
Combination of Inheritance Hierarchies 

Harold Ossher and William Harrison 

IBM Thomas J. Watson Research Center 
P. 0. Box 704, Yorktown Heights, NY 10598 

Abstract 

Making extensions to existing systems is a crit- 
ically important activity in object-oriented pro- 

existing application. We are in full agreement with 

Lieberman [7] that one wants a small extension to 

behavior to require just a small extension to code, 

and that adding new code is good, whereas mod- 

ifying existing code is bad. We call this approach 

“extension-by-addition” [16]. 

gramming. This paper proposes an approach in 
which extensions of all kinds are clearly separated 
from the base hierarchy upon which they are built, 
for ease of distribution and combination. Exten- 
sions, including extensions to existing classes, are 
written in separate, sparse extension hierarchies. 
The entire system is obtained by combining the 
extension hierarchies with the base hierarchy. Se- 
quences of successive extensions can be combined 
using an extension operator, and parallel exten- 
sions can be combined using a merge operator, 
which might identify conflicts that must be rec- 
onciled. System building takes place at two levels: 
combining existing extensions from a library using 
these operators, and building new extensions when 
existing ones are not adequate. New extensions 
built in this way are added to the library, and so 
should be written to be as general and reusable as 
possible. 

1 Introduction 

The ability to make extensions with ease is one of 

the primary advantages of the object-oriented ap- 

proach to building systems. Indeed, a common ap- 

proach to building an object-oriented application is 

to extend a base system or library, or perhaps an 

Permission to copy without fee all or part of this material is 

granted provided that the copies are not made or distributed for 

direct commercial advantage, the ACM copyright notice and the 

title of the publication and its date appear, and notice is given 

that copying is by permission of the Association for Computing 

Machinery. To copy otherwise, or to republish, requires a fee 

and/or specific permission. 

@ 1992 ACM 0-89791-539-9/92/001010025...$1.50 

Subclassing is a form of extension-by-addition, 

in which the extension is accomplished by adding 

entire classes. This paper addresses the issue of 

extending existing classes by addition, rather than 

adding new classes. Extending existing classes is 

important when: 

One wants objects created by existing code to 

exhibit some extended behavior. The creation 

code generally names specific classes; to ob- 

tain extended behavior without changing the 

creation code, one must extend those classes. 

One wants existing, persistent objects to ex- 

hibit some extended behavior. One must then 

extend the classes to which those objects be- 

long. 

One wants instances of all existing subclasses 

of an existing class to exhibit some extended 

behavior. 

The last case is similar to the problem identified 

by Lieberman of deriving a hierarchy of Colored- 

Shapes from an existing hierarchy of Shapes [7], 

except that his intent was to produce a separate 

hierarchy, not to modify the existing one. 

The usual approach to extending existing classes 

is to edit the code associated with those classes, 

which, as noted above, is undesirable. The changes 

OOPSLA’9’2, PI’. 2.F.10 

25 



made in this way become an integral part of 

the system, indistinguishable from the base sys- 

tem itself, or from other sets of changes. As 

many object-oriented programmers have discov- 

ered, this makes distribution of extensions or ob- 

taining new releases of the base system extremely 

difficult. The bookkeeping aspects of this prob- 

lem have been addressed by a variety of change 

managers [12, 14, 30, 331, effectively version man- 

agement systems integrated with editors/browsers 

that keep track of changes made and are able to 

isolate them. 

This paper proposes a linguistic approach to ex- 

tension that keeps extensions of all kinds clearly 

separated from the base hierarchy. The idea is sim- 

ple, but it has significant impact on the manner 

in which systems are built. Extensions are made 

in separate, usually sparse, inheritance hierarchies. 

The entire system is obtained by combining the 

extension hierarchies with the base hierarchy. Se- 

quences of successive extensions can be combined 

using an extension operator, and parallel exten- 

sions can be combined using a merge operator. The 

base hierarchy can be replaced without changing 

the extension hierarchies. Merges and base hierar- 

chy replacements can identify conflicts that must 

be reconciled. 

Hierarchy combination can be applied to systems 

written in any object-oriented language. It is in- 

dependent of the detailed semantics of inheritance, 

and so can be used in combination with any inher- 

itance model. 

Section 2 introduces hierarchy combination 

through a series of examples, and section 3 de- 

scribes it formally. Section 4 briefly describes 
how systems can be built using hierarchy combi- 

nation. Section 5 briefly discusses implementation 

approaches. Section 6 discusses change managers 

and other approaches to dealing with extensions, 

and how they relate to our approach, Section 7 

discusses directions for future research. 

2 Examples 

Our approach to extension is to begin with a base 

hierarchy, and to extend it by developing a new and 

separate extension hierarchy. The extension hierar- 

chy is usually sparse, containing just changed and 

new details of changed and new classes. It is then 

combined with the base hierarchy to form the com- 

plete system. Extension hierarchies can be created 

in sequence or in parallel, and can be combined in 

various ways. 

Throughout this section we use simple examples 

drawn from the domain of vehicle simulations. The 

inheritance hierarchy sim in fig. 1 supports very 

simple simulations, involving just moving vehicles 

and determining their positions. It will be used 

as the base hierarchy, upon which extensions are 

built. 

Our first extension is to introduce the modeling 

of vehicle sales. This extension is specified in the 

extension hierarchy sales shown in fig. 1. We pro- 

vide a single seEZ method associated with the ve- 

hicle class, to be inherited by its subclasses. Since 

the description of car is not changed by this exten- 

sion, car does not appear at all in the extension 

hierarchy; the car class will, however, inherit the 

new vehicle sell method. 

To accomplish the extension, the base and ex- 

tension hierarchies are combined using the hiemr- 
thy extension operator, “P”, as shown in fig. 2. In 

this simple situation, where no overriding occurs, 

the details of the classes are simply merged. In 

general, details in the extension hierarchy override 

corresponding details in the base hierarchy. 

Fig. 3 shows another extension, drawing, to the 

vehicle hierarchy, this time to draw vehicles on a 

screen. Under the assumption that undifferenti- 

ated vehicles and cars wiIl be drawn differently, this 

extension involves adding draw methods to both 

the vehicle and car classes. Note, however, that 

the superclass relationship between them is not 

changed, and therefore is not specified in the ex- 

tension hierarchy (there is no vertical line between 

the classes in drawing). 

