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ABSTRACT 1 .l What are relations 

The relation as a semantic construct in an object-ori- 
ented language clearly expresses associations and con- 
straints among objects which would otherwise be 
buried in implementation code. The externalization of 
references between objects permits a symmetric, non- 
redundant conceptual model which merits its own spe- 
cial notation and predefined operations. The object- 
relation model, which combines the object-oriented 
model with the entity-relationship model from data 
base theory, is particularly useful for designing and 
partitioning systems of interrelated objects. Relations 
can be implemented efficiently using hash tables. The 
model proposed here has been fully implemented in an 
object-oriented language written by the author which 
has been used to implement several production applica- 
tions. 

1. INTRODUCTION 

The relation is a semantic construct supported by rela- 
tional data bases [Codd] and semantic data models 
[Chen, Loomis, Teorey] which is not well supported 
in object-oriented programming, as exemplified by lan- 
guages such as Smalltalk [Goldberg]. It is possible to 
program relations using existing object-oriented con- 
structs, but only by writing a particular implementa- 
tion in which the programmer is forced to specify 
details irrelevant to the logic of an application. It is 
not possible to separate the abstraction from the 
implementation with the same clarity as found in the 
relational data models. This paper describes how rela- 
tions can be added to object-oriented languages so that 
they complement existing concepts yet greatly enhance 
expressive power, 

A relation associates objects from n classes. The state 
of a relation can be described as a set of elements, each 
element consisting of one object from each of the n 
classes. A relation expresses associations often repre- 
sented in a programming language as pointers from one 
object to another, but in a more symmetric form, as a 
relation is not unidirectional in the way that a pointer 
is. Operations can be applied uniformly to a relation as 
a whole, rather than singling out one of the objects in 
the relation as the target of a method. The state of a 
relation can be changed by operations to add or delete 
elements: the state can be queried by operations to test 
membership of elements, to select a subset of ele- 
ments whose values satisfy some condition, and to iter- 
ate over the entire set of elements. The ability to 
apply operations to the entire relation, rather than sim- 
ply individual objects in it, allows many expressions 
to be written concisely. 

A relation is an abstraction stating that objects 
from certain classes are associated in some way: the 
association is given a name so that it can be manipulat- 
ed. It is a natural concept used in ordinary discourse. 
For example, the statement “Jim Jones works for 
Acme Products” implies that “works for” is a rela- 
tion between persons and companies and that the 
objects “Jim Jones” and “Acme Products” satisfy this 
relation. 

1.2 Object-oriented languages lack relations 
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Object-oriented languages express classification (the 
grouping of objects into classes) and generalization 
(the refinement of classes into subclasses) well, but 
do not contain syntax or semantics to express rela- 
tions directly. Any program can implement particular 
relations on an ad hoc basis, but the abstraction may 
get lost in the implementation mechanisms. Different 
aspects of a relation can be implemented by methods 
on the participating object classes, but this distributes 
the information about the relation among different 
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classes, rather than gathering the information into a 
single object which can be manipulated as a unit. 

A collection subclass “relation” can be implement- 
ed which has methods that implement various relation- 
al operations. An object of this class holds sets of n- 
tuples containing the related objects. Writing pro- 
grams is easier, because the user of the class need not 
duplicate the implementation mechanisms hidden 
inside the class. Such relation objects must be instanti- 
ated by the application program at run time. 

Providing a class “relation” is basically an imple- 
mentation tool which does not raise * relations to the 
same semantic level as generalization (the class-sub- 
class hierarchy), which is supported in most object-ori- 
ented languages with built-in syntax and semantics. 
There is no logical necessity for providing a declara- 
tive syntax and semantics for generalization; such 
behavior could be implemented on an ad hoc basis and 
called for explicitly. Object-oriented languages have 
built-in constructs for generalization because it is a 
natural concept that people use in ordinary discourse; 
it allows algorithms to be written more concisely and 
more clearly; and it is common enough to justify 
building it into a language. Relations are also natural, 
productive, and common in abstracting applications. 
An object-oriented language is more expressive if rela- 
tions are a primitive declarative construct, on the same 
footing as classes. 

1.3 Why relations should be a semantic construct 

It is important that relations be considered a semantic 
construct, and not simply an implementation con- 
struct. Object-oriented programming has become 
important because it provides a way of thinking about 
a problem that is different from previous approaches, 
such as functional decomposition. An object-oriented 
data model structures the formulation of a design 
from its beginning. The use of relations as a semantic 
construct can have a major impact on the formulation 
and elucidation of a design, but only if they are consid- 
ered as semantic constructs of similar weight to class- 
es and generalization. 

Relations are particularly useful in the design of 
larger systems containing many classes that interact, 
because relations abstract interactions among classes in 
a natural way. In an, existing object-oriented language, 
such interactions are buried in the instance variables 
and methods of the classes, so that the overall struc- 
ture of the system is not readily apparent. Represent- 
ing a system by an object model containing classes and 
relations among the classes abstracts the high-level 
static structure of the system, without having to speci- 
fy a particular implementation of the classes and their 
methods. Such a high-level model is useful in parti- 

tioning systems into subsystems independently of the 
implementation of the parts. Our experience has 
shown that relations are more important to the design 
of large systems than generalization, because relations 
affect the partitioning of a system into its parts, 
while a generalization hierarchy is often confined to a 
single module within a system. 

1.4 Relations can be implemented 

Relations can be implemented efficiently. The alleged 
inefficiency of many relational data bases has several 
causes: many relational data base management systems 
only support relations among attribute values, rather 
than among objects directly; they fail to provide (or 
users fail to use) appropriate indexing mechanisms; 
they perform too many operations to the disk, rather 
than caching data in memory; and they are not imple- 
mented as well as they could be, given the theoretical 
state of the art. Relations can be implemented in an 
object-oriented language using hash tables for constant- 
time access, regardless of the size of a relation. 

The author has implemented an object-oriented lan- 
guage, the Data Structure Manager (DShQ which adds 
syntactic and semantic support for relations to exist- 
ing object-oriented concepts. This language has been 
used to write production applications at several GE 
sites, Applications include interactive graphics, simula- 
tions, text processing, and the DSM system itself. 
Our experience has shown that the addition of this con- 
cept greatly simplifies conceptualization and imple- 
mentation of many applications and provides a better 
fit to real-world problems than the original obje-ct- 
oriented model. 

1.5 Organization of this paper 

This paper presents the object-relation model, which 
combines the concepts of objects, classes, and methods 
from the object-oriented model [Goldberg] with the 
concept of relations from the entity-relationship mod- 
el [Chen]. The object-relation model is discussed on 
two levels: logicat and implementation. Section 2 
describes relations as logical constructs, independent 
of their implementation. Section 3 discusses the diffi- 
culties of using conceptual relations in existing object- 
oriented languages. Section 4 describes how to extend 
an object-oriented language to implement relations. 
Section 5 discusses some possible objections to this 
model. Section 6 discusses an actual implementation of 
these concepts in an object-oriented language. Section 7 
mentions some open issues. Appendix A briefly 
describes the author’s object-oriented language DSM, 
which implements the object-relation model. 
Appendix B summarizes a graphical notation for dia- 
gramming object models and shows a small example 
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of a data model. Appendix C discusses previous work 
in semantic data modeling which includes many of the 
basic concepts both of object-oriented data models and 
the object-relation model. 

