
Safe and decidable type checking in an object-oriented language *

Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent
Williams College

Williamstown, MA

Allyn Dimock, Robert Muller
Harvard University

Cambridge, MA

Abstract

Over the last several years, much interesting work
has been done in modelling object-oriented pro-
gramming languages in terms of extensions of the
bounded second-order lambda calculus, Fr. Un-
fortunately, it has recently been shown by Pierce
([Pie92]) that type checking F< is undecidable.
Moreover, he showed that the undecidability arises
in t,he seemingly simpler problem of determining
whether one type is a subtype of another.

In [Bru93a, Bru93b], the fist author introduced
a statically-typed, functional, object-oriented pro-
gramming language, TOOPL, which supports
classes, objects, methods, instance variables, sub-
types, and inheritance. The semantics of TOOPL
is based on F<, so the question arises whether type
checking in this language is decidable.

In this paper we show that type checking for
TOOPLE, a minor variant of TOOPL (Typed
Object-Oriented Programming Language), is de-
cidable. The proof proceeds by showing that sub-
typing is decidable, that all terms of TOOPLE have
minimum types (which are in fact computable),
and then using these two results to show that type
checking is decidable. Our algorithm fails to be
polynomial in the size of the term because the size
of its type can be exponential in the size of the
term. Nevertheless, it performs well in practice.

‘Bruce, Crabtree, Murtagh, and van Gent were partially

supported by NSF grant CCR-9121778. Dimock and MuUer

were partially supported by DARPA grant F19628-92-C-

0113.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

. .

1 Introduction

Beginning with the influential paper, [CW85], there

has been a great deal of interest in using various ex-

tensions of Fl, the bounded second-order lambda

calculus, as a basis for a theoretical understand-

ing of object-oriented programming languages. Pa-

pers taking this approach include [Car92, Car89,

CL91, CM90, CHCSO, CCH+89, CCH089, Mit90,

Bru92, BL90, BM92, BTCGS91, PT92a, PT92b].

Among others, Ghelli ([GheSO]) implemented a

type checker for .F<, which he initially claimed was

sound and complete. The soundness was correct,

but Ghelli and others later discovered that the sub-

algorithm for determining whether one type was a

subtype of another diverged on certain inputs. Af-

ter several researchers attempted to patch the al-

gorithm, Pierce [Pie921 p roved that the problem of

determining whether one type was a subtype of an-

other is undecidable, and hence so is the problem

of type-checking terms of F< . -

While it appears that the subtyping algorithm

performs well in practice (all counter-examples ap-

pear to be contrived and similar), this negative re-

sult threw into question the notion of using F< as -
a foundation for object-oriented programming lan-

guages. In this paper we show that the type check-

ing problems of the full I?< do not necessarily have -
an impact on using that language as a basis for

understanding the fundamental notions of object-

oriented progr rimming languages.

A series of papers, [Bru93a, Bru93b, BCK93],

introduced and proved properties of TOOPL, a

statically-typed, functional, object-oriented pro-

gramming language which supports classes, ob-
o 1993 ACM O-89791~587-9/93/0009/0029...s1.50

OOPSLA’93, pp. 29-46

29

jects, methods, instance variables, subtypes, and

inheritance. The language was designed with a

semantics based on an extension of F<, the so-

called “F-bounded” second-order lambda calculus

(see [CHCSO]), with recursively defined types and

elements. It was presented with a set of axioms and

rules for subtyping and type checking terms, but no

algorithm was provided to do the type checking.

Pierce’s results raised the question as to whether

there was a complete algorithm for type checking

in the language. The language TOOPL does not

directly support polymorphic functions or higher-

order types, so it is not clear that Pierce’s re-

sults apply. On the other hand, the semantics

of TOOPL types are specified as fixed points of

bounded functions from types to types, and the

semantics of class terms, for instance, are pre-

sented as higher-order terms of an extension of

the bounded second-order lambda calculus. The

strength of this underlying language, involving ex-

tensions to F<, raised significant doubts about the

existence of a type-checking algorithm for TOOPL.