The two extensions, saEes and drawing, might 

26 



vehicle 

position : position, 
move : move, 

E5 car 

move : move, 

sales 

lizEEl 

Figure 1: Base Hierarchy sirr~ and Extension Hierarchy sales 

sales 

drawing 

-1 

car 

draw : draw= 

move : move, 
I 

I 

car 

move : move, 

I 

car 

move : move, 

Figure 2: Hierarchy Extension: siml = salesb sim 

D 

sim 
sim2 

i vehicle 1 

move : move, draw : draw, 
I I 

L..- = &I 

c 

Figure 3: A Second Extension: simz = drawing b sim 

27 



have been made in either order, or in parallel, by 

different programmers. It would make sense to in- 

tegrate them, resulting in simulations capable both 

of handling sales of vehicles and of drawing vehi- 

cles on the screen, We wish to merge the exten- 

sions, and apply the merged extension to the base 

hierarchy siq. We express this as 

(saleso dmwing)b siq 

where the operator “0” denotes hierarchy merge. 
The difference between extension and merge has to 

do with overriding. When one is extending a base 

hierarchy, it is reasonable to allow the extension 

to override some details of the base. Indeed, this 

is often how the extension is accomplished. When 

one is merging two independent extensions, how- 

ever, one cannot let one override the other, for 

then some changes made deliberately will be lost. 

Merge is therefore defined to be the same as ex- 

tension if there are no conflicts, but to fail if con- 

flicts are present. This definition ensures that no 

separately-made changes are lost during a merge; it 

does not, however, guarantee that the separately- 

made changes will be semanticalEy compatible, that 

is, that they will work correctly together. The issue 

of semantic compatibility of extensions is discussed 

in section 3.5. 

In this example, there are no conflicts between 

sales and drawing: neither one contains any details 

that would override details in the other. The merge 

is shown in fig. 4, and its use as an extension of sim 

in fig. 5. 

Now suppose that after some use of the vehi- 

cle simulation hierarchy, including building of the 

sales and drawing extensions, a bug is discovered in 

movec, the move method for cars. The bug can be 

repaired in an extension hierarchy, bugfix, shown 

at the left of fig. 6. It might seem unusual to re- 

pair a bug by adding an extension hierarchy rather 

than by simply editing the code. The advantage 

of doing so is that it is then possible to merge the 

change to the base hierarchy with the extensions 

made earlier to the base hierarchy. Inspection re- 

veals that bugfix does not conflict with either of the 

earlier extension hierarchies, sales and drawing, so 

the merges succeed. It is therefore possible to form 

the following repaired hierarchies, the first of which 

was shown in the figure: 

siq’ = bugfix b sim 

simr’ = sales b siq’ 

sim2’ = drawing b sim’ 

Sims’ = (sales 0 dmwing) b sim’ 

3 Formal Description 

This section presents a formal description of hier- 

archy combination. We begin with a simple for- 

mal model of inheritance hierarchies, just detailed 

enough to permit the definition of hierarchy com- 

bination. 

3.1 Inheritance Hierarchies 

An inheritance hierarchy consists of a set of named 

class descriptions organized into a superclass lat- 

tice. The information in these class descriptions, 

combined as dictated by the inheritance semantics, 

defines a set of classes bearing the same names. 

Inheritance is usually discussed either by con- 

sidering classes as types that specify objects as 

records that contain methods as well as other val- 

ues [6], or by considering class descriptions that 

themselves contain the methods, as well as other 

details [9,24,31]. We take the latter approach, and 

model class descriptions simply as records of meth- 

ods. This isolates the essentials, while ignoring is- 

sues such as class and instance variables. Variables 

can be handled by hierarchy combination in a man- 

ner analogous to the handling of methods, but they 

impose some requirements on the underlying lan- 

guage with regard to the manner in which object 

creation and initialization are specified. 

A record can be thought of as a function from 

labels to field values [9]. Using this approach, we 

define a class description, d, as a function 

d : selectors -+ methods 

28 



sales-drawing 

drawing 

sales vehicle 1 
1 draw : draw,, 1 

I car 

I car 

sales-drawing 

m 

1 draw : draw, 1 

Figure 4: Hierarchy Merge: sales-drawing = sales o drawing 

sim 

car 

I move : move, I 

vehicle 

position : position, 
move : move, 

Figure 5: Merged Extensions: Sims = sales-dmwing t> siq = (saleso dmwing) b si?w~ 

sim sim’ 

D 

Figure 6: Fixing a Bug in a Base Hierarchy: sim,-~’ = bug& b sim 

29 



move : move, 

simc = (No, Do, So) 

iV0 = {vehicle, car} 

Do = {vehicle H {position H position,, move ++ move,}, 
car c) {move H move,}} 

SO = {vehicle H 0, 
car H (vehicle)} 

Figure 7: A Simple Inheritance Hierarchy, sim 

mapping selectors (operation names) to the corre- 

sponding methods. We define an inheritance hier- 
archy H as a triple (N, D, S), where N is a set of 

class names, 

D : iV --t class-descriptions 

is the class description function specifying the de- 

scription of each class, and 

S : iV -+ seq(N) 

is the superclass function specifying the sequence 

of immediate superclasses of each class. Sequences 

are used here rather than sets because superclass 

ordering is usually important in hierarchies involv- 

ing multiple inheritance. 

Both the class description function and the su- 

perclass function can be partial: in any particular 

hierarchy, either or both might be unspecified for 

a particular class. A class hierarchy in which both 

functions are total is termed complete. Only com- 

plete hierarchies are executable. Incomplete hier- 

archies can be combined to form complete hierar- 

chies . 

Example. The simple simulation base hier- 

archy shown previously in fig. 1 is shown again 

in fig. 7, with the components shown in detail. 

Though very simple, this hierarchy is complete. 

Each class description in a complete inheritance 

hierarchy, together with the class descriptions of 

its superclasses and their ancestors, define a class. 

