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Abstract 

Over the last several years, much interesting work 
has been done in modelling object-oriented pro- 
gramming languages in terms of extensions of the 
bounded second-order lambda calculus, Fr. Un- 
fortunately, it has recently been shown by Pierce 
([Pie92]) that type checking F< is undecidable. 
Moreover, he showed that the undecidability arises 
in t,he seemingly simpler problem of determining 
whether one type is a subtype of another. 

In [Bru93a, Bru93b], the fist author introduced 
a statically-typed, functional, object-oriented pro- 
gramming language, TOOPL, which supports 
classes, objects, methods, instance variables, sub- 
types, and inheritance. The semantics of TOOPL 
is based on F<, so the question arises whether type 
checking in this language is decidable. 

In this paper we show that type checking for 
TOOPLE, a minor variant of TOOPL (Typed 
Object-Oriented Programming Language), is de- 
cidable. The proof proceeds by showing that sub- 
typing is decidable, that all terms of TOOPLE have 
minimum types (which are in fact computable), 
and then using these two results to show that type 
checking is decidable. Our algorithm fails to be 
polynomial in the size of the term because the size 
of its type can be exponential in the size of the 
term. Nevertheless, it performs well in practice. 
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1 Introduction 

Beginning with the influential paper, [CW85], there 

has been a great deal of interest in using various ex- 

tensions of Fl, the bounded second-order lambda 

calculus, as a basis for a theoretical understand- 

ing of object-oriented programming languages. Pa- 

pers taking this approach include [Car92, Car89, 

CL91, CM90, CHCSO, CCH+89, CCH089, Mit90, 

Bru92, BL90, BM92, BTCGS91, PT92a, PT92b]. 

Among others, Ghelli ([GheSO]) implemented a 

type checker for .F<, which he initially claimed was 

sound and complete. The soundness was correct, 

but Ghelli and others later discovered that the sub- 

algorithm for determining whether one type was a 

subtype of another diverged on certain inputs. Af- 

ter several researchers attempted to patch the al- 

gorithm, Pierce [Pie921 p roved that the problem of 

determining whether one type was a subtype of an- 

other is undecidable, and hence so is the problem 

of type-checking terms of F< . - 

While it appears that the subtyping algorithm 

performs well in practice (all counter-examples ap- 

pear to be contrived and similar), this negative re- 

sult threw into question the notion of using F< as - 
a foundation for object-oriented programming lan- 

guages. In this paper we show that the type check- 

ing problems of the full I?< do not necessarily have - 
an impact on using that language as a basis for 

understanding the fundamental notions of object- 

oriented progr rimming languages. 

A series of papers, [Bru93a, Bru93b, BCK93], 

introduced and proved properties of TOOPL, a 

statically-typed, functional, object-oriented pro- 

gramming language which supports classes, ob- 
o 1993 ACM O-89791~587-9/93/0009/0029...s1.50 

OOPSLA’93, pp. 29-46 

29 



jects, methods, instance variables, subtypes, and 

inheritance. The language was designed with a 

semantics based on an extension of F<, the so- 

called “F-bounded” second-order lambda calculus 

(see [CHCSO]), with recursively defined types and 

elements. It was presented with a set of axioms and 

rules for subtyping and type checking terms, but no 

algorithm was provided to do the type checking. 

Pierce’s results raised the question as to whether 

there was a complete algorithm for type checking 

in the language. The language TOOPL does not 

directly support polymorphic functions or higher- 

order types, so it is not clear that Pierce’s re- 

sults apply. On the other hand, the semantics 

of TOOPL types are specified as fixed points of 

bounded functions from types to types, and the 

semantics of class terms, for instance, are pre- 

sented as higher-order terms of an extension of 

the bounded second-order lambda calculus. The 

strength of this underlying language, involving ex- 

tensions to F<, raised significant doubts about the 

existence of a type-checking algorithm for TOOPL. 

The approach taken in [CG92] to developing an 

algorithm to type check a language with subtyp- 

ing was to design an algorithm for computing the 

minimum type of a term and an algorithm for de- 

termining whether one type is a subtype of another. 

One can then use these two algorithms in order to 

determine if a term, M, has type r as follows. Find 

the minimmn type, ~0, of M, and then determine 

if re is a subtype of r. If so, the subsumption rule 

can be used to show that M has type r. If r-0 is 

not a subtype of r then r cannot be a type of M 

by the definition of minimum type. 

This approach failed for F< since there is no al- 

gorithm to determine if one-type is a subtype of 

another. The subtype checking (semi-)algorithm 

presented in [CG92] need only converge when the 

hrst type is a subtype of the other. If not, the al- 

gorithm may diverge. In this paper, we are able to 

show that a similar algorithm for TOOPL always 

halts. While there are terms of TOOPL which 

do not have minimum types, we work here with 

a minor variant, TOOPLE (TOOPL - Enhanced), 

which results from adding extra type information 

to class terms. We show that all terms of TOOPLE 

have minimum types, allowing us to carry through 

the program outlined above for type checking terms 

of TOOPLE. 

While we expected some difficulties in finding 

minimum types for terms involving message send- 

ing, we discovered that computing minimum types 

for conditional expressions was unexpectedly com- 

plex. One must be able to compute least upper 

bounds of types in order to determine the mini- 

mum type of a conditional term from the types of 

its “true” and “false” branches. However, the in- 

teraction of this with the implicit recursion in ob- 

jects and the contravariance of subtyping in func- 

tion types forced us to define and compute a gen- 

eralized form of least upper bounds and greatest 

lower bounds that were monotonic with respect to 

one collection of variables and anti-monotonic with 

respect to another. We indicate in Section 4 where 

these complications arise. 

We had originally hoped to develop a polyno- 

mial time algorithm for type checking. However, 

as shown in section 4, the minimal type of a term 

may be exponential in the size of the term. As a 

result any algorithm which constructs (infers) mm- 

imal types cannot be polynomial in the size of the 

term. Nevertheless, the bad examples are quite 

contrived, and are extremely unlikely to occur in 

practice. Thus we expect this type-checking algo- 

rithm to perform well in practice. 

For simplicity, the main portion of the paper 

deals only with a restriction of TOOPLE which 

does not involve instance variables. We indicate in 

Section 5 where some of the complexities arise with 

instance variables. 

The paper is organized as follows. In Section 2 

we present a brief description of TOOPLE. In Sec- 

tion 3 we describe the subtyping algorithm for this 

restricted language. In Section 4 we describe the 

algorithms to find the minimum type of a term and 

type check it. In Section 5 we describe briefly some 

of the extra complexities which arise by adding in- 

stance variables. Section 6 contains comparisons of 

our work with those of other researchers. Finally 

in Section 7 we summarize our results, describe the 

current state of our implementation of TOOPLE 

and mention some work in progress on TOOPLE. 
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2 A Brief Introduction to 
TOOPLE 

TOOPLE is a statically-typed, functional, object- 

oriented progr amming language. It provides full 

support for object-oriented features including ob- 

jects, classes, methods, instance variables, dy- 

namic method invocation, subclasses, and sub- 

types. Moreover, TOOPLE provides mechanisms 

to allow the programmer to refer to the current 

object (self), its type (MyType), and the record of 

methods of its superclass (super). A description of 

the fundamental concepts of object-oriented lan- 

guages is given below. It will be followed by an 

introduction to the syntax of TOOPLE. 