2. RELATIONS AS LOGICAL CONSTRUCTS 

2.1 Definitions 

A relarion exists among an ordered list of object class- 
es. The number of classes participating in the relation 
is its degree. The ordering of the classes in the rela- 
tion is significant; in general, relations are not sym- 
metric. Each class in the list of classes is called a 
field, identified by its position. Alternatively, each 
field can be assigned a unique role name to identify it 
within the relation. A class can appear more than once 
among the fields of a relation, in which case it is par- 
ticularly important to keep the ordering straight or 
use role names. 

A relation contains a set of elements, each a tuple 
of objects, one for each field of the relation. The class 
of each object must match the class of its field (it can 
be a subclass). The form of a relation is fixed but its 
contents can change over time. Since a relation is a set, 
each element in it is unique, but a value in a particular 
field can appear many times in association with differ- 
ent values for other fields. Note that in this paper, 
relations exist directly among objects, unlike Codd’s 
model for relational data bases, in which relations 
exist only among attribute values and not among 
objects themselves. Allowing objects to appear direct- 
ly in relations greatly simplifies models for complex 
structures. 

2.2 Syntax 

The concept of a relation is a natural one, and corre- 
sponds to real-world concepts. Relations represent 
information about the associations among different 
objects, rather than information about objects in isola- 
tion. For example, consider the relation between per- 
sons and the companies they work for. Such a relation 
could be written: 

RELATION Works-for 
(employee: Person, employer: Company) 

A diagram of this relation is shown in Figure la. 
Object classes are shown as boxes containing the name 
of the class. Relations are shown as lines connecting 
two classes, with the name of the relation near the 
line. The black dot indicates that each company may be 
associated with many persons. 

The value of a relation is a set of object tuples 
which represents part of the state of the world at a 
particular moment. For example, the “Works for” 

walks for 
PERSON l - COMPANY 

Figure la. Data Model of a Relation 

Jim Jones 

Acme Products 

Joe Blow works for 

,JanesmithgLGq 

Figure lb. 
Object Instances and Elements of the Relation 

relation might have elements (“Jim Jones”, “Acme 
Products”), (“Joe Blow”, “Acme Products”), and 
(“Jane Smith”, “Widget Works”). This situation is 
diagrammed in Figure lb; object instances are drawn as 
boxes connecting to related objects by lines. Note that 
the relation exists between the objects themselves, not 
their attributes, although in giving examples we iden- 
tify objects by their unique attributes (such as their 
names). 

2.3 Update operations 

The value of a relation can be changed by adding ele- 
ments to it or deleting elements from it; these opera- 
tions correspond to changes in the real-world situation 
abstracted by the relation. Each operation requires one 
value for each field. For example, the following 
sequence of operations (written in a C++ style synta4) 
would produce the state of the “Works for” relation 
shown in the figure: 

Works-for.add (Jim Jones, Acme Products) 
Works-for.add (Joe Blow, Acme Products) 
Works-for.add (Jane Smith, Widget Works) 

The value of a relation is a set, so adding an element 
that already exists does not change its value. Similar- 
ly, deleting an element not present in the relation does 
not change its value. In such cases, a particular imple- 
mentation might choose to raise an exception or silcnt- 
ly ignore it. 
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2.4 Query operations 

The value of a relation can be queried with operations 
to test membership of an element, select all the ele- 
ments that match certain fields, or scan all the ele- 
ments. 

2.4.1 Testing membership 

A membership test requires one value for each field, 
and returns a boolean value. Here are some member- 
ship tests of the “Works for” relation: 

Works-for.test-member (Jim Jones, 
.Widget Works) returns False 

Works-for.test-member (Jim Jones, 
Acme Products) returns True 

Works-for.test-member (Acme Products, 
Jim Jones) returns False 

The order of the objects within an element is signifi- 
cant, as shown by the last example. 

2.4.2 lncfexing by fields 

Relational data bases support general queries which 
select from a relation all the elements whose fields 
satisfy an arbitrary boolean expression. Such generali- 
ty may not need to be a primitive in an object-oriented 
language, but at the least it is necessary to be able to 
select all the elements in which one or more designat- 
ed fields match specified values. The index operation is 
defined on some subset of the fields of a relation, 
called the index set. A value is required for each field 
in the index set; the index operation returns the set of 
elements whose fields match the index values. Since 
the index values are already known, it is convenient to 
ignore them in the returned values, and consider the 
operation as returning a set of elements of reduced 
degree. Indexing a binary relation by one field returns 
a set of values from the other field. For example, to 
find all employees of a company: 

Works-for.index-2 (Acme Products) 
returns {Jim Jones, Joe Blow) 

Works-for.index-2 (Widget Works) 
returns (Jane Smith} 

Works-for.index-2 (Marvelous Manufacturing) 
returns { } 

The suffix “-2” indicates that the in&x set is the sec- 
ond field. Either field in a binary relation can serve as 
an index. To find a person’s employer: 

Works-for.index-1 (Jim Jones) 
returns {Acme Products} 

There is one index operation for each subset of fields. 
For a relation of degree n, any subset k of the n fields 
can serve as an index, returning a set of elements 

drawn from the remaining n-k fields. An implementa- 
tion would not necessarily need to support all n! 
modes of indexing. 

2.4.3 Scanning elements 

Since a relation is a set, an operation to scan all its ele- 
ments is necessary. The scan operation applies a speci- 
fied operation to each element of the relation in turn. 
The order of scan depends on the implementation; a 
Program should assume that the elements are 
unordered. General queries can be constructed using the 
scan operation, but the index operation is more direct 
when it can be used. 

Given these basic operations, various composite oper- 
ations can be constructed, such as deleting all occur- 
rences of a value in a given field. A particular imple- 
mentation might define some of these composite opera- 
tions as primitives for efficiency. 

2.5 Cardlnality 

It is often convenient to constrain a relation by speci- 
fying the cardinality of one or more of its fields. The 
cardinality is the number of different values from the 
specified field that can be associated with a given set 
of values for the other fields. Cardinality can be speci- 
fied as an integer interval. For example one car is asso- 
ciated with four tires and from four to eight spark 
plugs. Most of the time, it is sufficient to distinguish 
scalar fields (cardinality zero or one, “one” fields) 
from set fields (cardinality zero to unbounded, 
“many” fields). For example, if each person works 
for a single company, then the “Works for” relation 
is many-to-one from persons to companies, that is, 
many persons may be associated with each company, 
but one company is associated with each person. In gen- 
eral, every object of a class need not appear in the rela- 
tion. An unemployed person would not appear in the 
“works for” relation. In some cases, it is useful to 
indicate that the cardinality of a relation must be non- 
zero. For example, if we replace “Person” with 
“Employee” in the “Works for” relation, every 
instance of class “Employee” must be associated with 
an instance of class “Company”; class “Employee” is 
said to be etistence dependent on class “Company”. 