The details constitute the semantics of inheritance, 

and differ from language to language. For example, 

Smalltalk [13] h as single inheritance, Beta [26] has 

prefixing, and CLOS [2], C++ [ll] and Trellis/Owl 

[32] have multiple inheritance but with many dif- 

ferences in detail. Hierarchy combination does not 

depend on any specific inheritance semantics. 

For the purposes of this paper, suffice it to say 

that inheritance in an object-oriented language is 

usually defined in terms of repeated application of 

a class combination operator, “@‘, to the class 

descriptions in an ancestor sequence derived for 

each class from the superclass function. The stan- 

dard definition of this operator is that methods 

supplied by the left operand override identically- 

named methods supplied by the right operand: 

dl $ do = 4 u {( s H m) E do]s 6 domain( 

Some languages have more complex forms of 

class combination, such as supporting programmer- 

specified combination of methods [3, 281 or auto- 

matically combining clauses from inherited meth- 

ods [lo]. Some formal approaches to defining in- 

heritance eliminate the linearization of ancestors, 

and involve a variety of operators [9, 8, 5, 41. 

3.2 Hierarchy Extension 

If Ho and Hr are inheritance hierarchies, then 

Hlb,Ho, read “HI extending HO,” is the inheritance 

hierarchy that results from applying the extensions 

in the extension hierarchy HI to the base hiemrchy 

Ho- 
Extension is defined formally as follows; an ex- 

ample was shown is fig. 2. Let HO = (NO, DO, SO) 

30 



and Hr = (Nr, Dr, Sr). Then: 

H1 D HO = (N1 u NO, DI D Do, & D SO) 

The fact that the sets of class names are simply 

united implies that identically-named class descrip- 

tions in Hr and Ho are taken to refer to the same 

class. Such class descriptions are combined using 

class combination, mentioned above. Dr D DO con- 

tains these combined class descriptions, and also 

all class descriptions associated with names that 

appear in just one of Dr and DO. Formally: 

{ (n H dr) E D1 1 n $Z domain( Do) } U 

{ (n H do) E Do 1 n $ domain( 01) } 

When hierarchy combination is used with a par- 

ticular object-oriented language, the semantics of 

the class combination operator (“$“) are deter- 

mined by that language. The definition of hier- 

archy extension imposes no requirements on them. 

As a result, the class descriptions in the combined 

hierarchy are just the same as could be obtained 

by subclassing within a single hierarchy. Instead of 

being separate subclasses, however, they are ex- 

tensions of existing classes and retain the same 

names as the existing classes. New subclasses can, 

of course, be introduced in the extension hierar- 

chy; they are included in the combined hierarchy 

by virtue of the second term in the union above: 

{ (n +-+ dr ) E DI 1 n $ domain( Do) } 

There are a number of possibilities for extension 

of superclass functions, involving merging of se- 

quences, possibly taking the structure of the base 

and extension hierarchies into consideration. We 

take the simple approach that, for each class, the 

extension hierarchy totally overrides the base hier- 

archy: 

Sl D SO = Sr U { (n H q) E SO ( n $Z domain( Sl) } 

Hence, if the extension hierarchy omits the super- 

class function for a class, it is taken to be the same 

as in the base hierarchy. .This is the common case, 

since most enhancements to classes involve local 

changes rather than changes in the structure of the 

hierarchy. Such changes can be accomplished, how- 

ever, by specifying the new superclass function for 

the class fully in the extension hierarchy. 

It is important to note that an extension, though 

an addition of code, is not merely an addition of 

functionality: it can dramatically change existing 

functionality, especially if the superclass hierarchy 

is modified. If the base system HO produces a par- 

ticular result when message m is sent to object o, 

the extended system Hr D Ir, might produce a quite 

different result when m is sent to o. This is inten- 

tional. The primary advantage is that it facilitates 

the kind of extension so common in object-oriented 

systems, where code additions or changes are made 

deliberately to affect existing behavior. It does 

have the disadvantage that additions might inad- 

vertently disrupt existing functionality when the 

intention is to add functionality. The hierarchy 

combination approach provides a suitable frame- 

work in which to investigate this issue, perhaps 

leading to the identification of classes of extensions 

that are guaranteed to preserve existing function- 

ality. 

3.3 Sequential Extensions 

Repeated extension of an inheritance hierarchy 

leads to a sequence of hierarchies combined by 

means of the extension operator, such as 

In some circumstances it might be valuable to 

maintain these hierarchies separately, in other cir- 

cumstances it might be desirable to replace some or 

all of them by combined hierarchies. For example, 

if HI and Hz are really considered to be extensions 

of the base system HO that will be part of a new 

release, and H3 and Hd realize two closely-related 

extensions that will be supplied as a package, it 

would make sense to compact the sequence to 

(H4DH3)D(HzDJh DHO) 

31 



For such compaction to preserve semantics, one 

requires only that the extension operator “D” be as- 

sociative. The definition given earlier implies that 

“D” is associative if and only if the class combi- 

nation operator “$” is associative. The standard 

class combination operator is, indeed, associative. 

3.4 Parallel Extensions: 
Merge 

Hierarchy 

If HI and Hz are inheritance hierarchies, then Hlo 
Hz, read “HI merged with Hz,” is the combined 

inheritance hierarchy incorporating the features of 

both HI and Hz. HI and Hz might be parallel 

extensions of a common base, Ho, in which case 

the merged hierarchy will then be applied as an 

extension of HO: 

(HI 0 Hz) D Ho 

An example was shown in figs. 4 and 5. 

To define the semantics of hierarchy merge, we 

first introduce the following notion: two inheri- 

tance hierarchies, HI and Hz, are non-conflicting 
if and only if 

Hlr>H2 = H~DHI 

Intuitively, this means that HI and Hz can be com- 

bined without either overriding the other. In other 

words, all serializations of non-conflicting parallel 

extensions are equivalent. If HI and Hz are non- 

conflicting, it is sensible to consider their merge as 

having the same meaning as their two equivalent 

sequential combinations. If HI and Hz do con- 

flict, however, parallel changes have been made to 

the same methods or to the superclass sequences 

of the same classes. We consider the merge of such 

hierarchies to be undefined, requiring that recon- 

ciliation of the conflicts occur before the merge is 

attempted. Hence: 

HI D H2 
HIoH = 

if H1t>H2= H~DH~ 

undefined otherwise 

3.5 Conflict, Interference and Semantic 
Compatibility 

Non-conflict is different from “non-interference” as 

defined by Horwitz, Prins, Reps and Yang [22, 341. 