An object consists of a collection of instance vari- 

&es, representing the state of the object, and a 

collection of methods, which are routines for ma- 

nipulating the object. When a message is sent to 

an object, the corresponding method of the object 

is executed. CZasses are extensible templates for 

creating objects. In particular, classes contain ini- 

tial values for instance variables and the bodies for 

methods. All objects generated from the same class 

share the same methods, but may contain differ- 

ent values for their instance variables. A subclass 

may be defined from a class by either adding to or 

modifying the methods and instance variables of 

the original class. Restrictions on the modification 

of the types of methods and instance variables in 

subclasses are necessary in order to preserve type 

safety. 

In this conference paper, we defer further discus- 

sion of instance variables except for a few remarks 

in Section 5. The extension of TOOPLE to in- 

clude instance variables is described in more detail 

in [Bru93a, Bru93b]. 

All terms of the language, including both 

classes and objects, have associated types. A 

type is either a variable (from a set, VT*, of 

type variables), a constant (from a set, CT*, of 

type constants), or of the form 0 + r (for 

function types), {ml: rr; . . .; m,: r,} (for record 

types), ObjectType(MyType)r (for object types) or 

CZassType(MyType)~ (for class types). The types, 
r, in object and class types must be record types. 

The pre-terms of TOOPL are given in Figure 

1. In the grammar, B, M, N, e, e;, c, and o all 

represent pre-terms. M and N are intended to sug- 

gest general pre-terms, B a Boolean expression, e 

a record, c a class, and o an object. The m and m; 

are labels, while r is a type. The variable z is from 

a fixed collection of variables Y. 

Most of the pre-terms should be self-explanatory. 

A term of the form 

cZass(seZf : My Type <,,eth ObjectType(MyType)r)e 

represents a class whose method bodies are con- 

tained in the record e with type r. The bound vari- 

able self may be used in method bodies in e to re- 

fer to the object executing the method. The bound 

variable MyType refers to the type of self. Since 

the method may be inherited by subclasses, the 

meaning of MyType at execution time may actu- 

ally correspond to the type of an object generated 

by a subclass of the class being defined. The oc- 

currence of MyType <m&h ObjectType(MyType)r 

in the class term is meant to suggest this fact 

(see below for the definition of srneth). “Update” 

and “extend” terms provide ways of modifying old 

methods or adding new ones to a class to form a 

subclass. Methods not mentioned in the subclass 

definition are inherited from the superclass. 

lf c is a class then new c represents an object 

generated from c. The type-checking rules will 

indicate that if c has type CZassType(MyType)r, 

then new c will have corresponding type 

ObjectType(MyType)r. A term of the form o -+ m 

represents sending the message m to object o. A 

few simple examples of TOOPLE expressions are 

given at the end of this section. 

We say type u is a subtype of r if a value of type 

D can be used in any context in which a value of 

type r is expected. Note that subtyping depends 

only on the type of values, while subclass depends 

upon implementations. Axioms and rules describ- 

ing the subtyping relation for types of TOOPLE 

are given in the Appendix. Most rules should be 

familiar with the possible exception of the subtyp- 

ing rule for object types. This rule arises from the 

fact that object types are defined recursively (in or- 

der for MyType to stand for the type of the object 

in its type definition), and is adopted from a sim- 

ilar rule in [AC901 for subtyping recursive types. 

See [Bru93b] or [Bru93a] for further explanation. 

Recall also that function types are contravariant in 

their domains. 
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M::= x 1 ifBthenMeZseiV 1 fun(v:a)M 1 MN 1 M=N I {mr=er,...,m,=e,} I 

e.mi ) cZass(seZf : My Type srneth ObjectType(MyType)T)e I new c 1 o -+ m I 
update c by(seZf : MyType &,& ObjectType(MyType)r; super){ml = e\} I 
extend c with(seZf : MyType -<,&h ObjectType(MyType)r; super){m,+l = e,+l}. 

Figure 1: Pre-terms of TOOPLE 

There is a separate ordering on object types 

which is related to types obtained by taking sub- 

classes (see [CHCSO]). This ordering is a point- 

wise ordering on method types, and is denoted 

< -m&h. It reflects the changes which may be 

made in constructing subclasses. In particular, if 

ObjectType(MyType)r is the type of an object, o, 

generated from class, c, and ObjectType( MyType)r’ 

is the type of an object generated from a sub- 

class of c, then ObjectType(MyType)T’ &,,&h 

ObjectType(MyType)r. The axioms and rules for 

< -.&h are given in the Appendix. 

The terms of TOOPLE are those pre-terms 

which can be type checked with respect to a col- 

lection, C, of subtyping and inheritance assump- 

tions on types (called a restricted type constraint 

system), and an assignment, E, of types to vari- 

ables. The defmition of restricted type constraint 

system is given in Definition A.1 in the Appendix. 

The restriction on the simple type constraints make 

it easier for us to determine subtypes and to derive 

minimum types for terms. Note that they essen- 

tially forbid forcing a type variable to be a sub- 

type of an object type. We have found no com- 

pelling reasons to allow less restricted constraints, 

and more complex constraints are not introduced 

by our subtyping or type-checking algorithms. 

The type-assignment rules for TOOPLE can be 

found in Figures 4 and 5 in the Appendix. A 

further description of the language and its type- 

assignment rules can be found in [Bru93b] or 

[Bru93a]. We provide a brief description of the 

type-assignment rule for classes here. 

In order to show cZass(seEf : MyType)e has type 

CZassType(MyType)r, it is sticient to show that e 

has type T under the assumption that self has type 

MyType. In this derivation one may not assume 

that MyType = ObjectType(MyType)r, only that 

MyType Sm.& ObjectType(MyType)T. The reason 

for this is that the methods in e may be inherited in 

a subclass (whose type is guaranteed to be srneth 

ObjectType( MyType)T). As a result, we may only 

make this weaker assumption in type-checking. 

In [Bru93a, Bru93b, BCK93] it was shown that 

the type-checking rules for TOOPLE are safe. For 

instance, in the evaluation of a term that type 

checks correctly, an object will never be sent a mes- 

sage that it does not understand. Our goal in this 

paper is to find an algorithm which, given C, E, 

M, and 7, determines if C,E I- M:T. 

The following are simple examples of terms and 

types from TOOPLE. 

Let PointType = ObjectType(MyType){x, y: Int; 

eq: MyType --+ Bool}, the type of objects with z, y, 

and eq methods. The following class will generate 

objects of this type. 

PointClass = cZass(self : MyType &,eth PointType) 

{x = 0, Y = 0, 
eq = fun(p:MyType) ((self + x) = (p + x)) 

@ NseZf + Y) = (P * d)> 

Note that the method eq takes a parameter, p, 

with the same type as serf and compares the re- 

sults of sending messages x and y to p and the re- 

sults of sending the sarne messages to serf. PtObj 
= new PointClass represents a new object of type 

PointType. Thus, if (PtObj -k eq) (0) is to be well- 

typed, o must be of type PointType, since MyType 

will be instantiated to PointType when the mes- 

sage eq is sent to PtObj. (See the type-assignment 

rule (Msg) .) 