The approach taken in [CG92] to developing an

algorithm to type check a language with subtyp-

ing was to design an algorithm for computing the

minimum type of a term and an algorithm for de-

termining whether one type is a subtype of another.

One can then use these two algorithms in order to

determine if a term, M, has type r as follows. Find

the minimmn type, ~0, of M, and then determine

if re is a subtype of r. If so, the subsumption rule

can be used to show that M has type r. If r-0 is

not a subtype of r then r cannot be a type of M

by the definition of minimum type.

This approach failed for F< since there is no al-

gorithm to determine if one-type is a subtype of

another. The subtype checking (semi-)algorithm

presented in [CG92] need only converge when the

hrst type is a subtype of the other. If not, the al-

gorithm may diverge. In this paper, we are able to

show that a similar algorithm for TOOPL always

halts. While there are terms of TOOPL which

do not have minimum types, we work here with

a minor variant, TOOPLE (TOOPL - Enhanced),

which results from adding extra type information

to class terms. We show that all terms of TOOPLE

have minimum types, allowing us to carry through

the program outlined above for type checking terms

of TOOPLE.

While we expected some difficulties in finding

minimum types for terms involving message send-

ing, we discovered that computing minimum types

for conditional expressions was unexpectedly com-

plex. One must be able to compute least upper

bounds of types in order to determine the mini-

mum type of a conditional term from the types of

its “true” and “false” branches. However, the in-

teraction of this with the implicit recursion in ob-

jects and the contravariance of subtyping in func-

tion types forced us to define and compute a gen-

eralized form of least upper bounds and greatest

lower bounds that were monotonic with respect to

one collection of variables and anti-monotonic with

respect to another. We indicate in Section 4 where

these complications arise.

We had originally hoped to develop a polyno-

mial time algorithm for type checking. However,

as shown in section 4, the minimal type of a term

may be exponential in the size of the term. As a

result any algorithm which constructs (infers) mm-

imal types cannot be polynomial in the size of the

term. Nevertheless, the bad examples are quite

contrived, and are extremely unlikely to occur in

practice. Thus we expect this type-checking algo-

rithm to perform well in practice.

For simplicity, the main portion of the paper

deals only with a restriction of TOOPLE which

does not involve instance variables. We indicate in

Section 5 where some of the complexities arise with

instance variables.

The paper is organized as follows. In Section 2

we present a brief description of TOOPLE. In Sec-

tion 3 we describe the subtyping algorithm for this

restricted language. In Section 4 we describe the

algorithms to find the minimum type of a term and

type check it. In Section 5 we describe briefly some

of the extra complexities which arise by adding in-

stance variables. Section 6 contains comparisons of

our work with those of other researchers. Finally

in Section 7 we summarize our results, describe the

current state of our implementation of TOOPLE

and mention some work in progress on TOOPLE.

30

2 A Brief Introduction to
TOOPLE

TOOPLE is a statically-typed, functional, object-

oriented progr amming language. It provides full

support for object-oriented features including ob-

jects, classes, methods, instance variables, dy-

namic method invocation, subclasses, and sub-

types. Moreover, TOOPLE provides mechanisms

to allow the programmer to refer to the current

object (self), its type (MyType), and the record of

methods of its superclass (super). A description of

the fundamental concepts of object-oriented lan-

guages is given below. It will be followed by an

introduction to the syntax of TOOPLE.

An object consists of a collection of instance vari-

&es, representing the state of the object, and a

collection of methods, which are routines for ma-

nipulating the object. When a message is sent to

an object, the corresponding method of the object

is executed. CZasses are extensible templates for

creating objects. In particular, classes contain ini-

tial values for instance variables and the bodies for

methods. All objects generated from the same class

share the same methods, but may contain differ-

ent values for their instance variables. A subclass

may be defined from a class by either adding to or

modifying the methods and instance variables of

the original class. Restrictions on the modification

of the types of methods and instance variables in

subclasses are necessary in order to preserve type

safety.