Conflicting methods might not actually interfere, 

and hence might be amenable to their integration 

technique. Their definition of non-interference in- 

volves the base version as well as the extensions, so 

their technique would be applied to Ho, HI D Ho 
and Hz D HO. As they point out, however, sig- 

nificant work remains to be done to extend their 

approach to realistic languages [22]. To work in 

the context of hierarchy combination, it would have 

to be able to cope with large, object-oriented sys- 

tems, with their characteristic polymorphism and 

widespread (though encapsulated) updating and 

use of instance variables. In systems that manipu- 

late persistent objects, the state of all such objects 

is of interest on termination. Conflicting meth- 

ods, including methods that do interfere, can also 

be reconciled manually by a programmer familiar 

with both extensions and with what behavior is 

required. 

On the other hand, two extensions that do not 

conflict might nonetheless interfere, in their uses of 

instance variables, their production of output, or 

their expectations about shared classes. For exam- 

ple, consider two extensions, one that adds a new 

subclass Sr of class 2’1, and another that adds a 

new subclass 5’2 of class T2. These are certainly 

non-conflicting extensions. Suppose, however, that 

code in Sr assumes certain semantics for method m 

of T2, but that 5’2 overrides m with a method that 

has quite different semantics, as is allowed in many 

object-oriented languages. Since instances of Sz are 

permissible wherever instances of T2 are expected, 

Sr might end up executing m on an instance of S2, 

with disastrous results. 

This particular problem can be circumvented by 

an approach, possibly enforced by formal specifica- 

tion and checking or by a construct such as inner 

in Beta [26], that requires an override method to 

be a true “semantic extension” of the method it is 

overriding. Even more subtle problems can occur, 

32 



however. Suppose that code in both Sr and 5’2 set 

a particular instance variable to a value that is ac- 

ceptable in terms of its type. The value set by Sr 

might disrupt subsequent operation of S2 methods, 

and vice versa. Even detailed invariants associated 

with instance variables will not necessarily trap all 

such problems. 

These examples are abstract. Berlin described a 

real project in which various problems were experi- 

enced in integrating several object-oriented subsys- 

tems, and identified several dimensions of concern 

PI. 
Interference among extensions can thus cause 

errors, but it can also be an important means 

for the extensions to cooperate. One therefore 

needs conditions different from non-conflict and 

non-interference to ensure that separate extensions 

will “work correctly together” when merged. We 

refer to extensions that have this ill-defined prop- 

erty as semantically compatible. Definition and 

exploration of semantic compatibility remain im- 

portant areas for future research, discussed in sec- 

tion 7. 

3.6 Ensuring Absence of Conflict 

Knowing that extensions are non-conflicting is im- 

portant, even if semantic compatibility is not guar- 

anteed: the extensions can be merged in a simple, 

well-defined manner without any new code being 

overridden, as a first step towards full integration. 

If hierarchy extension, “D”, is commutative, then 

all extensions are automatically non-conflicting. 

This is a powerful argument for using commuta- 

tive extension operators. The definitions given ear- 

lier imply, unfortunately, that “D” is not commuta- 

tive: neither class combination, “$“, nor extension 

of superclass functions as defined is commutative. 

Alternative hierarchy extension operators are dis- 

cussed in section 7. 

If “D” is not commutative, the nature of specific 

extensions determines whether or not they conflict. 

We introduce a class of extensions, called parti- 
tioned extensions, that are guaranteed not to con- 

flict . 

The key intuition behind partitioned extensions 

is that extensions are accomplished by adding new 

code fragments rather than by changing existing 

code fragments (extension-by-addition), and that 

the new fragments are added in a new “space” so 

that fragments added by different extensions do not 

conflict. 

Subclassing leads to partitioned extensions. If 

naming conventions or automatic renaming ensure 

that no two extensions add subclasses of the same 

name, the extensions cannot conflict: they are ef- 

fectively in different name spaces. Similarly, adding 

methods with new selectors to existing classes leads 

to partitioned extensions. 

Other extensions to existing classes usually can- 

not be accomplished as partitioned extensions, 

however. For example, enhancing an existing 

method to handle a new case involves changing 

the method itself. If two separate extensions make 

such changes to deal with two, separate, new cases, 

the changes conflict. In our work on extension-by- 

addition [16] we have developed three mechanisms 

that extend the kinds of changes that can be made 

as partitioned extensions: 

l Subdivisions [18]. An operation can be de- 

clared to be subdivided on criteria other than 

the class of the object to which it is applied. 

Different methods can then be provided for 

the same class for each different value of the 

criteria. This is related to multi-methods in 

LOOPS and CLOS [3, 21, but extended to in- 

clude discrimination based on non-parameter 

variables, and on values rather than types. 

Adding a new criterion, a new criterion value, 

or a method for a new criterion value is a par- 

titioned extension; the new criterion or crite- 

rion value effectively defines a separate space 

for the methods. Enhancing a method to han- 

dle a new case can be accomplished as a parti- 

tioned extension by adding a new subdivision 

criterion value (of an existing or new subdi- 

vision criterion) to characterize the new case, 

and providing a new method for that specific 

case. 

33 



l Structure-bound messages [20]. A message 

type can be declared with a default routing. A 

structure-bound message sent to an object be- 

gins at that object and then propagates based 

on the default routing. “Interested” objects 

it encounters can explicitly handle it and/or 

reroute it. “Uninterested” objects need have 

no knowledge of it at all; it simply continues, 

following the default routing. Adding a new 

message type, or an override routing or han- 

dler for a new message type is a partitioned 

extension. The new message type effectively 

defines a separate space in which the additions 

take place. 

l Our approach to instance variable accesses 

ensures that method code, even compiled 

method code, is independent of details of ob- 

ject layout [21]. This permits association of 

new instance variables with a class as a parti- 

tioned extension. 