Suppose we now wish to modify PointClass by 

adding a color field. Let 

CoZorPointType = ObjectType(MyType){x, y: Int; 

eq: MyType --f Bool; c: COZOTTY~~}. 

Then the class defined by 

CoZorPointCZass = extend PointClass by 

(seZf : MyType <,&, CoZorPointType, super) 

{c = Red} 

will generate objects of that type. ALl of the meth- 

ods of PointClass are inherited unchanged in Col- 



orPointCZass. Notice, however, that if the eq mes- 

sage is sent to an object of type CoZorPointType, 

the parameter for the message must also be of type 

ColorPoint Type, not PointType. This is an impor- 

tant example of how the meaning of My Type may 

change when methods are inherited. 

If we wish to change the method eq so that it now 

also checks the color components of two records, we 

define 

NuCoZorPtCZass = update CoZorPointCZass with 

(self :MyTwe <m&h ColorPoint Type, super) 

j eq = fWkMy Qw) sw=dd 
63 ((self-t= c) = (p -e c)) }. 

Notice that the updated method eq in NuCoZ- 

orPtCZass calls the inherited eq from CoZorPoint- 

Class (using the keyword super) and then checks 

the “c” components for equality. All other meth- 

ods from CoZorPointCZass are inherited unchanged. 

Note as well that both CoIorPointCZass and NuCoZ- 

orPtGZass generate objects of type CoZorPointType. 

The denotational semantics of TOOPLE is writ- 

ten in terms of an extension of F<. For example, 

if p is an assigment of variables to elements of a 

model A of Fs, the semantics of classes are as given 

in Figure 2. 

While this is quite complex, the main point to 

note is that the meaning is defined in terms of 

a function whose parameter ranges over types, t, 

such that [ <A [~]p[t/MyType]. This is a term 

of an extension of F< (this term is in an extension 

because the bound on [ is an expression involv- 

ing I, something not allowed in I’<). Moreover, 

the semantics of class types involve second order 

bounded quantification over types. 

Thus, while the syntax of TOOPLE appears to 

have little to do with F<, the denotational seman- 

tics depends heavily upon it. This raised con- 

cerns about the relevance of Pierce’s undecidabil- 

ity result to TOOPLE. The question is whether 

the dependence is great enough for type-checking 

of TOOPLE to be undecidable. 

3 Subtype Checking 

In this section we show that for a restricted type 

constraint system, C, and types, c and r, C l-a 5 r 

is decidable. Our proof has two main steps. First, 

we introduce a new subtype system that differs 

from the original in that it has a restricted form of 

the transitivity rule. We prove that the new system 

is equivalent to the original one in the sense that a 

subtyping judgement is derivable in the old system 

if and only if it is derivable in the new one. Once 

we specify the application of the (SRefE) axiom in 

the new system, we obtain a canonical-form proof 

tree. We then specify a deterministic strategy for 

applying the new rules and prove that the strategy 

constitutes an algorithm for subtype checking - if 

a subtyping judgement is derivable, it can be de- 

rived using this strategy and the strategy halts on 

all inputs. This is shown by defining a decreasing 

metric on the size of types. 

The proof of decidability outlined above follows 

the general approach presented in [CG92] for sub- 

type checking in F<. The key difference is that 

their strategy gives only a semi-algorithm: for cer- 

tain non-theorems their semi-algorithm enters an 

infinite loop. 

3.1 A Canonical-Form Subtype System 

We fnst show that any judgement derivable in the 

subtype system of the Appendix is also derivable 

in a system in which the (STrans) rule is replaced 

by the following specialization of it: 

(STrans’) 
Ctt<a,Cta~r 

Ctt<T 

where t is a type variable or constant. 

Let I-T denote provability in the restricted sys- 

tem. The connection between the two systems is 

given by the following lemma. 

Lemma 3.1 For restricted type constraint system, 

C, and type expressions, g and r, C l-a 5 r u 

c tT d 5 7. 

The proof of Lemma 3.1 requires the following 

lemma which guarantees that comparable types 

have the same shape. 

Lemma 3.2 Let C be a restricted type constraint 

system, and let u and r be type expressions. If 
C t-u 5 r, then u and r are structurally similar at 

the top Zevel. 

Proof. (Of Lemma 3.1.) 
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[C, E t- class(self : MyType)e: Cl ~ssTwe(MyType)~]p = At Id bI~WWwe1.~~ E A(. 
IF; MyType Smeth ObjectType(MyType)r, E U {self : MyType} I- e: T]P[[/MyType, o/self ] 

Figure 2: Denotational semantics of classes 

e Trivial. 

* We show by cases on type expressions that any 

fragment of a proof tree with (STrans) at its root 

can be rewritten so that the (SZ’rans) rule has been 

moved leafward through (S-t), (SRec) and (SObj) 

nodes. In light of [Ghe92], it is important that the 

rewrite rules preserve the leaves, the root and the 

height of the proof tree fragment. 

We first simplify proof trees in which (STrans) 

appears at the root and where either antecedent is 

(SRefl) by eliminating the ( STruns) and the (SRefl) 

nodes. By Lemma 3.2 and by induction on the 

height of proof trees, a proof tree with (SZ’rans) at 

the root, a structured rule in one antecedent and 

(STrans) in the other can be rewritten so that the 

same structured rule appears in both antecedents. 

The rewrite rules for proofs in which both an- 

tecedents are either (S-P) and (SRec) are straight- 

forward and omitted here. The rewrite for (SObj) 

requires the following technical lemma. 

Lemma 3.3 If C; t 5 tl is a restricted type con- 

straint system, then if 

C; t 5 tl t-@/MyType] 12 n[tl/MyType] 

is provable, then so is 

C t-$l/M~Type] I n[tl/MyType]. 

Moreover, the height of the proof tree of the second 

type assignment is no greater than that of the first. 

In Figure 3, we show the transformation for 

(SObj) nodes. Note that the last transformation in 

the Figure involves inserting a direct proof (guar- 

anteed to exist by the above Lemma) for C; tr 5 

t2 I-T[tl/MyType] 5 q[tl/MyType] in the upper 

left-most part of the proof tree in place of one which 

used the Lemma and weakening. This new proof 

has height no greater than the original. 

Since C contains only simple type constraints, 

and since we have now shown that (STrans) can be 

moved leafward in a subtyping rule through any 

structured rule, it follows that all (STrans) nodes 
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in the resulting tree are of the form given in rule 

(STrans’) at the beginning of this section. n 

The only remaining degree of freedom is the ap- 

plication of the (SRefl) axiom for inclusions of the 

form u 5 (T. The (SRejl) axiom is obviously re- 

quired for proving such inclusions between type 

constants and variables. It is also required when 

o = ObjectType(MyType)r and MyType occurs in 

a contravariant position in r. We restrict applica- 

tions of (SRep) to these two cases. Although the 

(SRefE) axiom is also applicable when 0 is a record 

or function type, the following lemma guarantees 

that a (different) proof can always be obtained by 

first destructuring with the (SRec) or (S-t) rules, 

respectively. 

Lemma 3.4 For restricted type constraint system 

C and type expressions u and r, if C l-o < r then 

there exists a proof tree in which the (SRefl) axiom 

is never applied to a record OF function type. 

3.2 An Algorithm for the Canonical- 
Form System 

We now present a deterministic algorithm for trac- 

ing canonical-form proof trees. 

