flawed for representing real systems.

Why bother with relations, one might say. After
all, can’t they be implemented as instance variables?
This objection misses the point, indeed the entire point
of object-oriented programming, which is to match
the computer model more closely to the conceptual
r&-world model and to avoid introducing implemen-
tation constraints on the design. The object-oriented
model itself is logically unnecessary, because any com-
putation can be represented as a Turing machine (or at
least in assembly code, which is not too much differ-
ent). Instance variables are an implementation con-

struct. Representing a binary relation as a pair of
mutually interlocked instance variables loses semantic
information, because the standard object-oriented mod-
el cannot represent the constraint that the two objects
must point at each other. Not only do relations carry
more semantic information, but they provide a concise,
symmetric way of describing information that is not
subordinate to any one class.

All this may be very good, but won’t these ideas be
too hard to implement, and won’t they be too ineffi-
cient in any case? No. All the concepts discussed here,
and other variations also, have been implemented in an
object-oriented language written by the author. This
language has been used for several applications, includ-
ing interactive graphics, with very satisfactory perfor-
mance.

6.. AN ACTUAL IMPLEMENTATION

The author and colleagues have implemented two tools
incorporating the concepts presented in this paper: the
Object Modeling Technique [Loomis et al] and the
Data Structure Manager [Rumbaugh].

The Object Modeling Technique is a notation for
drawing object models, which includes representations
for class generalization hierarchies, relations among
objects, aggregation trees, and other things. We have
used some of this notation for the examples in this
paper. A graphical tool to draw object models and
automatically produce Data Structure Manager declara-
tions is being written.

The Data Structure Manager (DSM) is an object-ori-
ented programming system written by the author. It is
a fully-implemented, production-quality object-orient-
ed programming system, intended to support C lan-
guage programming using an arbitrary mixture of
straight C language code together with extensions
which add object-oriented capabilities. DSM contains
syntax and built-in object classes to fully support
relations, as well as the features found in other object-
oriented languages. A brief description of DSM is giv-
en in the appendix.

These tools have been used to model and implement
several large interactive applications with excellent
results. Our experience has shown that the use of rela-
tions greatly enhances the modeling process. We have
used object-relation models to design several systems,
such as a chemical plant layout system, which were
then implemented as relational data bases. This nota-
tion greatly facilitated communication with clients,
some of whom were not computer experts; they found
it intuitive and easy to learn with a few minutes’
explanation. The Data Structure Manager has been used
to implement several large interactive applications,
including a PHIGS-like hierarchical graphics package.

476

Rumbaugh ’

OOPSLA ‘87 Proceedings October 4-8.1987

The use of relations greatly simplified design and
implementation of these applications. Performance has
not been a problem. The DSM compiler and the DSM
run-time package are entirely written using DSM
objects; these programs are large and complex and
have heavily exercised many of the features of the lan-
guage.

Our experience has shown that the greatest advan-
tage of object-oriented programming is greatly
improved ease of modifying programs. We have found
that even substantial changes to a system do not propa-
gate very far if the system is partitioned well. For
example, we added multiple inheritance to the DSM
compiler and run-time package in two weeks, includ-
ing debugging. None of these applications would have
been nearly as easy without the availability of rela-
tions. Descriptions of the Object Modeling Tool, the
Data Structure Manager, and our experiences with
using these techniques on actual applications will
appear in future publications.

7. FURTHER WORK

The concept of relations in an object-oriented language
could be extended in a number of ways:
- Hierachies of relations. These can be implemented

as suggested in section 4.2, but their semantics
require clarification. For example, is “Husband-of’
a subrelation of “Married-to”?

- Making elements of relations first class objects.
This adds logical power, but may be difficult to
implement efficiently.

- Symmetries and other constraints within relations.
The transitive closure of a symmetric relation
occurs often in practice and seems to call for a spe-
cial implementation.

- Constraints on sets of relations. Often the elements
of two different relations are not independent. Per-
haps this is a case of relations between relations
themselves.

- Derived relations. It is often convenient to build
intermediate objects and relations that are strictly
derivable from a set of independent objects and rela-
tions. If a programming system could construct and
maintain such derived relations from a set of decla-
rations, considerable simplifications of algorithms
would result.

- Views of relations. This can be considered a special
case of derived relations. A lot of effort has been
devoted to views in the database area, with mixed
success.