In this conference paper, we defer further discus-

sion of instance variables except for a few remarks

in Section 5. The extension of TOOPLE to in-

clude instance variables is described in more detail

in [Bru93a, Bru93b].

All terms of the language, including both

classes and objects, have associated types. A

type is either a variable (from a set, VT*, of

type variables), a constant (from a set, CT*, of

type constants), or of the form 0 + r (for

function types), {ml: rr; . . .; m,: r,} (for record

types), ObjectType(MyType)r (for object types) or

CZassType(MyType)~ (for class types). The types,
r, in object and class types must be record types.

The pre-terms of TOOPL are given in Figure

1. In the grammar, B, M, N, e, e;, c, and o all

represent pre-terms. M and N are intended to sug-

gest general pre-terms, B a Boolean expression, e

a record, c a class, and o an object. The m and m;

are labels, while r is a type. The variable z is from

a fixed collection of variables Y.

Most of the pre-terms should be self-explanatory.

A term of the form

cZass(seZf : My Type <,,eth ObjectType(MyType)r)e

represents a class whose method bodies are con-

tained in the record e with type r. The bound vari-

able self may be used in method bodies in e to re-

fer to the object executing the method. The bound

variable MyType refers to the type of self. Since

the method may be inherited by subclasses, the

meaning of MyType at execution time may actu-

ally correspond to the type of an object generated

by a subclass of the class being defined. The oc-

currence of MyType <m&h ObjectType(MyType)r

in the class term is meant to suggest this fact

(see below for the definition of srneth). “Update”

and “extend” terms provide ways of modifying old

methods or adding new ones to a class to form a

subclass. Methods not mentioned in the subclass

definition are inherited from the superclass.

lf c is a class then new c represents an object

generated from c. The type-checking rules will

indicate that if c has type CZassType(MyType)r,

then new c will have corresponding type

ObjectType(MyType)r. A term of the form o -+ m

represents sending the message m to object o. A

few simple examples of TOOPLE expressions are

given at the end of this section.

We say type u is a subtype of r if a value of type

D can be used in any context in which a value of

type r is expected. Note that subtyping depends

only on the type of values, while subclass depends

upon implementations. Axioms and rules describ-

ing the subtyping relation for types of TOOPLE

are given in the Appendix. Most rules should be

familiar with the possible exception of the subtyp-

ing rule for object types. This rule arises from the

fact that object types are defined recursively (in or-

der for MyType to stand for the type of the object

in its type definition), and is adopted from a sim-

ilar rule in [AC901 for subtyping recursive types.

See [Bru93b] or [Bru93a] for further explanation.

Recall also that function types are contravariant in

their domains.

31

M::= x 1 ifBthenMeZseiV 1 fun(v:a)M 1 MN 1 M=N I {mr=er,...,m,=e,} I

e.mi) cZass(seZf : My Type srneth ObjectType(MyType)T)e I new c 1 o -+ m I
update c by(seZf : MyType &,& ObjectType(MyType)r; super){ml = e\} I
extend c with(seZf : MyType -<,&h ObjectType(MyType)r; super){m,+l = e,+l}.

Figure 1: Pre-terms of TOOPLE

There is a separate ordering on object types

which is related to types obtained by taking sub-

classes (see [CHCSO]). This ordering is a point-

wise ordering on method types, and is denoted

< -m&h. It reflects the changes which may be

made in constructing subclasses. In particular, if

ObjectType(MyType)r is the type of an object, o,

generated from class, c, and ObjectType(MyType)r’

is the type of an object generated from a sub-

class of c, then ObjectType(MyType)T’ &,,&h

ObjectType(MyType)r. The axioms and rules for

< -.&h are given in the Appendix.