Algorithm S(C,a, r): return true if C k~ CT 2 T 

and false otherwise. 

1. If a = t, where t E VUC, then 

(a) If r = t then the proof is completed using 

(SRefE). Return true. 

(b) Otherwise, if t 5 r’ E C, then use 

(STrans’). Return S(C, r’, r). 

(c) Otherwise, ift < r’ # C then return false. 

2. If u = err --+ ~2, r = rr -t ~2, then use (S-P). 

Return S(C, q, 01) and S(C, ~72, ~2). 

3.H u = {ml:al;...;m,:a,}, 

T= {ml:rl;...; mk: rk}, then use (SRec). Re- 

turn k < n and S(C,al, ~1) and . . . and 

s(c, flk, Tk). 

4. If CT = ObjectType(MyType)a’, then 



c; t 5 t1 h[tlMYTYPel < n[h/MYTYPel 
CkObjectType(MyZ’ype)r < Objectl’ype(MyType)r~ 

c; t1 5 tz h[tllMY5Pel < rz[tZ/MY5pel 

CkObjectType(MyType)rl < ObjectType(MyType)n 

C k~bjectType(MyZ’ype)r < ObjectType(MyType)Q 

(SOW 
(STrans) 

u 
C; t 5 tl ä ~☯t/hWl�we] 5 ~l☯tl/~y~we] 

C t-T[tllWdTwel 5 ~l[tl/M&pel 
C; tl 5 t2 h[tl/MyType] < q[tl/MyType], C; tl 5 t2 h[tl/Mv~bel < r2[tzlMYTYPel 

C; tl < t2 l-~[tl/hfyTwl < T2[t2/MYTYPel 
C kObjectType(MyType)r 5 O&tType(M~‘i”~pe)Tz 

(lemma 3.3) 
(Weakening) 

(STrans) 

(SObi) 

u 
C; tl < t2 t-i-[tl/MyType] < q[tl/MyType], C; tl < t2 I-q[tl/MyType] < TZ[tZ/MyType] 

c; h 5 t2 WllMYTYPel 5 dtZ/MYTYPel 
(STrans) 

C kObjectType(MyType)r 5 ObjectZ’ype(MyType)q 
(SW) 

Figure 3: Transformation for (SObj) Nodes 

(a) If T = ObjectType(MyType)a’ then the C starts with only subtype relations between con- 

proof is completed using (SRejl). Return stants. The worst case comes from trying (SRejl) 

true. many times on nested object types. 

(b) Otherwise, if r = ObjectType(MyType)T’ 

then use (SObj). Return S(C; s < 

t, ~‘WW’w17 WMy TypeI). 

Lemma 3.5 If C is a restricted type constraint 

system and o and r are type expressions then if 

C I-T g 5 7 then S(C, cr, r) = true and if C VT 

o < 7 then S(C, o, r) = false. 

The algorithm can be improved by a prepass over 

cr, T marking which uses of MyType a.re covariant 

relative to their definitions, and which are con- 

travariant; thus &ring the choice of (SObj), (SRefl) 

in advance. The prepass then becomes the asymp- 

totically greatest cost requiring either E(O(n)) us- 

ing hash tables, or 0( n log n) using balanced trees. 

Proof. (Sketch) The restricted type constraint 

system condition ensures that C has a forest or- 

dering, and the extension to C in rule (SObj) pre- 

serves this order. Therefore, there are no infinite 

sequences of (STrans’)‘s. (SObj), (SRec) and (S+) 

decrease the number of type constructors on recur- 

sion. n 

Finally, the main theorem: 

4 Type Checking and Minimum 
Types in TOOPLE 

Definition 4.1 We say e is typable with respect to 

C, E iff there is a type r such that C, E k e: r. We 

say that r is the minimum type for e with respect 

to C, E iff C, E I- e: T and for all r’, if C, E k e: r’, 

thenCtr < r’. 

Theorem 3.6 Let C be a restricted type constraint 

system and let IS and r be type expressions. Then 

it is decidable whether C l-a 5 T. 

Proof. Immediate from Lemmas 3.1, 3.4 and 3.5. 

n 

3.3 Complexity of the Subtyping Algo- 
rit hm 

Under realistic assumptions on the cost of primitive 

operations, algorithm S is time O(n2) in the max- 

imum of the number of type constructors in u and 

7 or the length of the longest chain in C, assuming 

In this section we show that every pre-term of 

TOOPLE which is typable has a minimum type, 

and that this minimum type is computable. The 

derivation of the algorithm to compute the mini- 

mum type, and the proof of its correctness were 

complicated by a number of issues that have been 

mentioned earlier. It was necessary to add annota- 

tions to the class terms of the original TOOPL lan- 

guage to ensure that minimum types existed, and 

it was necessary to show that it was possible to de- 

termine if two types had a least upper bound and 

to find that bound. Once these issues have been 

addressed, most of the argument supporting the 
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algorithm to find minimum types is fairly straight- 

forward, with the possible exception of the handing 

of the message passing operation. 

In the remainder of this section, we briefly dis- 

cuss each of the issues mentioned above, state the 

theorem that establishes the decidability of typing 

in TOOPLE, and outline its proof. 

4.1 Minimum Types for Classes 

In TOOPL, class terms did not include any con- 

straint on the type produced. Thus, one would 

write cZass(seZf : My!Qpe)e in TOOPL rather than 

class(self : MyType <m&b ObjectType(MyType)r) 

e. Without this extra information, a class term 

such as cZass( self : My Type){m = serf + m} 

would not have a minimum type. Possible 
types for this term include all types of the form 

ObjectTypeUW’we){ m: r} for any type 7’. There 

is no smallest type of this form. 

To avoid this difficulty in TOOPLE, we an- 

notate class terms with type information. From 

the typing rules in Figures 4 and 5 of the Ap- 

pendix, it is easy to see that the only possible type 

for a term of the form cZass(self : MyType <,,& 

ObjectType( MyType)r) e is CZassType(MyType)r. 
Similar type information in update and extend 

terms ensures that every typable class term has a 

unique type. 

4.2 Least Upper Bounds of Type Pairs 

In order to find the minimum type of a conditional 

expression, one must find the least upper bound 

(lub) of the minimum types of the then and else 

branches of the expression. For structured types, 

the obvious way to look for least upper bounds is to 

recursively look for bounds on the subexpressions 

associated with the range and domain of the func- 

tion space, the corresponding components of record 

types or the bodies of object types. In particular, 

one can prove: 

Lemma 4.2 Given types, u and r, and a re- 

stricted type constraint system, C, Zub(a,r,C) ex- 

ists only if u and r are structurally similar at the 

top level. Furthermore, the Zub is structurally sim- 

ilar at the top Zevel to u and r. 

Due to the contravariant nature of the subtyping 

rule for functions, such a recursive algorithm to 

fmd lubs requires a corresponding algorithm to find 

greatest lower bounds (glb’s). 

To make this recursion work in the case of object 

types with local bound names, we need a notion 

of lower and upper bounds relative to sets of local 

names. To see why, consider the problem of finding 

a lower bound for the types: 

u = ObjectType(MyType){x: integer; 

Y: MY Type -+ My?4 

and 

r = ObjectType(MyType){y: MyType + MyType}. 

It is clear that any lower bound for such types 

must contain both an “x” and a “y” component. 