- Use of relations in saving and restoring object-ori-
ented data to a permanent store or a database. Rela-

tions could be assigned different binding strengths.
If an object is saved, all objects related to it by
strong relations (such as “Part of’) would be saved
with it, but objects related to it by weak relations
would be regarded as separable and could be saved
and restored independently. The concept of external
names and catalogs is important to the problem of
restoring data in a different context than it was
SiVed.

8. CONCLUSIONS

The use of relations as a conceptual construct in an
object-oriented environment can help capture the
semantics of a system more clearly than the use of
object pointers. Promoting relations to an equal foot-
ing with classes permits a symmetric and compact rep-
resentation of a highly-interconnected system of class-
es. Binary relations and qualified ternary relations
seem adequate to model most applications. Specifica-
tion of cardinality is useful in tightening semantics
and reducing unnecessary operations. All these kinds
of relations can be implemented efficiently using hash
techniques. The externalization of inter-object refer-
ences into relations can aid in dumping and reloading
object values to databases and to external formats. We
have implemented these concepts in an object-oriented
language and found them to be useful, practical, and
natural.

ACKNOWLEDGMENTS

I wish to thank Mike Blaha, Paul Brown, and Ashwin
Shah for their valuable comments on the manuscript.

REFERENCES

Blaha, M.R., W.J. Premerlani, and J.E. Rumbaugh.
Relational database design using an object-oriented
methodology. Document submitted for review.

Bobrow, Daniel G.. Kenneth Kahn, Gregor K&ales,
Larry Masinter, Mark Stefik. and Frank Zdybel.
CommonLoops: merging Lisp and object-oriented
programming. OOPSLA Conf. Proc.. Portland,
1986.17-29.

Chen, P.P. The entity-relationship model: toward a
unified view of data. ACM Transactions on
Database Systems I:1 (March 1976), 9-36.

Codd, E. A relational model for large shared data
banks. Comm. ACM 13.6 (June 1970), 377-387.

Fishman, D-H., et al. Iris: an object-oriented database
management system. ACM Trans. on Ofice Znfor-
mation Systems 5, 1 (Jan. 1987), 48-69.

Goldberg, Adele, and David Robson. Smalltalk-80, the
Language and its Implementation. Addison-Wes-
ley, Reading, 1983.

October 4-8, 1987

Rumbaugh

OOPSIA ‘87 Proceedings
477

Khoshafian, Sertag N., and George P. Copeland.
Object identity. OOPSLA Conf. Proc.. Portland,
1986,406-416.

Korth, Henry F. Extending the scope of relational lan-
guages. IEEE Computer 3,1 (Jan. 1986), 19-28.

Lieberman, Henry. Using prototypical objects to
implement shared behavior in object-oriented sys-
tems. OOPSLA Conf. hoc., Portland, 1986, 214-
223.

Loomis, Mary E.S. The Database Book. Macmillan,
New York, 1987.

Loomis, Mary ES, Ashwin V. Shah, and James Rum-
baugh. An object modeling technique for conceptu-
al design. European Conference on Object-Orient-
ed Programming, Paris, June 1987.

McAllester, David. Boolean classes, OOPSLA Conf.
Proc., Portland, 1986,417-423.

Meyer, Bertrand. Genericity versus inheritance.
OOPSU Conf Proc., Portland, 1986391-405.

Pascoe, Geoffrey. Encapsulators: a new software
paradigm in Smalltalk-80. OOPSLA Conf. Proc.,
Portland, 1986,341-346.

Rumbaugh, James. Data Structure Manager Reference
Manual. GE Internal Document.

Snyder, Alan. Encapsulation and inheritance in object-
oriented programming languages. OOPSLA Co&
Proc., Portland, I986.3845.

Stefii, Mark J., Daniel G. Bobrow, and Kenneth M.
Kahn. Integrating access-oriented programming
into a multiparadigm environment. IEEE Compuf-
er 3, 1 (Jan. 1986). 10-18.

Teorey, Toby J., Dongqing Yang, and James P. Fry. A
logical design methodology for relational databas-
es using the extended entity-relationship model.
ACM Computing Surveys 18, 2 (June 1986), 197-
222.

Ullman, Jeffrey D. Principles of Database Systems.
Computer Science Press, Rockville, 1982.