The cardinality of each field can be declared as fol- 
lows: 

RELATION Works-for (employee: Person!‘, 
employer: Company/O-l) 

where the cardinality is shown as an interval range and 
the star shows an unbounded cardinality. In a diagram, 
a black dot shows a set of values, a “many” value. A 
simple line shows a single required value, a “one” val- 
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ue. An open circle shows a single value that is option- 
al, a “zero or one” value. 

Cardinality constraints represent an important 
aspect of the real-world situation being abstracted 
which is absent in many models. The constraints can- 
not be validated from within the model, but must be 
determined by the real-world situation and its rele- 
vance to a particular application. For example, the 
relation “married-to” would be one-to-one in the 
United States, but one-to-many in Saudi Arabia. On 
the other hand, if the “married-to” relation represents 
marriage partners over time, then it would be many- 
to-many even in the United States. Choosing cardinali- 
ty constraints forces the designer to confront assump- 
tions early which are frequently buried in the code. 
They also force the designer to decide how special cas- 
es and exception conditions will be handled. 

The cardinality of the set returned by an indexing 
operation is necessarily consistent with the cardinality 
of the relation. For example, because “Works for” is 
a many-to-one relation, indexing it by “Person” 
yields a set containing a single company object. An 
implementation can take advantage of this constraint 
to store an associated value as a scalar rather than a 
set. An implementation of the operations must guaran- 
tee that cardinality constraints always remain valid 
and that duplicate elements do not appear in the rela- 
tion, by rejecting operations that would violate the 
constraints or defining side effects that preserve the 
constraint. 

2.6 Similarities between classes and relations 

A class and a relation can both be thought of as 
objects with fixed descriptions and variable states 
which reference other objects. The description part of 
a class includes its superclasses and subclasses, 
instance variables, and methods; the state part is the 
set of instances of the class. The description part of a 
relation includes its degree, cardinality, and list of 
fields; the state part is the set of elements of the rela- 
tion. Specification of an object-relation model for an 
application requires that the descriptions of the rele- 
vant classes and relations be given. Execution of an 
algorithm based on the model generates successive 
states of the objects. 

2.7 Qualified Relations 

So far only binary relations have been discussed in 
detail, although the semantics of relations have been 
described for relations with any number of fields. A 
special kind of ternary relation, called a qualified rela- 
tion, arises frequently enough to merit special treat- 
ment. They come about as follows: Often a one-to- 
many relation exists between two classes: call them 

the source class and the target class. Each object in the 
source class is related to a set of objects in the target 
class. To distinguish among the set of target objects, 
they are given names unique within the set. A set of 
names is associated with each source object, naming the 
target objects associated with it. Each set of names is 
local to the source object it qualifies. Another source 
object might ‘share all, some, or none of the names. A 
name qualifies the source object to identify a unique 
target object. A source object and a name, taken as a 
pair, are associated with a unique target object. There 
is one-to-one relation between the (source object, 
name) pair and the target object. Equivalently, there is 
a ternary relation among the (source object, name, tar- 
get object) classes. Such a relation is called a qualified 
relation. 

Qualified relations occur when there is a set of 
names, or some other set of qualifiers, that serves to 
distinguish the target elements in a one-to-many or 
many-to-many relation. For example, a directory in a 
file system contains many files; a file name unique 
within the directory distinguishes them. A qualified 
relation could be declared as: 

RELATION File-system 
(Directory[filename:Name]ll, File(l) 

to show that each (directory, name) pair identifies a 
unique file and each file identifies a unique (directory, 
name) pair. The brackets indicate that the name quali- 
fies the directory, similar to an array index which 
qualifies an array. The cardinality applies between the 
(directory, name) pair and the file. If links are sup- 
ported, each file could have many names, so the decla- 
ration would be: 

RELATION Link-file-system 
(Directory[filename:Namel(‘, Filell) 

to show that each (directory, name) pair identifies a 
unique file but each file is associated with a set of 
(directory, name) pairs. Figure 2 shows a diagram for 
this many-to-one qualified relation. 

Directory Name 

File 
_ Link-file-system 

Figure 2. Qualified Relation 

Examples of qualified relations come to mind when- 
ever a set of names or other identifiers is associated 
with an object. For example, the name of a state iden- 
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tifies a particular state associated with a country; the 
name of a city identifies a particular city associated 
with a state; the name of a street identifies a particu- 
lar street associated with a city: 

RELATION World-country 
(World[Name]]l, Countryll) 

RELATION Country-state 
(Country[Name]]l, Statell) 

RELATION State-city (State[Name]ll, Cityll) 
RELATION City-street (City[Name]ll, StreetIt) 

The fist relation is included for uniformity, although 
most applications would contain only a single instance 
of “World”. Representation of the information as a 
qualified relation makes its bidirectional status clear. 
Given the names of a country, state, city, and street, a 
unique street object can be found. Conversely, given a 
street object, unique names can be found for the coun- 
try, state, city, and street. 

The qualifier need not be a name, as long as it dis- 
tinguishes target objects. The following declarations 
show some more examples: 

RELATION Gategins 
(Gate[pin-number:lnteger]]l, PinIl) 

RELATION State-machine 
(initiaI:State[input:Token]]‘, final:Statell) 

RELATION Officers 
(Company[Office]]*,officer:Person]l) 

The fist relation associates gates with pins on the 
gate, using the pin number. Each pin on a gate has a 
unique pin number. The second relation describes a 
state machine. An initial state and an input token pro- 
duce a final state. A given final state may have been 
produced by more than one (initial state, input token) 
combination. The third relation describes the officers 
of a company. In this example, “Office” is an object 
class that describes the office, rather than a name. 
Each office is held by one person; one person can hold 
several offices, in the same or different companies. 

Operations on a qualified relation are simply special 
cases of the n-relation. To add or delete an element or 
test membership, the values of all three fields must 
be given. There are 3! indexing sequences possible on 
three fields, but it is convenient to require that the 
quahfier field not be given without the source field, 
i.e. to disallow searches that start with the index 
field. There is no mathematical justification for this 
restriction, but it permits the qualified relation to be 
manipulated as an extended binary relation, which sim- 
plifies both the notation and the implementation. (For 
those situations where this restriction is unacceptable, 
a full ternary relation can be used.) A qualified rela- 
tion can be indexed by the first field and qualifier 

field to yield values from the second field. It can be 
indexed by the second field to yield pairs of values 
from the first field and the qualifier field. This can be 
factored on the first field to yield a table of qualifier 
values indexed by values from the first field. Finally, 
it can be indexed by the first field alone to yield a 
table of values from the second field indexed by val- 
ues from the qualifier field. These can be written: 

Link-file-system.index-lq (Directory, Name) 
returns File 

Link-file-system.index-2 (File) 
returns Table [File] of Name 

Link-file-system.index-1 (Directory) 
returns Table [Name] of File 

A qualified relation is appropriate wherever a name of 
local scope is used to discriminate among a set of relat- 
ed objects. In general, a name is a qualifier on a set of 
objects. Whenever a name is felt to be global or 
unique, the model can usually be recast in a more gen- 
eral form; on deeper inspection unique names are found 
to be unique with respect to some other object, such as 
a catalog, organization, and so on. Programs written 
with the assumption of unique names often have to be 
rewritten later; it is better to represent names using 
qualified relations from the beginning. In most appli- 
cations, we have used qualified relations heavily; as 
many as half the relations in certain applications are 
qualified relations. 