The terms of TOOPLE are those pre-terms

which can be type checked with respect to a col-

lection, C, of subtyping and inheritance assump-

tions on types (called a restricted type constraint

system), and an assignment, E, of types to vari-

ables. The defmition of restricted type constraint

system is given in Definition A.1 in the Appendix.

The restriction on the simple type constraints make

it easier for us to determine subtypes and to derive

minimum types for terms. Note that they essen-

tially forbid forcing a type variable to be a sub-

type of an object type. We have found no com-

pelling reasons to allow less restricted constraints,

and more complex constraints are not introduced

by our subtyping or type-checking algorithms.

The type-assignment rules for TOOPLE can be

found in Figures 4 and 5 in the Appendix. A

further description of the language and its type-

assignment rules can be found in [Bru93b] or

[Bru93a]. We provide a brief description of the

type-assignment rule for classes here.

In order to show cZass(seEf : MyType)e has type

CZassType(MyType)r, it is sticient to show that e

has type T under the assumption that self has type

MyType. In this derivation one may not assume

that MyType = ObjectType(MyType)r, only that

MyType Sm.& ObjectType(MyType)T. The reason

for this is that the methods in e may be inherited in

a subclass (whose type is guaranteed to be srneth

ObjectType(MyType)T). As a result, we may only

make this weaker assumption in type-checking.

In [Bru93a, Bru93b, BCK93] it was shown that

the type-checking rules for TOOPLE are safe. For

instance, in the evaluation of a term that type

checks correctly, an object will never be sent a mes-

sage that it does not understand. Our goal in this

paper is to find an algorithm which, given C, E,

M, and 7, determines if C,E I- M:T.

The following are simple examples of terms and

types from TOOPLE.

Let PointType = ObjectType(MyType){x, y: Int;

eq: MyType --+ Bool}, the type of objects with z, y,

and eq methods. The following class will generate

objects of this type.

PointClass = cZass(self : MyType &,eth PointType)

{x = 0, Y = 0,
eq = fun(p:MyType) ((self + x) = (p + x))

@ NseZf + Y) = (P * d)>

Note that the method eq takes a parameter, p,

with the same type as serf and compares the re-

sults of sending messages x and y to p and the re-

sults of sending the sarne messages to serf. PtObj
= new PointClass represents a new object of type

PointType. Thus, if (PtObj -k eq) (0) is to be well-

typed, o must be of type PointType, since MyType

will be instantiated to PointType when the mes-

sage eq is sent to PtObj. (See the type-assignment

rule (Msg) .)

Suppose we now wish to modify PointClass by

adding a color field. Let

CoZorPointType = ObjectType(MyType){x, y: Int;

eq: MyType --f Bool; c: COZOTTY~~}.

Then the class defined by

CoZorPointCZass = extend PointClass by

(seZf : MyType <,&, CoZorPointType, super)

{c = Red}

will generate objects of that type. ALl of the meth-

ods of PointClass are inherited unchanged in Col-

orPointCZass. Notice, however, that if the eq mes-

sage is sent to an object of type CoZorPointType,

the parameter for the message must also be of type

ColorPoint Type, not PointType. This is an impor-

tant example of how the meaning of My Type may

change when methods are inherited.

If we wish to change the method eq so that it now

also checks the color components of two records, we

define

NuCoZorPtCZass = update CoZorPointCZass with

(self :MyTwe <m&h ColorPoint Type, super)

j eq = fWkMy Qw) sw=dd
63 ((self-t= c) = (p -e c)) }.

Notice that the updated method eq in NuCoZ-

orPtCZass calls the inherited eq from CoZorPoint-

Class (using the keyword super) and then checks

the “c” components for equality. All other meth-

ods from CoZorPointCZass are inherited unchanged.

Note as well that both CoIorPointCZass and NuCoZ-

orPtGZass generate objects of type CoZorPointType.

The denotational semantics of TOOPLE is writ-

ten in terms of an extension of F<. For example,

if p is an assigment of variables to elements of a

model A of Fs, the semantics of classes are as given

in Figure 2.