APPENDIX A: THE DATA STRUCTURE
MANAGER

The Data Structure Manager (DSM) is a programming
development system to support object-oriented pro-
gramming in the C language. The DSM system imple-
ments all the concepts of a standard object-oriented
system, such as Smalltalk, within the context of the
C language, while adding a number of extensions,. such
as relations, which greatly extend, its power. It com-
prises a set of preprocessors and a subroutine library
written in C. The DSM system provides a declaration
format in which a user can define an object class hierar-
chy, including single and multiple inheritance and rela-
tions between classes. Classes and relations are first-
class objects, and a full metaclass hierarchy is support-

ed, including class variables and class methods, similar
to Smalltalk. The DSM system is written entirely
using itself. All system objects are created dynamical-
ly at run time and are fully extensible. The system
performs memory allocation and deallocation, but
does not include a garbage collector, because garbage
collection is fundamentally impossible with an open
language such as C that permits arbitrary user opera-
tions. Class descriptor objects and relation descriptor
objects provide a full internal description of each class
and relation at run time for symbolic operations, such
as pretty printing of objects or transfering objects to
or from permanent storage.

DSM is intended to be used for production applica-
tions, including quasi-real-time applications such as
graphics, so it was designed to be efficient. The pro-
grammer is given a choice of constructs in several situ-
ations, allowing a conscious trade-off between general-
ity and efficiency when needed. For example, a method
can be called using a run-time method lookup based on
the object class, as in Smalltalk. Hashing is used for
efficiency, but the programmer has the option of stor-
ing a pointer to a method function in a class variable
or of calling a specific C function directly if the class
of an object is known at compile time. To facilitate C-
language programming, instance variables can have C
types as values, so that objects need not be created to
hold pure values, such as integers or structures of val-
ues; an object ID is a special case of a C data type. The
class hierarchy has been replaced by a C type hierarchy,
within which classes are simply one subtype. Since
DSM programs are written in C, it is easy to interface
to non-DSM programs in C or other languages.

The DSM system is written in normal C using the
standard I/O package, and has been easily ported to sev-
eral different systems, including Sun, VAX VMS,
VAX Ultrix, Apollo and HP workstations, and the
IBM PC. It is used to implement itself. It includes an
object pretty-printer and a run-time interpreter for dis-
playing data structures and debugging programs. It has
been used to implement several large application pack-
ages, including a generic interactive graphics system
(with capabilities similar to PHIGS) and a user inter-
face system for managing program execution and file
storage using interactive graphics on a workstation. It
is only slightly less efficient than writing operations
in straight C.

Implementation of Relations in DSM

All objects in DSM are created dynamically at run
time, including class descriptors, relations, and other
internal objects. The package includes a predefined set
of object classes which are generically useful and
which are used to implement DSM itself. These

478 OOPSLA ‘87 Proceedings October 4-8, 1987

include strings, symbols, and several dynamic aggre-
gate data types, including arrays, sets, lookup tables
(discrete functional mappings), and relations. The sup-
port given to relations in the subroutine library and
the declaration notation is perhaps the most novel fea-
ture of the DSM system.

Relations are implemented in DSM as fully indexed
lookup tables. A binary relation contains two tables:
one maps field 1 values into field 2 values or sets of
field 2 values (depending on the cardinality of the rela-
tion), and the other maps field 2 values into field 1
values or sets of field 1 values. When ‘an update is per-
formed, both tables are updated. When an index opera-
tion is performed, the table containing the field to be
indexed by is used. No searching is needed at any time,
since hashing is used, so relational update and access
operations operate in constant time on average regard-
less of the size of the relation.

The lookup table object is a built-in DSM data
class. A table is a functional mapping from one field
to another. It is implemented using open-chain hashing
for constant time average access. The hash table is nev-
er allowed to become full. If a hash table exceeds a
certain fraction of its allocation, then its storage allo-
cation is multiplied by a constant factor and the entire
table is reallocated and rehashed. Because the table
grows by a multiplicative factor, the average cost of
reallocation is a constant factor of the cost of a sim-
ple update over the life of the tabIe and does not cause
a non-linear cost. This storage technique minimizes
the time cost of exact-match associative updates and
retrievals, at the price of a fixed multiplicative factor
of unused memory necessary to permit efficient hash-

ing. The attempt to minimize execution speed at the
cost of memory usage is justified on most small to
medium applications on modem virtual-memory
machines. The DSM implementation consistently
attempts to minimize execution time at the possible
expense of storage space.