2.8 Other Relations 

Other variations on ternary relations can be defined, 
but they are of lesser utility than qualified relations. 
We have developed a general formulation for relations 
of any degree, in which cardinality constraints are 
expressed by listing all the subsets of fields that form 
candidate keys of the relation. A set of fields could be 
an index set, provided the possible index sequences are 
specified in advance and used by the system to maintain 
indexing tables. This approach will be described in 
detail in a future paper. We have found that relations 
with more than three fields are rarely if ever needed in 
practice. 

3. RELATIONS IN STANDARD OBJECT 
ORIENTED LANGUAGES 

A standard object-oriented language (such as 
Smalltalk) has two kinds of abstraction structuring 
mechanisms which relate different objects: instuntia- 
tion (“an instance or’) and generalization (“a kind 
of’, the class hierarchy). Instantiation is a relation 
between class descriptor objects and instances of the 
class. Generalization is a relation between pairs of 
class descriptor objects, the superclass and the sub- 
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class. These special relations are built into the seman- 
tics of the language and are supported by special syn- 
tax; they cannot be accessed as discrete objects. Rela- 
tions between ordinary object instances are not sup 
ported by syntax or semantics. They can be simulated 
by the use of instance variables that refer to other 
objects. If the relation must be traversed in more than 
one direction, an instance variable is required in each 
participating object. 

3.1 Implementing relations using instance 
variables 

Representing a relation between two objects as an 
instance variable in each object fails to capture the 
semantics of the relation. The information about the 
relation is distributed among two classes, rather than 
being specified in one place, making it harder to under- 
stand and maintain. The constraint that related objects 
must mutually reference each other cannot be explicit- 
ly expressed. A programmer cannot represent a rela- 
tion between two classes without choosing an imple- 
mentation, including choice of instance variables and 
methods, and exposing much of the implementation. 
The conceptual and implementation levels cannot be 
kept distinct in representing relations, because there is 
no semantic support for relations in languages such as 
Smalltalk. 

For example, consider the implementation of the 
“Works for” relation shown in Figure 3. Each person 
has a pointer to the employer. while each company has 
a pointer to a set of pointers to employees.The follow- 
ing class declaration fragment implements the 
“Works for” relation using pointers: 

CLASS Person 
INSTANCE VARIABLES 

employer : Company 
METHODS 

put-employer (Company) 
CLASS Company 
INSTANCE VARIABLES 

employee : Set of Person 
METHODS 

add-employee (Person) 
delete-employee (Person) 

The instance variables Person.employer and Compa- 
ny.employee are related, but there’ is no way to 
express this constraint in an object schema declaration. 
Public update methods Person.put-employer, Compa- 
ny.add-employee, and Company.delete-employee must 
maintain the constraint as elements of the relation 
change by updating instance variables employer and 
employee. A method such as Person.put-employer 
must have access to the instance variables of 

ComDanv 

Person 
- - 

Person Person 

Logical Structure 

Company 

Person Person Person 

Implementation Structure 

Figure 3. Implementation of “Works for’ 
relation using pointers 

“Company” (perhaps using the “friend” mechanism of 
C++). The alternative is another layer of private meth- 
ods, such as Company.raw-add-employee, which allow 
the public methods, such as Person.put-employer, to 
cause the instance variable to be updated. (Calling 
Company.add-employee within Person.put-employer 
would cause an infinite loop.) If the language lacks 
the “friend” mechanism, it may be impossible to hide 
the raw update methods yet still allow the public 
methods to be written, without exposing the internal 
structure to public view and the danger of inconsisten- 
cy. In any case, each update method involves modifica- 
tions to several instance variables. 

A simple update requires several lines of code to 
implement.. This leads to opaque code and introduces 
the danger of inconsistencies in the data structures if 
one pointer is updated independently. Another disad- 
vantage of representing relations between objects as 
pointers is that an ins&e variable must be reserved 
in each object instance for each relation that an object 
of a given class can participate in. This is no problem 
for a dense relation, in which most or all instances of 
a class will participate in the relation, but it tends to 
discourage the use of sparse relations, since the cost 
must be paid by every instance of the class, even if few 
instances participate in the relation. 
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3.2 Duality of relations and instance variables vided for method application. 

Relations and instance variables can be mapped into 
one another. It is easy to represent a binary relation as 
a pair of instance variables on the respective classes, 
each of which holds a set of values from the other 
class. The two instance variables are mutually depen- 
dent; this constraint must be expressed in the method 
code rather than the object schema. This mapping 
increases the mechanism baggage that the designer 
must deal with; relations provide more semantic infor- 
mation in a more transparent form. On the other hand, 
an attribute of a class can be represented by a many-to- 
one relation between the class and the class of the 
attribute. Attributes and many-to-one relations are 
both logically equivalent to discrete partial functions. 
The replacement of an attribute by a relation does not 
increase the complexity of the representation for the 
designer, because the same amount of information 
needs to be specified. Use of a relation can reduce the 
complexity of the algorithm, because a relation can 
inherently be traversed in either direction, while an 
instance variable can be followed only in the 
“forward” direction. We have found it profitable to 
represent all attributes as relations in the initial 
design of an object model, and to consider instance 
variables as simply implementation optimizations for 
cases where traversal in the “reverse” direction is not 
needed. 

- The compiler can automatically generate methods on 
the participating object classes to access and update 
the relations. 

- Object classes will have a list of relations they par- 
ticipate in, represented in a uniform way. This infor- 
mation can be used in writing generic methods to 
destroy objects and clean up relations they partici- 
pate in, to copy objects and objects they are related 
to, and to pretty-print objects along with objects 
they are related to. 

- Most importantly, treating relations as important 
built-in semantic constructs changes the way pro- 
grammers abstract and formulate problems. Think- 
ing in terms of objects and generalization hierar- 
chies is generally unfamiliar at first, but eventually 
changes the way a programmer thinks about a prob- 
lem. We have found from experience that making 
relations a first-class semantic construct affects a 
programmer’s way of thinking about a problem 
from the design stage all the way through to the 
coding. This new way of thinking is particularly 
useful for formulating and partitioning designs. 