In our development of the RPDE3 environment, 

many useful enhancements were be made as sepa- 

rately developed, partitioned extensions, and they 

were found to integrate easily and effectively [29]. 

Mechanisms such as those described above serve 

two important purposes. Firstly, they reduce the 

granularity of the code fragments needed to ex- 

press extensions. For example, a specific subdi- 

vision of a method or a single instance variable 

declaration can appear in an extension hierarchy, 

without the need to copy, change and override the 

existing method or class definition. Secondly, they 

increase the number of extensions that can be ac- 

complished as partitioned extensions. Mechanisms 

that do this are greatly to be encouraged because 

they increase the range of enhancements that can 

be accomplished with extensions that are guaran- 

teed not to conflict. The syntax-directed program 

modularization feature of Beta [25] is interesting in 

this regard. It allows code fragments of arbitrarily 

fine granularity, determined by the programmer, 

to be treated as modules. This reduces the granu- 

larity of the fragments used to express extensions, 

but it does not lead to partitioned extensions be- 

cause the fragments are not in new spaces; for an 

isolated fragment in an extension hierarchy to be 

useful, there must already be a reference to it in 

the base hierarchy. Extensions that involve over- 

riding, or supplying definitions of symbols declared 

in the base hierarchy, cannot be guaranteed not to 

conflict. 

It is worth noting that the integration achieved 

by combining partitioned extensions is loose. One 

is collecting together disjoint sets of code fragments 

that do not interfere with one another, but gener- 

ally do not cooperate with one another either. The 

integrated system will include the functionality of 

each of the extensions separately. The extensions 

often complement one another other, however. For 

example, in RPDE3 we integrated a structured pro- 

gram editor and support for hypertext links among 

objects, and obtained, without further effort, hy- 

pertext functionality within the editor. Once the 

integration is complete, one can write additional 

code fragments explicitly designed to exploit the 

presence of both extensions. 

3.7 Replacement of a Base Hierarchy 

Thus far we have considered building extensions 

upon an existing base hierarchy. Another prob- 

lem that arises is replacement of the base hierar- 

chy upon which an existing extension is built. This 

occurs primarily when a new release is obtained, ei- 

ther of an object-oriented system or library, or of 

some object-oriented application that one has ex- 

tended. An example was shown in fig. 6. 

Because of the properties of hierarchy extension 

discussed above, the following simple case covers 

all situations. Consider a base hierarchy Ho and an 

extension hierarchy HI, and assume that H1 D Ho is 

a correctly working application. We wish to replace 

Ho with a new base hierarchy, HO’, and have the 

updated application HI D Ho’ continue to work. 

Suppose that the new base hierarchy was built 

as an extension of the original one: 

Ho’ = H, D Ho 

This might at first seem unlikely, since most new 

releases involve bug fixes and deletion of code, as 

34 



well as enhancements. However, bug fixes and dele- 

tion of code within methods can be realized as ex- 

tensions that supply replacements for the methods 

concerned. Deletion of entire methods or classes 

cannot be realized as extensions as currently de- 

fined, but we believe that the definition could easily 

be extended to accommodate them. This remains 

a topic for future research. 

Under the assumption that 

Ho’= H,DHo 

the base extension He and the application exten- 

sion HI are parallel extensions, so we can apply the 

reasoning of the previous sections to them. If they 

are non-conflicting extensions, then the merged hi- 

erarchy 

(H~oH,)DHo = HlbH,bHo 

is well defined, and contains all the extensions 

made both in the new release of the base and in the 

original application. If they are semantically com- 

patible extensions, then the application will work 

correctly upon the new base hierarchy. 

4 System Building with Hierar- 

chy Combination 

The use of hierarchy combination leads to a new 

approach to system building, which involves two 

levels. At the higher level, existing base and exten- 

sion hierarchies are combined using the extension 

and merge operators. The extensions are kept in 

a library, and the environment provides assistance 

with locating suitable extensions and checking that 

their combination is valid. This differs from tra- 

ditional reuse situations in that one is composing 

sparse inheritance hierarchies that contain exten- 

sions to a variety of classes, rather than composing 

components that consist of distinct classes. 

If no suitable extension exists in the library, one 

drops to the lower level: that of writing an indi- 

vidual extension. The goal here should be to write 

a new extension that can be added to the library, 

rather than a piece of special-purpose code that is 

of use only to the application at hand. Writing an 

extension is object-oriented programming, with the 

standard possibilities for reuse. 

5 Implementation 

Hierarchy combination can be implemented di- 

rectly by language compilers or interpreters, by 

having them perform method resolution according 

to inheritance rules appropriate for a combination 

of hierarchies. It can also be used as the formal 

model specifying the semantics to be realized by 

change managers: the change managers perform 

the combination and present the compiler or inter- 

preter with the single, combined hierarchy. We are 

currently building an implementation of hierarchy 

combination in the context of object-oriented tool 

integration [15]. 

Implementations of hierarchy combination based 

on change managers or based directly on most cur- 

rent compilers would require extensive compilation 

of the combined hierarchy. It is, however, possible 

to produce implementations in which the hierar- 

chies involved in combinations (including method 

code) need not be available in their source form. 

This permits systems that are shipped object-code- 

only to be extensible nonetheless. The following are 

requirements: 

Compiled dispatching information (the map- 

ping from selectors and classes to methods) 

must be separated from compiled method 

code, and must be in a form that is suitable 

for combination. If this form is not suitable 

for use at runtime, there can also be an op- 

timized form, but the unoptimized form must 

be retained, or be capable of reconstruction. 

Similarly, the compiled form of the hierar- 

chy must contain information that controls the 

creation of objects in a form that can be com- 

bined. This is necessary to support combi- 

nation of extensions that define new instance 

variables. 

Compiled method code must be independent 

35 



of the offsets of instance variables. This is nec- 

essary so that multiple extensions that define 

new instance variables can be combined with- 

out the need to recompile the methods that 

operate on those instance variables. This is- 

sue, and our approach to dealing with it, are 

discussed elsewhere [21]. 

l Similarly, selectors must be encoded in the 

compiled method code in a way that is not de- 

pendent on a particular hierarchy, so that they 

remain valid in combined hierarchies. One ap- 

proach is to use symbols derived from the se- 

lector names, possibly qualified by hierarchy 

name, and resolved by a linker after hierarchy 

combination. 