The type of the “x” component would be “integer” 

and it seems clear that the type of the “y” com- 

ponent should be MyType+ MyType. That is, u 

appears to be a lower bound for these two types. 

However, to show that I- u 5 r using the axioms 

and rules for subtyping, one must show that 

s 2 t I- {xc: integer; y: s --f s} _< {y: t -+ t} 

which is impossible due to the contravariant rule 

for subtyping of function types. In fact, it is easy 

to see that r has no proper subtype in which y has 

type MyType -, &Type. 
The problem is that when we look for lub’s or 

glb’s of subtypes, we must ensure that it will be 

provable that the types we select are bounds us- 

ing the limited assumptions the subtyping axioms 

and rules will allow us to make about local names 

of object types. To address this problem, we must 

define a notion of a type that provably bounds two 

other types even when only limited assumptions 

are made about the relationships between free vari- 

ables appearing in the two types. 

Definition 4.3 For types, u, T and y, a re- 

stricted type constraint system, C, and two sets 

of type variables, L = {Ll, L2, . . . , L,} and 

U = (Ul,U2,. . .,Uk), we WiZZ say that y is 

a monotonic upper bound for Q and T 
relative to C, L and U if, given a set 

{L’, )...) L;,u; )... UL,L:‘)...) L$ u; )..., u;> of 
variables distinct from those appearing in u, r, y, 

C, L or U, the following conditions hold: 
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where C’ = C; 1;: 5 Ly;...;Lk 5 Li;Uc 2 

q;.. .;q 5 q. 

We define the notion of a least monotonic upper 

bound (lmub) in the obvious way. Note that in 

the case that the sets U and L are empty, which 

is how we begin our recursive algorithm, the least 

monotonic upper bound and least upper bound are 

identical. 

For each kind of structured type, we can show 

a result similar to the following, which leads to an 

algorithm for computing hnub’s (and gmlb’s). 

Lemma 4.4 
Given types, u = ObjectType(MyType)aM and r = 

0 bjec t Type ( i%-J Type) TM, a res triced type constraint 

system, C, and two sets of type variables, L = 

{Ll, L2,. . . Ll and U = (Ul,U2,...,Uk>, then 

lmub(a, 7, C, L, U) exists if and only if ‘yM =&f 

lmub(aM, TM, C, L U {MyType}, U) exists and 

lmub(a, r, C, L, U) = ObjectType(MyType)yM 

In particular we get the following important re- 

sult . 

Lemma 4.5 Let g, r and y be types, C a restricted 

type constraint system, and let L and U be disjoint 

sets of type variables. 

1. There is an algorithm which determines if 

Emub(a, T,C, L, U) exists, and if so, returns 

that type. 

2. If y is a monotonic upper bound for CT and r 

relative to C, L and U, then Emub(a, r, C, L, U) 

exists. 

Similar results hold for monotonic lower bounds. 

4.3 The Existence of Minimum Types 

The key to the proof of the existence of minimum 

types is a deterministic set of rules for deriving min- 

imum types, marked with EM. These rules can be 

found in Figure 6 of the Appendix. Note that there 

are now two distinct type-checking rules for each of 

function application, record component extraction, 

and message passing. The extra cases result when 

the minimum type of a term is given by a type 

variable, yet, by subtyping (or smeth), it is known 

that the type must represent either a functional or 

object type.’ 

The relation, t < 7, defined in the Appendix, 

helps determine the smallest type expression, r, 

which is not a type variable and is greater than t. 

It turns out to be useful in determining minimum 

types of terms. Note that the second message pass- 

ing rule, in which the type of o is a type variable 

rather than a ObjectType type expression, actually 

arises frequently in practice when the user sends a 

message to self, since self has type MyType. 

The following theorem provides the basis for our 

algorithm to find minimum types. 

Theorem 4.6 Let C be a restricted type constraint 

system, E a syntactic type assignment, e a pre-term 

of TOOPLE, and T a type. 

1. If C, E k&j e: r then C, E I- e: r. 

2. If e is typable with respect to C, E, then there 

is a r such that C, E FM e: r and r is the 

minimum type for e with respect to C, E. r is 

unique up to renaming of bound variables. 

Proof. The proof of (1) is easy. The 

proof of (2) is by induction on the size of e. 

The most interesting cases are for conditionals, 

classes, and message sending. The argument 

for conditionals follows easily from Lemma 4.5, 

part 2. The proof for classes is trivial since the 

only possible type for cZass(self : My Type srneth 

ObjectType(MyType)r)e is ClassType(MyType)r. 

The proof for message sending is complex and di- 

vides into two cases depending on whether the min- 

imum type of the receiving object is an object type 

or a type variable (e.g., MyType). 

Suppose C, E I- o + m;: p. By induction we 

may suppose that C, E FM o: p’. There are two 

possibilities to consider. The tist is that p’ is an 

‘While the extra cases for function application and record 

extraction do not arise with our restricted type constraints, 

they do for other reasonable restrictions on type constraints, 

so we include those rules here. 
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object type and the second is that p’ is some type 

variable t. 

Case 1: Suppose that C, E EM 

o: ObjectType(MyType){ml: 71;. . .; m,: m}. Then 

by the (MMsg) rule, C, E t-M o -+ mi: 

T;[ObjectType(MyType){ml: ~1;. . .; m,: -r,}/MyType]. 

We claim that the type 
ri[ObjectType(MyType){ml: ~1;. . .; m,: 7;1}/MyType] 

is the minimum for o + m; with respect to C, E. 

Suppose that C, E I- o + m;: T’ for some r’. 

Without loss of generality, we may assume that 

the last step of the proof of that typing is (Msg). 

Thus r’ = T;‘[Y/MyType] , where C, E I- o: y and 

C I- y &,& ObjectType(MyType){m;: r;‘}. Since 

ObjectType(MyType){ml: ~1;. . .; m,: r,} is mini- 

mum for 0, 

C I- ObjectType(MyType){ml: ~1;. . .; m,: r,,} 5 y. 

Inspection of subtyping and inheritance rules in- 

dicates that must be 

of the form ObjectType(iyType){. . .; m;: r/‘; . . .} 

(by the subtyping rules), and C I- r;” 5 r;’ 

(by the <m&h rules). In particular, C U {s < 

t} I- {ml:q;... 77l;: Ti; . . .m,. . ~n~[s/WO’wel 5 

{ 
* m.. +I. 

“‘) ” I ‘*’ .}[t/MyType] (by the subtyping 

rules). The latter implies that C U {s 5 t} l- 

T;[s/MyType] 5 ~;“[t/MyType]. Letting t = y 

and s = ObjectType(MyType){ml: ~1;. . .; m,: TV}, 

it follows that 

C I- q[ObjectType(MyType){ml: ~1;. . .; m,: T”}/ 

&D”wel I q%/~~T~pel 5 dGfyTyw1, 
confirming that 

Ti[ObjectType(MyType){ml: ~1;. . .; m,: Tn}/MyType] 

is minimum. 

Case 2: Suppose that C, E I-M o: t, where t is a 

type variable. Since o + m; is typable, there 

is a y such that C, E I- o:y and C I- y <m& 

ObjectType(MyType){m;: Ti}. Since t is minimum, 

ctt<y. 