While this is quite complex, the main point to

note is that the meaning is defined in terms of

a function whose parameter ranges over types, t,

such that [<A [~]p[t/MyType]. This is a term

of an extension of F< (this term is in an extension

because the bound on [is an expression involv-

ing I, something not allowed in I’<). Moreover,

the semantics of class types involve second order

bounded quantification over types.

Thus, while the syntax of TOOPLE appears to

have little to do with F<, the denotational seman-

tics depends heavily upon it. This raised con-

cerns about the relevance of Pierce’s undecidabil-

ity result to TOOPLE. The question is whether

the dependence is great enough for type-checking

of TOOPLE to be undecidable.

3 Subtype Checking

In this section we show that for a restricted type

constraint system, C, and types, c and r, C l-a 5 r

is decidable. Our proof has two main steps. First,

we introduce a new subtype system that differs

from the original in that it has a restricted form of

the transitivity rule. We prove that the new system

is equivalent to the original one in the sense that a

subtyping judgement is derivable in the old system

if and only if it is derivable in the new one. Once

we specify the application of the (SRefE) axiom in

the new system, we obtain a canonical-form proof

tree. We then specify a deterministic strategy for

applying the new rules and prove that the strategy

constitutes an algorithm for subtype checking - if

a subtyping judgement is derivable, it can be de-

rived using this strategy and the strategy halts on

all inputs. This is shown by defining a decreasing

metric on the size of types.

The proof of decidability outlined above follows

the general approach presented in [CG92] for sub-

type checking in F<. The key difference is that

their strategy gives only a semi-algorithm: for cer-

tain non-theorems their semi-algorithm enters an

infinite loop.

3.1 A Canonical-Form Subtype System

We fnst show that any judgement derivable in the

subtype system of the Appendix is also derivable

in a system in which the (STrans) rule is replaced

by the following specialization of it:

(STrans’)
Ctt<a,Cta~r

Ctt<T

where t is a type variable or constant.

Let I-T denote provability in the restricted sys-

tem. The connection between the two systems is

given by the following lemma.

Lemma 3.1 For restricted type constraint system,

C, and type expressions, g and r, C l-a 5 r u

c tT d 5 7.

The proof of Lemma 3.1 requires the following

lemma which guarantees that comparable types

have the same shape.

Lemma 3.2 Let C be a restricted type constraint

system, and let u and r be type expressions. If
C t-u 5 r, then u and r are structurally similar at

the top Zevel.

Proof. (Of Lemma 3.1.)

33

[C, E t- class(self : MyType)e: Cl ~ssTwe(MyType)~]p = At Id bI~WWwe1.~~ E A(.
IF; MyType Smeth ObjectType(MyType)r, E U {self : MyType} I- e: T]P[[/MyType, o/self]

Figure 2: Denotational semantics of classes

e Trivial.

* We show by cases on type expressions that any

fragment of a proof tree with (STrans) at its root

can be rewritten so that the (SZ’rans) rule has been

moved leafward through (S-t), (SRec) and (SObj)

nodes. In light of [Ghe92], it is important that the

rewrite rules preserve the leaves, the root and the

height of the proof tree fragment.

We first simplify proof trees in which (STrans)

appears at the root and where either antecedent is

(SRefl) by eliminating the (STruns) and the (SRefl)

nodes. By Lemma 3.2 and by induction on the

height of proof trees, a proof tree with (SZ’rans) at

the root, a structured rule in one antecedent and

(STrans) in the other can be rewritten so that the

same structured rule appears in both antecedents.

The rewrite rules for proofs in which both an-

tecedents are either (S-P) and (SRec) are straight-

forward and omitted here. The rewrite for (SObj)

requires the following technical lemma.

Lemma 3.3 If C; t 5 tl is a restricted type con-

straint system, then if

C; t 5 tl t-@/MyType] 12 n[tl/MyType]

is provable, then so is

C t-$l/M~Type] I n[tl/MyType].