Combination of compiled hierarchies then oper- 

ates by combining the dispatching and instance- 

creation information according to the semantics of 

the combination operators, and linking this with 

the methods from all the combined hierarchies. 

Persistent objects impose the additional require- 

ment that existing instances be upgraded to include 

newly-defined instance variables, appropriately ini- 

tialized. Our approach to this issue to to provide 

an upgrade protocol in the persistent store that de- 

tects outdated objects when they are brought into 

memory, creates space for the extra instance vari- 

ables, initializes them to default values, and then 

calls “upgrade” methods on them, if such methods 

exist, to allow for programmer-specified initializa- 

tion [21]. 

6 Alternative Approaches to 
Extension 

The two most common approaches to extension in 

object-oriented languages are subclassing and code 

modification. 

Using subclassing, an extension is accomplished 

by adding a new class, based upon some existing 

class(es) but having extended behavior. Subclass- 

ing is very much in the spirit of hierarchy combi- 

nation: it is a restricted form of hierarchy exten- 

sion in which all extensions consist of adding new 

classes. It does not support extension of existing 

classes, and so is not suitable when extended be- 

havior must be exhibited by objects that already 

exist or by objects that are created by code that 

already exists. 

It is possible to extend an existing class by 

adding a new class as its superclass. This involves 

more than merely adding the new class, however. 

It changes the structure of the inheritance hierar- 

chy at an internal node, a type of change that is 

usually poorly supported by object-oriented sys- 

tems. It also requires editing of the original class 

to reflect the new superclass, and probably also to 

remove some of the methods or to move them to 

the new superclass. 

For languages, such as Smalltalk [13], that re- 

quire all methods for a class to be packaged into 

a single class description, all changes to an exist- 

ing class involve modifying the class description. 

Change managers have been developed to alleviate 

the primary problem with this approach: the fact 

that changes become mingled with the base sys- 

tem and with one another. An early and excellent 

example is PIE [14]. It represented Smalltalk pro- 

grams as networks of objects that could be edited. 

Changes were always made in a new layer. Lay- 

ers could be saved, and later installed either by the 

same user or any other with a compatible base sys- 

tem. A sequence of layers, called a context, could 

be installed, with later layers dominating earlier 

ones. PIE provided interfaces for examining mul- 

tiple contexts and integrating their changes. The 

layers and contexts thus served to identify and iso- 

late changes, and to facilitate their distribution. 

A number of change managers for Smalltalk have 

been developed since PIE, such as the Smalltalk- 

80 project mechanism with associated change-set 

and change-management browsers [12], the version 

handler described by Putz [30], and Orwell [33]. 

Some object-oriented languages, such as Flavors 

[28] and CLOS [2], do not require all methods for a 

class to be packaged into a single class description. 

An extension that can be written as a collection 

of method definitions for a variety of classes can be 

packaged into a file for distribution. This approach 



thus supports separation of extensions consisting of 

new or changed methods. It cannot support sepa- 

ration of extensions involving addition of instance 

variables or changes to the superclass structure, 

however. 

System building in C++ [ll] is usually done by 

building an application from scratch, probably us- 

ing and specializing classes in a library. Subclass- 

ing is adequate in this context, because there are 

no existing references to classes and no existing in- 

stances. However, if such applications are later to 

be enhanced, or to be used as bases for new appli- 

cations, subclassing becomes inadequate. 

The Beta language supports patterns that can 

consist of one or more classes, and that can be 

nested [26, 271. A hierarchy can be thought of 

as such a pattern, with individual classes nested 

within it. One module can inherit from another, 

extending those classes it wishes to change. Cook 

proposed a similar approach, which he called “hi- 

erarchy inheritance” [8]. Bracha touched on this 

issue also, but did not support it fully in Jigsaw 

because of a desire to do all type checking stat- 

ically [4]. Support for hierarchy combination in 

these languages has not been explored in detail, 

and where it is mentioned the emphasis is on deriv- 

ing one hierarchy from another, as in Liberman’s 

ColoredShape example, rather than on extending 

the behavior of existing classes and instances. 

7 Future Research 

Our approach to extension raises a number of in- 

teresting and important areas of future research, 

including: 

l Techniques for reducing conflicts between par- 

allel extensions, including commutative exten- 

sion operators. 

l Formal definition of the notion of semantic 

compatibility. 

l Identification of classes of extensions or exten- 

sion mechanisms that will result in semantic 

compatibility, or at least that are likely to do 

so. 

Formalizing the requirements that an exten- 

sion places on its base. 

Each of these is discussed briefly in this section. 

Parallel extensions that conflict cannot be in- 

tegrated simply. It is therefore important to 

find techniques for resolving or reducing conflicts. 

Yang, Horwitz and Reps use of dependency analy- 

sis as an aid to automatic integration [34] is a con- 

flict resolution approach. Conflicting procedures 

can be integrated automatically provided the al- 

gorithm can show that they do not interfere in 

their use of variables. Mechanisms such as subdi- 

vision and structure-bound messages described in 

section 3.4 are conflict reduction techniques. They 

enlarge the set of enhancements that can be accom- 

plished by means of partitioned extensions, which 

are necessarily non-conflicting. Discovery of other 

mechanisms with this property, or of other classes 

of extensions that are necessarily non-conflicting, 

would enlarge this set further. 

An especially powerful conflict reduction ap- 

proach is to use commutative extension operators. 

Indeed, as noted earlier, this eliminates conflicts 

entirely. Two changes must be made to achieve 

this: both class combination, “$“, and superclass 

function extension must become commutative. Es- 

sentially, the way to do this is to eliminate over- 

riding and replace it with commutative combina- 

tion. For example, a method could consist of a 

set of fragments, all of which are to be executed. 