APPENDIX 8: NOTATION

A good graphical notation for object classes and rela-
tions can aid in the development and use of a set of
class definitions. A portion of the Object Modeling
Technique [Loomis et al] has been used for examples.
Object classes are shown as rectangular boxes contain-
ing the name of the class. Within the object boxes, sep-
arate sections show lists of instance variables and lists
of methods. Object subclasses sprout off a triangle
connected to the superclass. Relations are shown as
lines between classes, with the name of the relation
written on the line. The cardinahty of each end of the
relation can be indicated by an integer range (such as l-
4, 0+, etc.); the special case of 0 or more is shown as a
black dot, of 0 or 1 is shown as an open circle, and of
exactly 1 is shown as a simple line. A qualified rela-
tion is indicated by a small box containing the qualifi-
er attached to the field 1 class box, connected by a line
to the field 2 class box.

Figure 5 shows a sample data model containing
some information about a company and its employees.
The model is incomplete, perhaps an early stage of a
design. No methods have been shown yet; they typical-
ly are added much later. Only two subclasses are
shown; they are much less important than relations in
an early design. Certain restrictions can be seen from

I Located-in I Q
State

I
I

Person-name Company-name State-name

b
Work-for

Person m
L Chartered-in

Company l

Lives-in age:int Reports-to
l sex:sex l

founded:year

DeptName

Worker
1

Manager
I

Part-of

Manages

tax-ratezfloat

Figure 5. Sample data model

October 4-8,1987 OOPSLA ‘87 Proceedings

Rumbaugh

479

the diagram: each person can only work for a single
company, each department is located in a single state,
each company has a unique name, each state has a flat
tax rate, several persons with the same name might
exist. One can make up questions and see if the infor-
mation to answer them is in the model. The following
kinds of questions can be answered: who are the
employees of a company, what are its departments,
what are all the states in which it has departments,
what is the reporting hierarchy from a worker up to
the top. Some questions cannot be answered: which
department does an employee work for, where does an
employee work, what are the organizational entities
corresponding to the reporting hierarchy. A realistic
model would contain much more detail. There is no
structure to the corporate organization. Perhaps
“Department” should be replaced by “Organizational
unit”, which would be recursive to match the report-
ing hierarchy. “Tax table” would have to be an object
of some complexity. Maybe we should distinguish
“Person” from “Employee*‘; a person might be an
employee of more than one company (perhaps over
time) and we might want to group all the information
about a single employment instance in a separate
object, which would be related to the person object.
The object model diagram is an invaluable tool to
designing an object-oriented system correctly with
proper regard for the overall picture.

APPENDIX C. SEMANTIC DATA MODELS.

Researchers in data base theory have explored a num-
ber of models for data structuring which depend hcavi-
ly on the concept of relations. The relational data base
model [Codd] is the earliest and simplest of these
models, but it lacks the semantic richness of more
advanced models including the object-oriented model.
The entity-relationship model [Chen] introduces the
concept of objects (called “entities” in the model) and
relations among them, but does not contain the con-
cept of generalization. Extensions to the entity-rela-
tionship model [Teorey] add generalization and other
relations. The standard object-oriented model includes
a subset of these data structuring concepts but adds
the concept of binding operations to data as part of the
schema (“methods”).