Moreover, the height of the proof tree of the second

type assignment is no greater than that of the first.

In Figure 3, we show the transformation for

(SObj) nodes. Note that the last transformation in

the Figure involves inserting a direct proof (guar-

anteed to exist by the above Lemma) for C; tr 5

t2 I-T[tl/MyType] 5 q[tl/MyType] in the upper

left-most part of the proof tree in place of one which

used the Lemma and weakening. This new proof

has height no greater than the original.

Since C contains only simple type constraints,

and since we have now shown that (STrans) can be

moved leafward in a subtyping rule through any

structured rule, it follows that all (STrans) nodes

34

in the resulting tree are of the form given in rule

(STrans’) at the beginning of this section. n

The only remaining degree of freedom is the ap-

plication of the (SRefl) axiom for inclusions of the

form u 5 (T. The (SRejl) axiom is obviously re-

quired for proving such inclusions between type

constants and variables. It is also required when

o = ObjectType(MyType)r and MyType occurs in

a contravariant position in r. We restrict applica-

tions of (SRep) to these two cases. Although the

(SRefE) axiom is also applicable when 0 is a record

or function type, the following lemma guarantees

that a (different) proof can always be obtained by

first destructuring with the (SRec) or (S-t) rules,

respectively.

Lemma 3.4 For restricted type constraint system

C and type expressions u and r, if C l-o < r then

there exists a proof tree in which the (SRefl) axiom

is never applied to a record OF function type.

3.2 An Algorithm for the Canonical-
Form System

We now present a deterministic algorithm for trac-

ing canonical-form proof trees.

Algorithm S(C,a, r): return true if C k~ CT 2 T

and false otherwise.

1. If a = t, where t E VUC, then

(a) If r = t then the proof is completed using

(SRefE). Return true.

(b) Otherwise, if t 5 r’ E C, then use

(STrans’). Return S(C, r’, r).

(c) Otherwise, ift < r’ # C then return false.

2. If u = err --+ ~2, r = rr -t ~2, then use (S-P).

Return S(C, q, 01) and S(C, ~72, ~2).

3.H u = {ml:al;...;m,:a,},

T= {ml:rl;...; mk: rk}, then use (SRec). Re-

turn k < n and S(C,al, ~1) and . . . and

s(c, flk, Tk).

4. If CT = ObjectType(MyType)a’, then

c; t 5 t1 h[tlMYTYPel < n[h/MYTYPel
CkObjectType(MyZ’ype)r < Objectl’ype(MyType)r~

c; t1 5 tz h[tllMY5Pel < rz[tZ/MY5pel

CkObjectType(MyType)rl < ObjectType(MyType)n

C k~bjectType(MyZ’ype)r < ObjectType(MyType)Q

(SOW
(STrans)

u
C; t 5 tl ä ~☯t/hWl�we] 5 ~l☯tl/~y~we]

C t-T[tllWdTwel 5 ~l[tl/M&pel
C; tl 5 t2 h[tl/MyType] < q[tl/MyType], C; tl 5 t2 h[tl/Mv~bel < r2[tzlMYTYPel

C; tl < t2 l-~[tl/hfyTwl < T2[t2/MYTYPel
C kObjectType(MyType)r 5 O&tType(M~‘i”~pe)Tz

(lemma 3.3)
(Weakening)

(STrans)

(SObi)

u
C; tl < t2 t-i-[tl/MyType] < q[tl/MyType], C; tl < t2 I-q[tl/MyType] < TZ[tZ/MyType]

c; h 5 t2 WllMYTYPel 5 dtZ/MYTYPel
(STrans)

C kObjectType(MyType)r 5 ObjectZ’ype(MyType)q
(SW)

Figure 3: Transformation for (SObj) Nodes

(a) If T = ObjectType(MyType)a’ then the C starts with only subtype relations between con-

proof is completed using (SRejl). Return stants. The worst case comes from trying (SRejl)

true. many times on nested object types.