Combination of such methods would then be the 

union of the sets. To ensure commutativity, the 

execution order of the fragments must not be dic- 

tated by the order of the operands. This approach 

was followed in Meld [23], where methods consist of 

equations and rules that are evaluated in an order 

dictated by inherent dependencies, and in OOLP 

[lo], where all methods provided by superclasses 

are evaluated in arbitrary order. It is not clear 

that this approach can work effectively if methods 

are sequential code. In general, the challenge is to 

find commutative combination operators that per- 

37 



mit effective and natural writing of methods. 

Though lack of conflicts is important, the prop- 

erty that really matters in integrating parallel ex- 

tensions is semantic compatibility: the property 

that the extensions will “work correctly together.” 

Clearly this needs formal definition. Yang, Hor- 

witz and Reps work [34] addresses this in-the- 

small, essentially defining semantic compatibility 

to mean non-interference in use of variables. On 

a larger scale, however, separate extensions might 

well modify the same variables, causing the inte- 

gration to behave differently from either of the ex- 

tensions separately. Such behavior is often exactly 

what is desired. It is necessary to find a way to 

express the “correct” behavior even in such cases. 

We expect it to involve specification of required se- 

mantics, not just analysis of existing semantics. 

Even when a definition of semantic compatibil- 

ity is found, it will probably be more useful from 

a practical point of view to introduce the notion 

of syntactic compatibility: a property that can be 

checked easily and that implies, or at least is likely 

to imply, semantic compatibility. For example, par- 

titioned extensions are weakly syntactically com- 

patible: if they are written carefully using modern 

notions of encapsulation, there is reasonable like- 

lihood that they will be semantically compatible. 

This assertion is borne out by experience [29], but 

there is no guarantee. Determining how to increase 

the likelihood of semantic compatibility, even if it 

cannot be assured, is important. 

Characterizing the requirements that an exten- 

sion places on its base is also important. Even 

when one writes an extension with a particular base 

in mind, one wishes to have confidence that the 

extension enhances the base and does not disrupt 

it. This issue is similar to semantic compatibility 

among parallel extensions, discussed above. When 

one selects an extension from a library and wishes 

to apply it to a base other than that for which it 

was written, one also has to ensure that the base 

provides what the extension relies upon. Dealing 

with this issue involves formalizing what an exten- 

sion requires of its base, and being able to check 

these requirements against specific bases. A related 

problem is that of finding in the library extensions 

that are appropriate to one’s base and one’s needs. 

8 Summary and Conclusions 

We have introduced hierarchy combination as a 

new approach to object-oriented system building. 

Instead of building systems by editing existing sys- 

tems or by selecting and specializing classes from 

a library, one builds systems by writing separate, 

sparse extension hierarchies that enhance an exist- 

ing base. The extension hierarchies and the base 

hierarchy are combined to form the complete sys- 

tem, using extension and merge operators. One can 

build up a library of extensions, and then build sys- 

tems by selecting extensions from the library and 

combining them. 

The advantages of the approach include: 

It supports extension of existing classes and 

changes of the superclass structure, as well as 

addition of new classes. Extension of exist- 

ing classes includes introducing new instance 

variables and methods, and overriding existing 

methods. 

It keeps extensions well separated, facilitating 

distribution of extensions and selection of de- 

sired extensions from a library. 

In the absence of conflicts, it supports inte- 

gration of separately developed extensions and 

upgrading of the base hierarchy. 

It is a linguistic approach with precise but 

easily-understood semantics. This aids pro- 

grammer understanding and also provides a 

framework within which to investigate seman- 

tic issues such as semantic compatibility and 

extensions that preserve existing functionality. 

It depends only on a few standard properties 

of inheritance hierarchies, such as class names, 

descriptions and superclasses, and is orthog- 

onal to such details as inheritance semantics 

or class or method combination semantics. It 

38 



is therefore applicable to object-oriented lan- 

guages in general. 

l Implementations can support combination of 

hierarchies whose source form is not available. 

Informal use of hierarchy combination in the de- 

velopment of RPDE3 has shown that significant ex- 

tensions can be written separately, and in a way 

that makes them easy to integrate [29]. In our 

continuing work on the CLORIS object-oriented 

database 1191, the PlusPlus object definition en- 

vironment [ 171 and object-oriented tool integration 

services [15], we plan to provide language and en- 

vironment support for hierarchy combination as a 

vehicle for further exploration and validation. 

References 

PI 

PI 

[31 

Bl 

[51 

PI 

Lucy Berlin. When objects collide: Experiences 
with reusing multiple class hierarchies. In Con- 
ference on Object-Oriented Programming Systems, 
Languages and Applications, pages 181-193, Ot- 

tawa, October 1990. ACM. 

D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. 
Keene, G. Kiczales, and D. A. Moon. Common Lisp 

Object System specification X3J13. SIGPLAN No- 
tices, 23, September 1988. 

Daniel Bobrow, Kenneth Kahn, Gregor Kicza- 
les, Larry Masinter, Mark Stefik, and Frank Zdy- 
bel. CommonLoops: Merging Lisp and object- 
oriented programming. In Conference on Object- 
Oriented Programming Systems, Languages and 
Applications, pages 17-29, Portland, September 

1986. ACM. 

Gilad Bracha. The Programming Language Jigsaw: 
Mixins, Modularity and Multiple Inheritance. PhD 

thesis, University of Utah, 1992. 

Gilad Bracha and William Cook. Mixin-based in- 
heritance. In Conference on Object-Oriented PTO- 
gramming Systems, Languages and Applications, 
pages 303-311, Ottawa, October 1990. ACM. 

Luca Cardelli and Peter Wegner. On under- 
standing types, data abstractions and polymor- 

phism. Computing Surveys, 17(4):471-522, Decem- 

ber 1985. 

[71 

PI 

PI 

[101 

WI 

PI 

[I31 

PI 

[I51 

P61 

[I71 

WI 

Steve Cook. Panel P2: Varieties of inheritance. In 
OOPSLA 87 Addendum to the Proceedings, pages 
35-40, Florida, October 1987. ACM. 

William Cook. A Denotational Semantics of In- 
heritance. PhD thesis, Brown Univerisity, 1989. 

William Cook and Jens Palsberg. A denotational 
semantics of inheritance and its correctness. In 
Conference on Object-Otiented Programming Sys- 
tems, Languages and Applications, pages 433-443, 
New Orleans, October 1989. ACM. 