4. IMPLEMENTATION OF RELATIONS IN AN 
OBJECT-ORIENTED LANGUAGE 

4.1 Syntax 

3.3 Why adding a relation class is not enough 

In a standard object-oriented language it is possible to 
define a collection class “relation” whose instances 
represent the values of particular relations and whose 
methods implement the operations proposed for rela- 
tions. This is useful in simplifying the implementa- 
tion of relations, but it fails to separate the relation 
as a logical construct from the relation object as an 
implementation tool. Individual relation objects must 
he instantiated at run time as part of the application 
code. It is desirable to build syntactic and semantic 
support for relations in the language, similar to the 
support for classes, for the following reasons: 
- There may be more than one possible impiementa- 

tion of a logical relation. A programmer should be 
able to choose the implementation using an option 
flag on the declaration, without changing the code 
that uses the declaration or even most of the decla- 
ration itself, 

The syntax of declaring relations should be parallel to 
the syntax for declaring classes, in accord with their 
joint status as first-class semantic constructs. An 
object class schema declaration consists of both class 
definitions and relation definitions, neither subordi- 
nate to the other. The definition of a relation requires 
the information described under the logical model, 
namely its name, degree, cardinality constraints, and a 
list of object classes for the fields. Each field can be 
given an optional name for convenience. The compiler 
automatically instantiates and initializes each declared 
relation at program initiation. When a program begins 
execution, each relation contains no elements, just as 
each class contains no instances. The names of relations 
have global scope, as do the names of classes. 

4.2 Methods 

- The compiler can implicitly instantiate and initial- 
ize relations at the beginning of program execution, 
just as object classes are instantiated and initialized. 

- The language can provide special syntax to simplify 
operations on relations, just as special syntax is pro- 

The methods applicable to relations are attached to 
class ‘%elation”. There are subclasses for special cas- 
es, such as “Binary relation” or ‘Qualified relation”. 
The methods are the ones described under the logical 
model, namely “add element”, “delete element”, 
“index” (in several varieties, according to the index 
fields supplied), “test membership”, and “scan.” The 
methods would be invoked on the relation object 
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itself. This is similar to invoking a class method on a 
class, such as “new”, in that the name of the object in 
both cases is a proper name known to the compiler, 
and designates a predefined object initialized implicit- 
ly as a consequence of making a declaration. It is not 
necessary for users to define new methods on particu- 
lar relations, because they are not classes and do not 
describe instances. (It is possible to define new refa- 
tion subclasses corresponding to individual relations 
or groups of relations for the purpose of overriding 
the predefined methods. This would define a relation 
hierarchy, similar to the class hierarchy, and permit 
new methods to be defined on some relations. We have 
not explored this concept yet.) 

The methods that update a relation must guarantee 
that the cardinality constraints are never violated. An 
implementation may define whether an update that 
would violate a cardinality constraint is rejected with 
an error status, or whether the conflicting elements 
are deleted from the relation as an implicit side-effect 
of the operation, as long as the resulting state is valid. 

For purposes of information hiding it is desirable 
to restrict access to a relation to the classes participat- 
ing in it. Methods on participating classes can access 
the relation freely, as with instance variables in class- 
es, but methods on other classes have access to the 
relations only indirectly, through methods on the 
affected classes. 

To closely model natural ways of thinking about 
relations, it is convenient to support two complemen- 
tary ways of applying methods to them. The first way 
treats a relation as an object to which a method is 
applied. For example, the syntax for adding an ele- 
ment to the ‘Works for” relation might be 

works-for.add 
(Susan-Hill, Marvelous-Manufacturing) 

and the syntax for indexing by a value from the first 
field might be 

works-for.index-1 (Susan-Hill) 
returning “Marvelous~Manufacturing”. The second 
way treats a relation as analogous to an attribute on 
one of the participating classes; the target of the 
method is an object from one of the classes, rather 
than the relation as a whole. For example, the syntax 
to add a worker to a company might be 

Marvelous-Manufacturing.add-worker 
(Susan-Hill) 

An alternate form would be 

Susan-Hill.put-employer 
(Marvelous-Manufacturing) 

Both forms have the same effect. A good object-orient- 
ed language preprocessor can automatically generate 
access methods on the participating classes using role 
names; an option flag on the relation declaration indi- 
cates that the generated methods are wanted. 

pii%J r7zik-j 
Figure 4. Collection class hierarchy 
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4.3 Relation objects 

Relation objects can be implemented so that access is 
efficient. The most straightforward implementation is 
to have an actual relation object for each declared rela- 
tion. Class “Relation” is a subclass of class 
“Unordered Collection” and is similar to class “Set” 
(Figure 4). Relation objects contain a description part 
and a variable-length value part. The description part 
contains the degree of the relation, a list of fields, and 
the cardinality constraint. It may be unnecessary to 
implement fully general cardinality constraints: in 
practice, it is useful to support cardinality “zero or 
one” and cardinality “many”. The value of a relation 
is a set of tuples of values from the respective object 
classes. The value could be represented as a set object, 
but this would make indexing inefficient, as it would 
be necessary to scan the set to find field values that 
match the arguments. 

4.3.1 Internal Structure 

To permit efficient access for indexing, it is necessary 
to build an index table for each desired index order. 
For example, a binary relation can be accessed by field 
1 to yield field 2. or by field 2 to yield field 1. Two 
index tables are required, one mapping field 1 values 
to field 2 values and one mapping field 2 values to 
field 1 values. A qualified relation can be accessed by 
field 1 to yield the qualifier and field 2, by field 1 
and the qualifier to yield field 2, or by field 2 to 
yield field 1 and the qualifier. Two index tables are 
required, one mapping field 1 values to nested tables 
mapping qualifier values to field 2 values, the other 
mapping field 2 values to subtables mapping field 1 
values to qualifier vaues. An index table is implement- 
ed using hash tables, which permit a lookup operation 
to be performed in constant time. (The time is larger 
than a simple pointer access, but does not increase 
with the size of the set to be searched. On the Sun-3 
workstation, a call to find an integer in a hash table is 
more efficient than a for-loop to search for an ‘integer 
in an array of 8 or more elements.) For example, the 
value in a binary relation would be stored in two hash 
tables: one table mapping field 1 values to sets of 
field 2 values, and another table mapping field 2 val- 
ues to sets of field 1 values. Indexing by either field 
would be equally efficient, essentially in constant 
time regardless of the size of the relation, Testing 
membership of an element would require two steps: 
the field 1 value is used to index the first table,. 
returning a set of field 2 values; then the field 2 value 
is tested for membership in the set. Adding an ele- 
ment would require that both tables be updated; for 
most applications accessing a relation is much more 

frequent that updating it, so it is desirable to optimize 
access time at the expense of update time (and also at 
the expense of space). 

The cardinality constraints can be used to reduce the 
storage space needed for fields of cardinality “one” by 
storing scalar values in the appropriate hash table, 
rather than sets of values. In order to maintain the car- 

dinality constraints, it is necessary to check for con- 
flicts before adding a new value to a constrained rela- 
tion; any conflicting elements must be deleted from 
all the hash tables before the new value is added. For 
convenience of the programmer, an indexing operation 
that returns a field of cardinal&y “one” can return a 
scalar value, rather than a set containing a single ele- 
ment. 

Relation objects can be created at run time as well 
as being defined in the object schema. Such anonymous 
relations must be manipulated by object ID, as they 
have no predefincd global name. A new, empty rela- 
tion object is created by a class method “new” on 
class “‘Relation”. Named relations can be considered as 
special cases implicitly created by the compiler and ini- 
tialized when the program begins execution. 