Because 

C I- Y Smeth Objec~Type(MyType){m;: Ti}, 

7 must be a type variable or of the form 

ObjectType( MyType)a. However, since C is re- 

stricted, it cannot be the case that C t- t 5 

ObjectType( MyType)a. Thus y must be a type 

variable. 

An examination of the &,eth rules shows that if 

C I- 7 Lrneth ObjectType(MyType){m;: Ti}, for 7 

a me variable, then < 

ObjectType(MyType){. . .; m;: 7:;. . .>‘E C for<ZZ 

object type such that C I- r;’ 2 7;‘. Again because 

C is restricted, C I- t 5 y only if t = y. Thus 

t &eth ObjectType(MyType){. . . ; mi: 7;‘;. . .} E C. 

Thus, C, E I-M o + m;: ~,![t/MyType]. Moreover, 

C I- q![t/MyType] 5 ri[t/MyType]. Using similar 

ideas, one can show that T;‘[t/MyType] is the mini- 

mum type of o e m; with respect to C, E. n 

We can now write down the algorithm for mini- 

mum typing. 

Algorithm M(C, E, e): return the minimum type 

for e, with respect to C, E, if it exists, and false 

otherwise. 

(Sketch) Generally, the conclusion of only one of 

the minimum typing rules will match the shape of 

e. (In case of function application or message send- 

ing, determining the minimum type of the function 

or receiving object uniquely determines the appro- 

priate rule.) For each hypothesis of that rule which 

is a type assignment for a subterm of e, call this 

algorithm recursively to determine the minimum 

type (if any) of that subterm. If the hypothesis in- 

cludes a subtype assertion, call algorithm S from 

the previous section. If the hypothesis involves 

computation of a lub of two types, use the algo- 

rithm sketched at the end of Section 4.2. The only 

other hypotheses involve looking up items in C. If 

any of these fail, the entire algorithm fails. Other- 

wise use the types returned from the hypotheses to 

construct the appropriate type for e. 

The correctness of the algorithm follows from the 

previous theorem. 

Corollary 4.7 There is an algorithm which, given 

C, E, e, and r, determines if e is typable with re- 

spect to C, E, and if so, whether C, E k e: r. 

Proof. The algorithm proceeds by using Al- 

gorithm M to compute the minimum type of e. If 

there is no such type, then e is not typable. If e 

does have a minimum type, r’, then call Algorithm 

S with C, E, r’, and r. If it returns true then 

C, E I- e: r by Theorem 4.6, part 1, and subsump- 
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tion. Hit returns false then e cannot possibly have 

type r since r’ was the minimum type of e. w 

Unfortunately, the algorithm given is not poly- 

nomial in the size of the inputs. The problem is 

that the size of the type of a term is not bounded 

by a polynomial on the size of the term. It is easy 

to write a sequence of terms, {on}, such that for 

each n < w, 

t- 0,: ObjectType( MyTypel) 

{ml: ObjectType(MyType,) 

{ma:ObjectType (MyType,) 

{m,: MyTyiI’ + MyType + 

. . . -+ My Type, )> . . J 

It is then easy to show that the sizes of the types 

of the terms, 

0, -=k ml -e m2 X= . . . + m, 

grow exponentially in n, whereas the sizes of the 

terms themselves are proportional to n2. 

As a result, algorithm M may involve calls to the 

subtyping algorithm on types whose size is expo- 

nential in the size of the term. On the other hand, 

it is certainly not common to define terms whose 

types involve nested (and dependent) object type 

definitions. Thus while the worst case behavior of 

the algorithm is not good, we expect it to perform 

in acceptably small polynomial time in practice. 

5 Adding Instance Variables to 
TOOPLE 

The extension of TOOPLE to include hidden in- 

stance variables is described in [Bru93a]. The key 

difference between methods and instance variables 

is that methods are frozen when an object is cre- 

ated, while the instance variables of an object may 

be updated. Values of instance variables are spec- 

ified in class definitions, providing initial values to 

be used when new objects are created from classes 

(using the new operator). However it is possible to 

make a new copy of an object with a different value 

for an instance variable using the “gets” expression. 

In TOOPL we provide different notation for ac- 

cessing instance variables than for sending mes- 

sages. We write q.x to access the instance variable 

x of q and p -t= getx to send the message getx to 

p. We update an instance variable x of object p 

by writing p gets {z = e}. The value of this ex- 

pression is a new object identical to p but with the 

value of e replacing the old value of x. 

We do not wish to have instance variables visi- 

ble outside of an object. Thus, we will have two 

different views of an object: the view from inside 

the object in which all instance variables are vis- 

ible, and that from without, in which all instance 

variables are hidden. We will continue to refer to 

the type of an object from the outside using My- 

Type, but we will now refer to the type from the 

inside using SelfType. Inside a method, the type of 

self will now be SelfType. Often we will need to 

“close up” au object to hide the instance variables 

from the outside world. The function “close” with 

type SelfType -+ My Type will perform this action. 

The following example of a movable point in the 

full TOOPLE should get across the basic idea. 

Let PtInst = {x, y:lnt} and 

PtMeth = {mu: Int + Int + MyType; 
getx, gety: Int; eq: My Type -+ Bool}) 

The following class has instance variables x and y 

which are initialized to 0. 

PointClass = class 
( self : SelfType 5 (PtInst, PtMeth), 

close: SelfType + My Type) 

({x = 0, Y = 01, 
{mv(dx, dy: Int) = close(seZf gets 

{x = se1f.x + dx, y = seZf.y + dy}), 

getx = self.x, 
gety = self.y, 

eq = fun(p: MyType) (se1f.x = 

(P t= setx)) 8~ Wf4 = (P += 9eW) 

Notice that there is no way to directly ac- 

cess the instance variables of the parameter p of 

eq. The type of this class is PointClassType = 

ClassType( MyType)( PtInst, PtMeth). 

While the instance variables are visible in the 

type of PointClass, they are not visible in the cor- 

responding object types. If MyPoint = new Point- 

CZass then the type of MyPoint is: 

PointType = ObjectType( MyType)PtMeth. 

We have extended our algorithm for determining 
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subtypes and minimum types in this more interest- 

ing language. 

5.1 Extending Subtype Checking for In- 
stance Variables 

In this section we sketch how algorithm S can be 

extended to include instance variables. 

The definition of same shape is loosened so that 

s and r have the same shape ifs << (T and n and r 

have the same top level constructor. 

The type expressions of the full language include 

pairs (6, y) where S is a record of instance variable 

types and y is a record of method types. As with 

the other structured types, the (SZ’rans) rule can 

be moved through the components of a pair. How- 

ever, a complication arises because the new ( CZass), 

( Update) and (Extend) rules introduce non-trivial 

type constraints of the form SelfType 5 (6,~) into 

the type constraint system. 

Because these rules are constrained so that 

SelfType is not included in either 6 or y, any 

constraint t 5 r’ in C can be discharged when 

used: the subgoals are provable in C if and only 

if they are provable in the smaller constraint sys- 

tem C - {t _< r’}. 

In order to prove termination of the extended al- 

gorithm on C t--a 5 r, we take as our metric the 

number of subtype constraints in C and the com- 

bined sizes of u and r. It is easy to see that the 

metric is strictly decreasing: any use of the ( Trans’) 

rule reduces the size of C and the remaining struc- 

tured rules reduce the size of CT and r. 