Mukesh Dalai and Dipayan Gangopadhyay. OOLP: 
A translation approach to object-oriented logic 
programming. In Proceedings of the First In- 
teTnationa1 Conference on Deductive and Object- 
Oriented Databases (DOOD89), pages 593-606. 
North-Holland Physics Publishing, December 

1989. 

Margaret A. Ellis and Bjarne Stroustrup. The An- 
notated C++ Reference Manual. Addison-Wesley, 
1990. 

Adele Goldberg. Smalltalk-80: The Interactive 
Programming Environment. Addison-Wesley, 1984. 
Chapters 4 and 23. 

Adele Goldberg and David Robson. Smalltalk-80: 
The Language and its Implementation. Addison- 

Wesley, 1983. 

I. P. Goldstein and D. G. Bobrow. A layered ap- 

proach to software design. Technical Report CSL- 
80-5, Xerox Palo Alto Research Center, December 

1980. 

William Harrison, Mansour Kavianpour, and 
Harold Ossher. Integrating coarse-grained and fine- 
grained tool integration. In Proceedings of the 
Fifth International Workshop on Computer-Aided 
Software Engineering (CASE ‘92), Montreal, July 
1992. To appear. 

William Harrison and Harold Ossher. Extension- 
by-addition: Building extensible software. Re- 

search Report RC 16127, IBM Thomas J. Watson 

Research Center, Yorktown Heights, NY, Septem- 
ber 1990. 

William Harrison and Harold Ossher. The Plus- 

Plus object definition environment. Research Re- 
port RC 16283, IBM Thomas J. Watson Research 
Center, Yorktown Heights, NY, September 1990. 

William Harrison and Harold Ossher. Subdivided 

procedures: A language extension supporting ex- 
tensible programming. In Proceedings of the 1990 

39 



Internadional Conference on Computer Languages, 

pages 190-197, New Orleans, March 1990. IEEE. 

[19] William Harrison and Harold Ossher. CLORIS: A 
clustered object-relational information store. Re- 
search Report RC 16723, IBM Thomas J. Wat- 
son Research Center, Yorktown Heights, NY, April 
1991. 

[20] William Harrison and Harold Ossher. Structure- 
bound messages: Separating navigation from pro- 
cessing. Research Report RC 15539 Revised, IBM 
Thomas J. Watson Research Center, Yorktown 

Heights, NY, October 1991. 

[21] William Harrison and Harold Ossher. Attaching in- 
stance variables to method realizations instead of 
classes. In Proceedings of the 1992 InternaGonaI 
Conference on Compuler Languages, pages 291- 

299, Oakland, April 1992. IEEE. 

[22] Susan Horwitz, Jan Prins, and Thomas Reps. Inte- 
grating noninterfering versions of programs. l+ans- 
actions on Programming Languages and Systems, 
11(3):345-387, July 1989. 

[23] Gail E. Kaiser and David Garlan. MELDing 
dataflow and object-oriented programming. In 
Conference on Object-Oriented Programming Sys- 

tems, Languages and Applications, pages 254-267, 
Orlando, October 1987. ACM. 

[24] Samuel Kamin. Inheritance in Smalltalk-80: A de- 
notational definition. In Conference Record of the 
Fifteenth Annual Symposium on Principles of Pro- 
gramming Languages, pages 80-87, San Diego, Jan- 
uary 1984. ACM. 

[25] Bent Bruun Kristensen, Ole Lehrmann Mad- 

sen, Birger Mbller-Pedersen, and Kristen Ny- 
gaard. Syntax directed program modularization. 
In P. Degano and E. Sandewall, editors, I&e- 
grated Interactive Computing Sysi!ems, pages 207- 
219. North-Holland, 1983. 

[26] Bent Bruun Kriatensen, Ole Lehrmann Madsen, 

Birger Mtiller-Pedersen, and Kristen Nygaard. The 
BETA porgramming langauage. In Bruce Shriver 

and Peter Wegner, editors, Research Direclions in 
Objec&Oriented Programming, pages 7-48. MIT 
Press, 1987. 

[27] Ole Lehrmann Madsen and Birger Mdler- 
Pedersen. Virtual classes: A powerful mechanism 

in object-oriented programming. In Conference on 
Object-Oriented Programming Systems, Languages 
and Applications, pages 397-406, New Orleans, Oc- 
tober 1989. ACM. 

[28] David A. Moon. Object-oriented programming 

with Flavors. In Conference on Object-Oriented 
Programming Systems, Languages and Applica- 
tions, pages l-8, Portland, September 1986. ACM. 

[29] Harold Ossher and William Harrison. Support 
for change in RPDE3. In Proceedings of the 
Fourth Symposium on Software Development Envi- 
ronments (SDEd), pages 218-228, Irvine, Decem- 
ber 1990. ACM SIGSOFT. 

[30] Steve Putz. Managing the evolution of Smalltalk- 
80 systems. In Glenn Kramer, editor, Smalltalk-80: 
Bita of Hicrlory, Words of Advice, pages 273-286. 

Addison-Wesley, 1983. 

[31] Uday S. Reddy. Objects as closures: Abstract ae- 
mantics of object-oriented languages. In Confer- 
ence on Lisp and Funciional Programming, pages 
289-297. ACM, 1988. 

[32] Craig Schaffert, Topher Cooper, Bruce Bullis, 
Mike Killian, and Carrie Wilpolt. An introduc- 
tion to Trellis/Owl. In Conference on Object- 
Oriented Programming Systems, Languages and 
Applications, pages 9-16, Portland, September 

1986. ACM. 

[33] Dave Thomas and Kent Johnson. Orwell: A con- 
figuration management system for team program- 
ming. In Conference on Object-Oriented Program- 
ming Systems, Languages and Applications, pages 
135-141, San Diego, September 1988. ACM. 

[34] Wuu Yang, Susan Horwitz, and Thomas Reps. A 

program integration algorithm that accommodates 
semantics-preserving transformations. In Proceed- 

ings of the Fourth Symposium on Software De- 
velopment Environments (SDE.j), pages 133-143, 
Irvine, December 1990. ACM SIGSOFT. 

40 