(b) Otherwise, if r = ObjectType(MyType)T’

then use (SObj). Return S(C; s <

t, ~‘WW’w17 WMy TypeI).

Lemma 3.5 If C is a restricted type constraint

system and o and r are type expressions then if

C I-T g 5 7 then S(C, cr, r) = true and if C VT

o < 7 then S(C, o, r) = false.

The algorithm can be improved by a prepass over

cr, T marking which uses of MyType a.re covariant

relative to their definitions, and which are con-

travariant; thus &ring the choice of (SObj), (SRefl)

in advance. The prepass then becomes the asymp-

totically greatest cost requiring either E(O(n)) us-

ing hash tables, or 0(n log n) using balanced trees.

Proof. (Sketch) The restricted type constraint

system condition ensures that C has a forest or-

dering, and the extension to C in rule (SObj) pre-

serves this order. Therefore, there are no infinite

sequences of (STrans’)‘s. (SObj), (SRec) and (S+)

decrease the number of type constructors on recur-

sion. n

Finally, the main theorem:

4 Type Checking and Minimum
Types in TOOPLE

Definition 4.1 We say e is typable with respect to

C, E iff there is a type r such that C, E k e: r. We

say that r is the minimum type for e with respect

to C, E iff C, E I- e: T and for all r’, if C, E k e: r’,

thenCtr < r’.

Theorem 3.6 Let C be a restricted type constraint

system and let IS and r be type expressions. Then

it is decidable whether C l-a 5 T.

Proof. Immediate from Lemmas 3.1, 3.4 and 3.5.

n

3.3 Complexity of the Subtyping Algo-
rit hm

Under realistic assumptions on the cost of primitive

operations, algorithm S is time O(n2) in the max-

imum of the number of type constructors in u and

7 or the length of the longest chain in C, assuming

In this section we show that every pre-term of

TOOPLE which is typable has a minimum type,

and that this minimum type is computable. The

derivation of the algorithm to compute the mini-

mum type, and the proof of its correctness were

complicated by a number of issues that have been

mentioned earlier. It was necessary to add annota-

tions to the class terms of the original TOOPL lan-

guage to ensure that minimum types existed, and

it was necessary to show that it was possible to de-

termine if two types had a least upper bound and

to find that bound. Once these issues have been

addressed, most of the argument supporting the

35

algorithm to find minimum types is fairly straight-

forward, with the possible exception of the handing

of the message passing operation.

In the remainder of this section, we briefly dis-

cuss each of the issues mentioned above, state the

theorem that establishes the decidability of typing

in TOOPLE, and outline its proof.

4.1 Minimum Types for Classes

In TOOPL, class terms did not include any con-

straint on the type produced. Thus, one would

write cZass(seZf : My!Qpe)e in TOOPL rather than

class(self : MyType <m&b ObjectType(MyType)r)

e. Without this extra information, a class term

such as cZass(self : My Type){m = serf + m}

would not have a minimum type. Possible
types for this term include all types of the form

ObjectTypeUW’we){ m: r} for any type 7’. There

is no smallest type of this form.

To avoid this difficulty in TOOPLE, we an-

notate class terms with type information. From

the typing rules in Figures 4 and 5 of the Ap-

pendix, it is easy to see that the only possible type

for a term of the form cZass(self : MyType <,,&

ObjectType(MyType)r) e is CZassType(MyType)r.
Similar type information in update and extend

terms ensures that every typable class term has a

unique type.

4.2 Least Upper Bounds of Type Pairs

In order to find the minimum type of a conditional

expression, one must find the least upper bound

(lub) of the minimum types of the then and else

branches of the expression. For structured types,

the obvious way to look for least upper bounds is to

recursively look for bounds on the subexpressions

associated with the range and domain of the func-

tion space, the corresponding components of record

types or the bodies of object types. In particular,

one can prove:

Lemma 4.2 Given types, u and r, and a re-

stricted type constraint system, C, Zub(a,r,C) ex-

ists only if u and r are structurally similar at the

top level. Furthermore, the Zub is structurally sim-

ilar at the top Zevel to u and r.