The O(n2) complexity result continues to hold 

since the case of (SZ’runs’) on a (Sobj) rule is iden- 

tical, and because the side condition on the (Class) 

rule ensures that in the new case of C I-SelfType 5 

WY), C WY) I (S’, r’> * C ~WType 5 
(S’, y’), that there are no SeZfType; variables in ei- 

ther (6,~) or (S’, 7’). 

5.2 Extending the Minimal Typing 

The cases for type-checking terms which set or eval- 

uate instance variables inside methods involve ex- 

tra complications similar to those for function ap- 

plication and message sending. One must distin- 

guish between cases in which the (internal) type 

of the object is given as an explicit pair of types 

(one type for the record of instance variables, the 

other for the record of methods) and the case in 

which the type of the object is a type variable. This 

latter case is actually the most common, since we 

typically have access only to the instance variables 

of self (or objects representing updated versions of 

self), whose type is now SelfType. 

By adding relatively minor and natural restric- 

tions on r such that (t 5 r) E C (essentially, r 

cannot represent an external object type), we can 

still show all terms have minimum types. The al- 

gorithm for type-checking is as before. 

6 Comparison with previous 
work 

As noted earlier, Curient and Ghelli [CG92] 

sketched out a plan for proving type checking is de- 

cidable in F< by providing algorithms to check sub- 

typing and for computing minimum types. They 

were only able to provide a semi-algorithm for 

checking subtypes, however. Later, the type- 

checking problem for F< was shown to be unde- 

cidable by Pierce ([PieS’L]), who showed that the 

problem of determining whether one type was a 

subtype of another type was undecidable in F<. 

Amadio and Cardelli ([AC90]) described a.n al- 

gorithm for determining subtyping relations in a 

language with subtyping and recursive types, but 

no polymorphic types. A simpler and more effi- 

cient algorithm to solve this problem using finite 

automata was later given in [KPS93]. 

While the denotational meaning of object types 

in TOOPLE can be given recursively, and the sub- 

typing rules for object types are based on the 

rules in [AC90], the subtyping rules for TOOPLE 

are slightly weaker than for their language. We 

do not directly support recursively defined types 

in the language and we do not allow object def- 

initions to be unwound to be recursively defined 

records. Unfortunately, we see no way of adapt- 

ing the clever algorithm of [KPS93] for determin- 

ing subtypes to our situation. The algorithm for 

subtyping in TOOPLE is fairly straightforward 

(though its proof of correctness is complex). On 

the other hand, the computation of minimum types 

is more complex than originally anticipated, with 

conditional expressions raising unexpected difficul- 

40 



ties, and with the size of minimal types exponential 

in the size of the terms in the worst case. 

7 Summary 

In this paper we have described a type-checking al- 

gorithm for the language, TOOPLE, a functional 

object-oriented language whose semantics is based 

on F<. While the algorithm described in this ex- 

tended abstract does not include instance variables, 

a similar algorithm can be described for the full 

language. 

This paper is one of a series investigating theo- 

retical and computational properties of TOOPLE. 

[Bru93a] and [Bru93b] presented type-checking 

axioms and rules, a denotational semantics for 

TOOPLE, and showed that the type system was 

safe. [BCK93] p resented a natural (operational) 

semantics, proved a subject reduction theorem 

for the language (giving au alternative proof of 

type safety), and proved the relative consistency 

of the denotational and operational semantics for 

TOOPLE. 

Our goal in this paper was to show that 

TOOPLE has good practical as well as theoret- 

ical properties. We believe this provides rather 

convincing evidence that one can indeed use F< 

as a foundation for the study of object-oriented 

programming languages. In particular, the design 

and implementation of TOOPLE shows that one 

can design a type-safe statically-typed program- 

ming language which captures the most impor- 

tant features of object-oriented languages, includ- 

ing classes, objects, methods, hidden instance vari- 

ables, subtypes, and inheritance, while retaining 

important practical features (e.g., the decidability 

of type checking). While the type-checking algo- 

rithm for TOOPLE is not polynomial, the exam- 

ples generating this behavior are very unnatural 

and are unlikely to arise in practice. 

We have implemented a fully functional inter- 

preter for TOOPLE (with instance variables) in 

ML. The interpreter parses expressions, applies a 

type checking algorithm which is based on the min- 

imum typing rules for the language, and then evil- 

uates the expression by implementing the natural 

semantics given in [BCK93]. Further work is con- 

tinuing on extending the language to include im- 

perative features and to develop formal techniques 

for verifying programs in TOOPLE, with special 

emphasis on avoiding the need for re-verifying in- 

herited methods in subclasses. 

While TOOPLE is certainly not a full-featured 

language at this point, we believe that it can 

serve as the basis for the core of a practical, well- 

behaved, object-oriented language. 
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A The Formal Definition of 
TOOPLE 

As explained in the body of the paper, 5 represents 

the subtype relation between types, while lrneth is 

an ordering relating types of objects whose classes 

could have been defined using inheritance. 

Definition A.1 Relations of the form u < r and 

~7 <_meth r, where c and r are type expressions, 

are said to be type constraints. If, moreover, t is 

a type variable or constant then we say t 2 r and 

t <meth r are simple type constraints. If for some 

7-r t < r or t <m&h r are included in a set C of 

simple type constraints, then we say t is declared in 

C. A restricted type constraint system is defined 

as follows: 

1. The empty sequence, E, is a restricted type con- 

straint system. 

2. If C is a type constraint system and t and u are 

distinct type variables OT constants such that t 

does not appear in C and there is no constraint 

of the form v <m&h r in C, then C; t 5 u is 

a restricted type constraint system. 

3. If C is a restricted type constraint system, 

r is of the form ObjectType(MyType)a, and 

t imeth r is a simple type constraint such that 

t does not appear in C or r, then C; t snetb r 

is a restricted type constraint system. 

We define type constraint derivations of the form 

C k 0 5 r and C I- u &,,& r, for C a restricted 

type constraint system, and u, r type expressions, 

via the sets of axioms and rules given below. Note 

that r[u/t] denotes the expression obtained by re- 

placing all free occurrences of variable t in r by 

u. 

The following are the axioms and rules for sub- 

types. 

(SRef 1) Cl-T<T, 

(SVar) c; t<rkt57-, 

(STrans) 
Ct-y<u, Cl-u<r 

cl-yir ’ 

(S 4 
Ct-u’<u, Cl-r<_r’ 
cl-u--tr<u’-+r’ ’ 

(SRec) 
C I- Uj 2 Tj’j, forl<j<_b<n 

C t- {ml:ul.. .;mk:Tk;...;m,:u,} ’ 

C; s 5 t I- r[s/MyType] 5 

(SW) 
WMYTwel 

C I- ObjectType(MyType)r 5 * 
ObjectType(MyType)r’ 

In the SObj rule, neither s nor t may occur free 

in C, r, or r’. 

Definition A.2 (from [CG921) We write C k t < 

r, if t is a type variable, and C I- t 5 r is provable 

using only (SVar) and (STrans). 