nized into any superstructure, unlike classes in an
object-oriented model. A relational table contains
only attribute values from a predefined set of primi-
tive types, such as integer, real, character string (often
fixed length), and date; abstract data types are not gen-
erally supported. There is no way to create a unique
object, except by specifying unique values for certain
fields, since there is no concept of object identity (the
property of an object that distinguishes it from all
others, independently of its attributes) [Khoshafian].
In practice, the data base implementor must often gen-
erate arbitrary IDS for objects and include ID fields in
relational tables to ensure uniqueness. If IDS are not
generated, then relations among objects must be repre-
sented by relational tables in which each object is rep-
resented by a set of unique attributes. Taken with the
lack of abstract data types as field values, this implies
that the program must manipulate composite keys as
if they were single entities. Recursive data structures,
such as trees, require the introduction of arbitrary
object IDS and are difficult to manipulate in relational
data bases because of the absence of transitive closure
operations. Relational data bases are essentially flat,
in all respects. While this makes them attractive to
implement, it makes them weak in representing com-
plex data structures. Considerable effort has been
devoted to normalization of relations to eliminate
redundancy. Most, if not all, of the problems of nor-
malization are caused by the insistence that all data be
represented solely by attribute values and the failure
to admit the identity of objects. Relational data bases
have been used extensively for commercial applica-
tions, in which information has traditionally been
viewed as flat collections of records, but pure rela-
tional data bases do not appear adequate for represent-
ing highly-structured data models such as found in
engineering applications, either conceptually or as effi-
cient direct implementations. We feel that relational
data bases may best be viewed as implementation vehi-
cles, the “assembly language” of data modeling.
Object-oriented systems can represent complex data
structures and some of their -semantics directly in the
data models. However, standard object-oriented sys-
tems must resort to object pointers to represent rela-
tions among objects.

The simplicity of the relational data base model is a The entity-relationship model ([Chen], but more
drawback in dealing with highly structured problems, readily available in [Ullman] Chapter 1) is a more
because the semantics of a problem cahnot be totally powerful model than the relational data base because
represented in flat relations among attributes and it supports object identity and relations. It has some
must reside in the code. Relational data bases offer a common concepts with the object-oriented model. In
uniform, elegant model which is well understood the entity-relationship model, objects (called
mathematically, but they have only one level of struc- “entities”) belong to named classes (called “entity
ture and are not well suited to representing complex sets”). Objects have instance variables (called
objects. Relational tables themselves are not orga- “attributes”) that have pure values (they may not be

480

Rumbaugh

OOPSLA ‘87 Proceedings October 4-8,1987

object references). Named relations (called
“relationships”) can exist among two or more classes.
Each relation has a defined cardinality in terms of its
constituent classes. For example, a binary relation
associates an object from one class with a single object
or a set of objects from another class, according to
whether the relation is many-to-many, many-to-one,
or one-to-one. A relation, considered as a single
object, comprises a set of tuples containing objects
drawn from the constituent classes. Classes and rela-
tions are of equal weight in this model The major dif-
ference between the relational data base and the entity-
relationship model is that objects in the entity-rela-
tionship model have identity, apart from their
attributes, and relations among objects are specified
directly, rather than indirectly in terms of attributes.
Chen has proposed a notation for entity-relationship
diagrams which clearly shows the structure of a partic-
ular schema visually. The entity-relationship model
lacks a generalization hierarchy of classes, something
that the object-oriented model provides.

Other data base researchers have extended the entity-
relationship model by adding the concept of generaliza-
tion and other structuring mechanisms (see Foomis]
and [Teoreyl for a full exploration of various semantic
data modeling methodologies). The semantic data mod-
els found in the data base literature seem to address
data structuring only, without considering the applica-
tion operations that will be applied to the data. Most
of the developers of semantic data modeling tech-
niques seem to view them as high-level notations for
developing data base designs, which will eventually be
implemented using conventional relational data bases.
Object-oriented programming, on the other hand,
includes the concept of binding methods to the class
schema, which serves as the organizational structure
for both data and code.

In the object-oriented community, a lot of atten-
tion has been devoted to issues of the class hierarchy:
degrees of information hiding of instance variables
[Snyder], various kinds of inheritance [Meyer, Lieber-
man], variations on instantiation [McAllester] and val-
ue propagation Ipascoe], and so on. It is possible to
design elegant class hierarchies, but there is no way to
represent relations among objects from different class-
es without describing the actual implementation of
the relations, usually as instance variables pointing
from one object to another.

We have proposed a synthesis of semantic data mod-
eling and object-oriented programming which com-
bines complementary concepts without significant
drawbacks. Although the semantic data modeling tech-
niques are widely known, their importance to object-
oriented programming does not seem to have been

widely recognized. We argue that relations should be
given equal semantic weight in an object-oriented mod-
el with the class-subclass hierarchy, and that object-
oriented languages should support relations directly
with syntax and implementations. The model pro-
posed here combines the class hierarchy and methods
of the object-oriented model with relations and the
other kinds of relations from the extended entity-rela-
tionship model. We call this model the object-rela-
tion model.

October 4-8,1987
Kumbaugh

OOPSLA ‘87 Proceedings 481