4.3.2 hplementation Benefits 

The use of relation objects as implementation con- 
structs has certain advantages. Using relations exter- 
nalizes information, rather than internalizing it as 
part of object records. This makes the implementation 
of sparse relations more efficient, It is possible to add 
a new relation, without modifying the existing sfnrc- 
ture of an object record; this might be important in a 
system in which data types could be dynamically modi- 
fied. A relation object groups information which 
would otherwise be distributed among several objects, 
and permits the application of operations to the rela- 
tion as a whole, such as scanning or copying an entire 
relation. Such operations are particularly useful in 
implementing persistent storage of objects, that is, 
storage of objects to a permanent data base between 
program executions. The main theoretical problem 
with persistent storage of objects is in representing 
inter-object references in external storage, and remap- 
ping all or some of the references into a new context 
when the stored objects are reloaded into an existing 
object set. If the use of pointers to objects is avoided 
in implementing objects, then all inter-object refer- 
ences reside in relations, which contain only object 
IDS. The fact that all the inter-object references are in 
one place, in a highly symmetrical form, can greatly 
simplify the task of writing a persistent storage man- 
ager. 
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5. POSSIBLE OBJECTIONS 

An objection could be raised that use of relations com- 
promises information hiding, because the classes 
appearing in a relation must know about each other 
and the behavior of one in updating a joint relation can 
affect the other. This is true, but we do not feel that 
this is a drawback, but a virtue. A relation represents 
an inherent constraint between objects of two or more 
classes. This constraint is not something to be hidden, 
but rather to be specified abstractly, without impos- 
ing an implementation. In a Smalltalk program, the 
constraints would be buried within method code, hard 
to recognize. This kind of “information hiding” hides 
semantic information and exposes implementation 
information, exactly backwards. Use of relations need 
not compromise true information hiding. All accesses 
to a relation can be restricted to methods defined on 
the affected classes. Any access to an object from 
another class must use one of the defined methods, 
rather than accessing the object’s instance variables or 
associated relations directly. For example, most class- 
es will have a set of “get” and “put” methods to 
manipulate the values of instance variables. In most 
cases, these translate directly into reading or writing 
the instance variable value, but in some cases there are 
side effects of an update which may be hidden from 
the caller. A similar set of “get” and “put” methods 
could be defined for the relations affecting a class. 
For example, the operation “put-employer” applied 
to an instance of “Person” would update the “Works 
for” relation. Unlike the update of an instance vari- 
able, the update of a relation element would implicit- 
ly affect more than one class. This is not a breakdown 
of information hiding. A relation indicates a situation 
in which two (or more) classes are interlocked in 
some way. It simply would not make sense to update 
au instance variable in one class, and leave the corre- 
sponding instance variable in the related class unmodi- 
fied. However, the traditional view of strict informa- 
tion hiding in separate classes does not allow these 
constraints to be specified cleanly, and as such is 
flawed for representing real systems. 

Why bother with relations, one might say. After 
all, can’t they be implemented as instance variables? 
This objection misses the point, indeed the entire point 
of object-oriented programming, which is to match 
the computer model more closely to the conceptual 
r&-world model and to avoid introducing implemen- 
tation constraints on the design. The object-oriented 
model itself is logically unnecessary, because any com- 
putation can be represented as a Turing machine (or at 
least in assembly code, which is not too much differ- 
ent). Instance variables are an implementation con- 

struct. Representing a binary relation as a pair of 
mutually interlocked instance variables loses semantic 
information, because the standard object-oriented mod- 
el cannot represent the constraint that the two objects 
must point at each other. Not only do relations carry 
more semantic information, but they provide a concise, 
symmetric way of describing information that is not 
subordinate to any one class. 

All this may be very good, but won’t these ideas be 
too hard to implement, and won’t they be too ineffi- 
cient in any case? No. All the concepts discussed here, 
and other variations also, have been implemented in an 
object-oriented language written by the author. This 
language has been used for several applications, includ- 
ing interactive graphics, with very satisfactory perfor- 
mance. 

6.. AN ACTUAL IMPLEMENTATION 

The author and colleagues have implemented two tools 
incorporating the concepts presented in this paper: the 
Object Modeling Technique [Loomis et al] and the 
Data Structure Manager [Rumbaugh]. 

The Object Modeling Technique is a notation for 
drawing object models, which includes representations 
for class generalization hierarchies, relations among 
objects, aggregation trees, and other things. We have 
used some of this notation for the examples in this 
paper. A graphical tool to draw object models and 
automatically produce Data Structure Manager declara- 
tions is being written. 

The Data Structure Manager (DSM) is an object-ori- 
ented programming system written by the author. It is 
a fully-implemented, production-quality object-orient- 
ed programming system, intended to support C lan- 
guage programming using an arbitrary mixture of 
straight C language code together with extensions 
which add object-oriented capabilities. DSM contains 
syntax and built-in object classes to fully support 
relations, as well as the features found in other object- 
oriented languages. A brief description of DSM is giv- 
en in the appendix. 

These tools have been used to model and implement 
several large interactive applications with excellent 
results. Our experience has shown that the use of rela- 
tions greatly enhances the modeling process. We have 
used object-relation models to design several systems, 
such as a chemical plant layout system, which were 
then implemented as relational data bases. This nota- 
tion greatly facilitated communication with clients, 
some of whom were not computer experts; they found 
it intuitive and easy to learn with a few minutes’ 
explanation. The Data Structure Manager has been used 
to implement several large interactive applications, 
including a PHIGS-like hierarchical graphics package. 
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The use of relations greatly simplified design and 
implementation of these applications. Performance has 
not been a problem. The DSM compiler and the DSM 
run-time package are entirely written using DSM 
objects; these programs are large and complex and 
have heavily exercised many of the features of the lan- 
guage. 

Our experience has shown that the greatest advan- 
tage of object-oriented programming is greatly 
improved ease of modifying programs. We have found 
that even substantial changes to a system do not propa- 
gate very far if the system is partitioned well. For 
example, we added multiple inheritance to the DSM 
compiler and run-time package in two weeks, includ- 
ing debugging. None of these applications would have 
been nearly as easy without the availability of rela- 
tions. Descriptions of the Object Modeling Tool, the 
Data Structure Manager, and our experiences with 
using these techniques on actual applications will 
appear in future publications. 

7. FURTHER WORK 

The concept of relations in an object-oriented language 
could be extended in a number of ways: 
- Hierachies of relations. These can be implemented 

as suggested in section 4.2, but their semantics 
require clarification. For example, is “Husband-of’ 
a subrelation of “Married-to”? 

- Making elements of relations first class objects. 
This adds logical power, but may be difficult to 
implement efficiently. 

- Symmetries and other constraints within relations. 
The transitive closure of a symmetric relation 
occurs often in practice and seems to call for a spe- 
cial implementation. 

- Constraints on sets of relations. Often the elements 
of two different relations are not independent. Per- 
haps this is a case of relations between relations 
themselves. 

- Derived relations. It is often convenient to build 
intermediate objects and relations that are strictly 
derivable from a set of independent objects and rela- 
tions. If a programming system could construct and 
maintain such derived relations from a set of decla- 
rations, considerable simplifications of algorithms 
would result. 