This ordering is useful in determining the min- 

imum type of a term. The axioms and rules for 

< -m&h are given below: 

(MeVar) c; t kzth I- t- t %eth 7, 

(MeRefE) 
C I- ObjectType( MyType)r &#, 

ObjectType(MyType)r, 

C I- Y <m&h WectTyw(MyTwe)~, 

(MeTTans) 
Cl-T<+ 

C t- 7 <meth objectType(JW”ype)~’ ’ 

Definition A.3 A syntactic type assignment, E, 

is a finite set of the form: 

E = {x,: rl, . . . . x la: 5-J 

with no variable x; appearing more than once in E. 

The type assignment axioms and rules for 

TOOPLE are given in Figures 4 and 5. 

As discussed in the body of the report, there 

is another set of axioms and rules which can be 

used to derive the minimum types for terms of 

TOOPLE. They are given in Figures 6 and 7. 
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VW C,Ekx:7 ifE(z)=r 

(Cond) 
C,Et- B:Bool, C,EkM:r, C,El-N:r 

C,E I- if B then M else N:r 

wJ4 

(PT0.i) 

C,Eu{~:a}t-M:r 

C,El- Xv:a.M:a+ T 

C,El- M:a+ r, N:a 

C,El- M N:r 

C,El-M:Num, C,Ei-N:Num 

C, E I- M = N: Boo1 

C’,Ekei:Ti foralll<i<n 

C,El-{ml=el,..., m,=e,}:{m~:r~;...;m,:~,,} 

C,El-e:{ml:rl;...;m,:7,} 

C, E I- e.m;: 7; for all 1 5 i 5 n 

(CZass) 
c; MyType %neth ObjectType(MyType)r, E U {self : MyType} I- e: 7 

C, E I- class(self : MyType lrneth ObjectType(MyType)r)e: ClassType(MyType)r 

(New) 

Pfs9) 

C, E I- c: ClassType( MyType)r 

C, E I- new c: Tobj( MyType)r 

C I- Y <m&l, ObjectType(MyType)(m: T), C,Ek o:y 

C, E I- o + m: ~[y/MyType] 

C, E I- c: ClassType(MyType){ml: T1;. . .; m,: m}, c t- 7; 2 71) 

C; N&w Fmeth ObjectType(MyType){ml: T:; m2: ~2;. . .; m,: TV}, 
E u (self : MyType, super: {ml: ~1;. . .; m,: r”}} I- ei: r:, 

(Update) 
C; MyType lmeth ObjectType(MyType){ml: 7;; ma: ~2; . . . ; m,: bin) k 7: 5 pi 

C, E I- update c by (self : MyType <,,& ObjectType{ml: ri; . . .; m,: TV}, super) 
{ml = ei}: CZassType(MyType){ml: pi; m2: 7-z;. . .; m,: T,.,} 

Figure 4: Type Assignment Axioms and Rules 
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C, E k c: ClassType(MyType){ml: ~1;. . .; m,: TV}, 

C; MY Type &neth ObjectType(MyType){ml: q; . . .; m,: r,; m,+l: 7;1+1}, 

E u {self : MyType, super: {ml: ~11; . . . ; m,: TV}} t- e,+l: T,!,+~, 

(Extend) 
C; MyType imeth WectType(Wh”ype){ml: ~1;. . .; m,+l: ~,,+l} t TA+~ i r,+l 

C, E k extend c with (self : MyType srneth ObjectType{ml: ~1;. . . ; m, + 1: r,, + l}, 
super){m,+l = e,.,+*}: CZassType(MyType){ml: ~1;. . .; m,: 7,; m,+l: 7,+1) 

(Subsum) 

(MVar) 

Cl-a<r, C,El-e:a 

C, E I- e: r 

Figure 5: Type Assignment Axioms and Rules (continued) 

C, E I-M x: 7 if E(x) = T 

(MCond) 

c,Ek~B:p, Cl-p< Bool, 

c, E FM M: r’, C, E k&f N: r” 

C, E FM if B then M else N: Eub(r’, r”) 
if Ivb(T’, 7”) exists 

(MAbs) 
C,EU{V:O}I-M M:T 

C,E I-M XV:U.M:U+ T 

(MAPPZ) 
C,Et-MM:u-+T, c, E k&f N: u’, C t u’ 5 u 

C,El-MMN:T 

C,Ek-Mkf:t, C,El-MN:u’, Ck-t<u-+r, Cku’<u 
(MAPP~‘) 3 C,EFMM N:T 

(MW) 
C,El-M M:T, C,El-M N:T’, Cl--<Iurn, Ckr’<Num 

C,El-MM = N:Bool 

(MRec) 
c, E !-M e;: 7; for d 1 5 i 5 n 

C,E t-,$.f {ml = el,..., m, = e,}:{ml:~l;...;m,:r,} 

(MProj) 
c, E FM e: {ml: ~1; . . . ; m,: rn} for i s t 1 < i < n 

C, E I-M e.m;:T; 
*- - - 

Figure 6: Minimum Type Assignment Axioms and Rules 
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(Mproj') 
C,E t-M e:t, Ct-t<<{ml:r~;...;m,:r,}forist l<i<n 

c, E k~ e.m;: Ti 
** _ - 

C; MyType _<meth ObjectType(MyType)r, E u {self : MyType} I-M e: r’, 

(MClass) 
c; WG’we <meth ObjectType(MyType)r k r’ 2 T 

c, E k&f class(self : MyType &,& ObjectType(MyType)r)e: ClassType(MyType)r 

(MNew) 
C, E k-M c: ClassType( MyType)r 

C, E FM new c: ObjectType(MyType)r 

(MM4 
C, E kf,.f o: ObjectType(MyType){ml: ~1;. . .; m,: ‘r,} 

C, E t‘M o e m;: T;[ObjectType(MyType){ml: ~1;. . .; m,: T,,}/MyType] 

(MM4 
C, E FM 0: t, t lrneth ObjectType( MyType){. . . ; mi: 7-i; . . .} E C 

C, E FM o -@ m;: T;[t/MyType] 

C, E k&f c: CZassType(MyType){ml: ~1;. . .; m,: m}, ct7; 571, 

c; MyType <m&h ObjectType(MyType){ml: ri:; m2: ~2;. . .; m,: m}, 

E U {self : MyType, super: {ml: ~1;. . .; m,: TV}} !-j&f ei: rt, 

(M Update) 
c; MyType <m&h ObjectType(MyType){ml: ri; m2: ~2;. . .; m,: rn} !- r[ 5 ri 

C, E !-M update c by (self : MyType &,& ObjectType(MyType){ml: ri; . . .; m,: T,,}, 
super){ml = e\}: CZassType(MyType){ml: pi; m2: r2;. . .; m,: T,,} 

C, E FM c: ClassType(MyType){ml: ~11; . . . ; m,: r,,}, 

C; MyType <m&h ObjectType(MyType){ml: rl; . . .; m,: r,; m,+l: ~,+l}, 
E U {self : MyType, super: {ml: ~1;. . .; m,: TV}} FM e,+l: T:+~, 

(MExtend) 
c; MyType <m&h ObjectType(MyType){ml: ~1;. . .; m,+l: ~“+l} I- q!,+l 5 r,tl 

C, E FM extend c with 

(self : MyType <m&h ObjectType(MyType){ml: ~1;. . .; m,+l: 7,+1}, super) 

{ m,+l = e,+l}: CZassType(MyType){ml: ~1;. . .; m,: T,,,; mn+l: 7;1+1} 

Figure 7: Minimum Type Assignment Axioms and Rules (continued) 
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