- Views of relations. This can be considered a special 
case of derived relations. A lot of effort has been 
devoted to views in the database area, with mixed 
success. 

- Use of relations in saving and restoring object-ori- 
ented data to a permanent store or a database. Rela- 

tions could be assigned different binding strengths. 
If an object is saved, all objects related to it by 
strong relations (such as “Part of’) would be saved 
with it, but objects related to it by weak relations 
would be regarded as separable and could be saved 
and restored independently. The concept of external 
names and catalogs is important to the problem of 
restoring data in a different context than it was 
SiVed. 

8. CONCLUSIONS 

The use of relations as a conceptual construct in an 
object-oriented environment can help capture the 
semantics of a system more clearly than the use of 
object pointers. Promoting relations to an equal foot- 
ing with classes permits a symmetric and compact rep- 
resentation of a highly-interconnected system of class- 
es. Binary relations and qualified ternary relations 
seem adequate to model most applications. Specifica- 
tion of cardinality is useful in tightening semantics 
and reducing unnecessary operations. All these kinds 
of relations can be implemented efficiently using hash 
techniques. The externalization of inter-object refer- 
ences into relations can aid in dumping and reloading 
object values to databases and to external formats. We 
have implemented these concepts in an object-oriented 
language and found them to be useful, practical, and 
natural. 
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APPENDIX A: THE DATA STRUCTURE 
MANAGER 

The Data Structure Manager (DSM) is a programming 
development system to support object-oriented pro- 
gramming in the C language. The DSM system imple- 
ments all the concepts of a standard object-oriented 
system, such as Smalltalk, within the context of the 
C language, while adding a number of extensions,. such 
as relations, which greatly extend, its power. It com- 
prises a set of preprocessors and a subroutine library 
written in C. The DSM system provides a declaration 
format in which a user can define an object class hierar- 
chy, including single and multiple inheritance and rela- 
tions between classes. Classes and relations are first- 
class objects, and a full metaclass hierarchy is support- 

ed, including class variables and class methods, similar 
to Smalltalk. The DSM system is written entirely 
using itself. All system objects are created dynamical- 
ly at run time and are fully extensible. The system 
performs memory allocation and deallocation, but 
does not include a garbage collector, because garbage 
collection is fundamentally impossible with an open 
language such as C that permits arbitrary user opera- 
tions. Class descriptor objects and relation descriptor 
objects provide a full internal description of each class 
and relation at run time for symbolic operations, such 
as pretty printing of objects or transfering objects to 
or from permanent storage. 

DSM is intended to be used for production applica- 
tions, including quasi-real-time applications such as 
graphics, so it was designed to be efficient. The pro- 
grammer is given a choice of constructs in several situ- 
ations, allowing a conscious trade-off between general- 
ity and efficiency when needed. For example, a method 
can be called using a run-time method lookup based on 
the object class, as in Smalltalk. Hashing is used for 
efficiency, but the programmer has the option of stor- 
ing a pointer to a method function in a class variable 
or of calling a specific C function directly if the class 
of an object is known at compile time. To facilitate C- 
language programming, instance variables can have C 
types as values, so that objects need not be created to 
hold pure values, such as integers or structures of val- 
ues; an object ID is a special case of a C data type. The 
class hierarchy has been replaced by a C type hierarchy, 
within which classes are simply one subtype. Since 
DSM programs are written in C, it is easy to interface 
to non-DSM programs in C or other languages. 

The DSM system is written in normal C using the 
standard I/O package, and has been easily ported to sev- 
eral different systems, including Sun, VAX VMS, 
VAX Ultrix, Apollo and HP workstations, and the 
IBM PC. It is used to implement itself. It includes an 
object pretty-printer and a run-time interpreter for dis- 
playing data structures and debugging programs. It has 
been used to implement several large application pack- 
ages, including a generic interactive graphics system 
(with capabilities similar to PHIGS) and a user inter- 
face system for managing program execution and file 
storage using interactive graphics on a workstation. It 
is only slightly less efficient than writing operations 
in straight C. 

Implementation of Relations in DSM 

All objects in DSM are created dynamically at run 
time, including class descriptors, relations, and other 
internal objects. The package includes a predefined set 
of object classes which are generically useful and 
which are used to implement DSM itself. These 
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include strings, symbols, and several dynamic aggre- 
gate data types, including arrays, sets, lookup tables 
(discrete functional mappings), and relations. The sup- 
port given to relations in the subroutine library and 
the declaration notation is perhaps the most novel fea- 
ture of the DSM system. 

Relations are implemented in DSM as fully indexed 
lookup tables. A binary relation contains two tables: 
one maps field 1 values into field 2 values or sets of 
field 2 values (depending on the cardinality of the rela- 
tion), and the other maps field 2 values into field 1 
values or sets of field 1 values. When ‘an update is per- 
formed, both tables are updated. When an index opera- 
tion is performed, the table containing the field to be 
indexed by is used. No searching is needed at any time, 
since hashing is used, so relational update and access 
operations operate in constant time on average regard- 
less of the size of the relation. 

The lookup table object is a built-in DSM data 
class. A table is a functional mapping from one field 
to another. It is implemented using open-chain hashing 
for constant time average access. The hash table is nev- 
er allowed to become full. If a hash table exceeds a 
certain fraction of its allocation, then its storage allo- 
cation is multiplied by a constant factor and the entire 
table is reallocated and rehashed. Because the table 
grows by a multiplicative factor, the average cost of 
reallocation is a constant factor of the cost of a sim- 
ple update over the life of the tabIe and does not cause 
a non-linear cost. This storage technique minimizes 
the time cost of exact-match associative updates and 
retrievals, at the price of a fixed multiplicative factor 
of unused memory necessary to permit efficient hash- 

ing. The attempt to minimize execution speed at the 
cost of memory usage is justified on most small to 
medium applications on modem virtual-memory 
machines. The DSM implementation consistently 
attempts to minimize execution time at the possible 
expense of storage space. 

APPENDIX 8: NOTATION 

A good graphical notation for object classes and rela- 
tions can aid in the development and use of a set of 
class definitions. A portion of the Object Modeling 
Technique [Loomis et al] has been used for examples. 
Object classes are shown as rectangular boxes contain- 
ing the name of the class. Within the object boxes, sep- 
arate sections show lists of instance variables and lists 
of methods. Object subclasses sprout off a triangle 
connected to the superclass. Relations are shown as 
lines between classes, with the name of the relation 
written on the line. The cardinahty of each end of the 
relation can be indicated by an integer range (such as l- 
4, 0+, etc.); the special case of 0 or more is shown as a 
black dot, of 0 or 1 is shown as an open circle, and of 
exactly 1 is shown as a simple line. A qualified rela- 
tion is indicated by a small box containing the qualifi- 
er attached to the field 1 class box, connected by a line 
to the field 2 class box. 

Figure 5 shows a sample data model containing 
some information about a company and its employees. 
The model is incomplete, perhaps an early stage of a 
design. No methods have been shown yet; they typical- 
ly are added much later. Only two subclasses are 
shown; they are much less important than relations in 
an early design. Certain restrictions can be seen from 
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Figure 5. Sample data model 
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the diagram: each person can only work for a single 
company, each department is located in a single state, 
each company has a unique name, each state has a flat 
tax rate, several persons with the same name might 
exist. One can make up questions and see if the infor- 
mation to answer them is in the model. The following 
kinds of questions can be answered: who are the 
employees of a company, what are its departments, 
what are all the states in which it has departments, 
what is the reporting hierarchy from a worker up to 
the top. Some questions cannot be answered: which 
department does an employee work for, where does an 
employee work, what are the organizational entities 
corresponding to the reporting hierarchy. A realistic 
model would contain much more detail. There is no 
structure to the corporate organization. Perhaps 
“Department” should be replaced by “Organizational 
unit”, which would be recursive to match the report- 
ing hierarchy. “Tax table” would have to be an object 
of some complexity. Maybe we should distinguish 
“Person” from “Employee*‘; a person might be an 
employee of more than one company (perhaps over 
time) and we might want to group all the information 
about a single employment instance in a separate 
object, which would be related to the person object. 
The object model diagram is an invaluable tool to 
designing an object-oriented system correctly with 
proper regard for the overall picture. 

APPENDIX C. SEMANTIC DATA MODELS. 

Researchers in data base theory have explored a num- 
ber of models for data structuring which depend hcavi- 
ly on the concept of relations. The relational data base 
model [Codd] is the earliest and simplest of these 
models, but it lacks the semantic richness of more 
advanced models including the object-oriented model. 
The entity-relationship model [Chen] introduces the 
concept of objects (called “entities” in the model) and 
relations among them, but does not contain the con- 
cept of generalization. Extensions to the entity-rela- 
tionship model [Teorey] add generalization and other 
relations. The standard object-oriented model includes 
a subset of these data structuring concepts but adds 
the concept of binding operations to data as part of the 
schema (“methods”). 

nized into any superstructure, unlike classes in an 
object-oriented model. A relational table contains 
only attribute values from a predefined set of primi- 
tive types, such as integer, real, character string (often 
fixed length), and date; abstract data types are not gen- 
erally supported. There is no way to create a unique 
object, except by specifying unique values for certain 
fields, since there is no concept of object identity (the 
property of an object that distinguishes it from all 
others, independently of its attributes) [Khoshafian]. 
In practice, the data base implementor must often gen- 
erate arbitrary IDS for objects and include ID fields in 
relational tables to ensure uniqueness. If IDS are not 
generated, then relations among objects must be repre- 
sented by relational tables in which each object is rep- 
resented by a set of unique attributes. Taken with the 
lack of abstract data types as field values, this implies 
that the program must manipulate composite keys as 
if they were single entities. Recursive data structures, 
such as trees, require the introduction of arbitrary 
object IDS and are difficult to manipulate in relational 
data bases because of the absence of transitive closure 
operations. Relational data bases are essentially flat, 
in all respects. While this makes them attractive to 
implement, it makes them weak in representing com- 
plex data structures. Considerable effort has been 
devoted to normalization of relations to eliminate 
redundancy. Most, if not all, of the problems of nor- 
malization are caused by the insistence that all data be 
represented solely by attribute values and the failure 
to admit the identity of objects. Relational data bases 
have been used extensively for commercial applica- 
tions, in which information has traditionally been 
viewed as flat collections of records, but pure rela- 
tional data bases do not appear adequate for represent- 
ing highly-structured data models such as found in 
engineering applications, either conceptually or as effi- 
cient direct implementations. We feel that relational 
data bases may best be viewed as implementation vehi- 
cles, the “assembly language” of data modeling. 
Object-oriented systems can represent complex data 
structures and some of their -semantics directly in the 
data models. However, standard object-oriented sys- 
tems must resort to object pointers to represent rela- 
tions among objects. 

The simplicity of the relational data base model is a The entity-relationship model ([Chen], but more 
drawback in dealing with highly structured problems, readily available in [Ullman] Chapter 1) is a more 
because the semantics of a problem cahnot be totally powerful model than the relational data base because 
represented in flat relations among attributes and it supports object identity and relations. It has some 
must reside in the code. Relational data bases offer a common concepts with the object-oriented model. In 
uniform, elegant model which is well understood the entity-relationship model, objects (called 
mathematically, but they have only one level of struc- “entities”) belong to named classes (called “entity 
ture and are not well suited to representing complex sets”). Objects have instance variables (called 
objects. Relational tables themselves are not orga- “attributes”) that have pure values (they may not be 
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object references). Named relations (called 
“relationships”) can exist among two or more classes. 
Each relation has a defined cardinality in terms of its 
constituent classes. For example, a binary relation 
associates an object from one class with a single object 
or a set of objects from another class, according to 
whether the relation is many-to-many, many-to-one, 
or one-to-one. A relation, considered as a single 
object, comprises a set of tuples containing objects 
drawn from the constituent classes. Classes and rela- 
tions are of equal weight in this model The major dif- 
ference between the relational data base and the entity- 
relationship model is that objects in the entity-rela- 
tionship model have identity, apart from their 
attributes, and relations among objects are specified 
directly, rather than indirectly in terms of attributes. 
Chen has proposed a notation for entity-relationship 
diagrams which clearly shows the structure of a partic- 
ular schema visually. The entity-relationship model 
lacks a generalization hierarchy of classes, something 
that the object-oriented model provides. 

Other data base researchers have extended the entity- 
relationship model by adding the concept of generaliza- 
tion and other structuring mechanisms (see Foomis] 
and [Teoreyl for a full exploration of various semantic 
data modeling methodologies). The semantic data mod- 
els found in the data base literature seem to address 
data structuring only, without considering the applica- 
tion operations that will be applied to the data. Most 
of the developers of semantic data modeling tech- 
niques seem to view them as high-level notations for 
developing data base designs, which will eventually be 
implemented using conventional relational data bases. 
Object-oriented programming, on the other hand, 
includes the concept of binding methods to the class 
schema, which serves as the organizational structure 
for both data and code. 

In the object-oriented community, a lot of atten- 
tion has been devoted to issues of the class hierarchy: 
degrees of information hiding of instance variables 
[Snyder], various kinds of inheritance [Meyer, Lieber- 
man], variations on instantiation [McAllester] and val- 
ue propagation Ipascoe], and so on. It is possible to 
design elegant class hierarchies, but there is no way to 
represent relations among objects from different class- 
es without describing the actual implementation of 
the relations, usually as instance variables pointing 
from one object to another. 

We have proposed a synthesis of semantic data mod- 
eling and object-oriented programming which com- 
bines complementary concepts without significant 
drawbacks. Although the semantic data modeling tech- 
niques are widely known, their importance to object- 
oriented programming does not seem to have been 

widely recognized. We argue that relations should be 
given equal semantic weight in an object-oriented mod- 
el with the class-subclass hierarchy, and that object- 
oriented languages should support relations directly 
with syntax and implementations. The model pro- 
posed here combines the class hierarchy and methods 
of the object-oriented model with relations and the 
other kinds of relations from the extended entity-rela- 
tionship model. We call this model the object-rela- 
tion model. 
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