Due to the contravariant nature of the subtyping

rule for functions, such a recursive algorithm to

fmd lubs requires a corresponding algorithm to find

greatest lower bounds (glb’s).

To make this recursion work in the case of object

types with local bound names, we need a notion

of lower and upper bounds relative to sets of local

names. To see why, consider the problem of finding

a lower bound for the types:

u = ObjectType(MyType){x: integer;

Y: MY Type -+ My?4

and

r = ObjectType(MyType){y: MyType + MyType}.

It is clear that any lower bound for such types

must contain both an “x” and a “y” component.

The type of the “x” component would be “integer”

and it seems clear that the type of the “y” com-

ponent should be MyType+ MyType. That is, u

appears to be a lower bound for these two types.

However, to show that I- u 5 r using the axioms

and rules for subtyping, one must show that

s 2 t I- {xc: integer; y: s --f s} _< {y: t -+ t}

which is impossible due to the contravariant rule

for subtyping of function types. In fact, it is easy

to see that r has no proper subtype in which y has

type MyType -, &Type.
The problem is that when we look for lub’s or

glb’s of subtypes, we must ensure that it will be

provable that the types we select are bounds us-

ing the limited assumptions the subtyping axioms

and rules will allow us to make about local names

of object types. To address this problem, we must

define a notion of a type that provably bounds two

other types even when only limited assumptions

are made about the relationships between free vari-

ables appearing in the two types.

Definition 4.3 For types, u, T and y, a re-

stricted type constraint system, C, and two sets

of type variables, L = {Ll, L2, . . . , L,} and

U = (Ul,U2,. . .,Uk), we WiZZ say that y is

a monotonic upper bound for Q and T
relative to C, L and U if, given a set

{L’,)...) L;,u;)... UL,L:‘)...) L$ u;)..., u;> of
variables distinct from those appearing in u, r, y,

C, L or U, the following conditions hold:

36

where C’ = C; 1;: 5 Ly;...;Lk 5 Li;Uc 2

q;.. .;q 5 q.

We define the notion of a least monotonic upper

bound (lmub) in the obvious way. Note that in

the case that the sets U and L are empty, which

is how we begin our recursive algorithm, the least

monotonic upper bound and least upper bound are

identical.

For each kind of structured type, we can show

a result similar to the following, which leads to an

algorithm for computing hnub’s (and gmlb’s).

Lemma 4.4
Given types, u = ObjectType(MyType)aM and r =

0 bjec t Type (i%-J Type) TM, a res triced type constraint

system, C, and two sets of type variables, L =

{Ll, L2,. . . Ll and U = (Ul,U2,...,Uk>, then

lmub(a, 7, C, L, U) exists if and only if ‘yM =&f

lmub(aM, TM, C, L U {MyType}, U) exists and

lmub(a, r, C, L, U) = ObjectType(MyType)yM

In particular we get the following important re-

sult .

Lemma 4.5 Let g, r and y be types, C a restricted

type constraint system, and let L and U be disjoint

sets of type variables.

1. There is an algorithm which determines if

Emub(a, T,C, L, U) exists, and if so, returns

that type.

2. If y is a monotonic upper bound for CT and r

relative to C, L and U, then Emub(a, r, C, L, U)

exists.

Similar results hold for monotonic lower bounds.

4.3 The Existence of Minimum Types

The key to the proof of the existence of minimum

types is a deterministic set of rules for deriving min-

imum types, marked with EM. These rules can be

found in Figure 6 of the Appendix. Note that there

are now two distinct type-checking rules for each of

function application, record component extraction,

and message passing. The extra cases result when

the minimum type of a term is given by a type

variable, yet, by subtyping (or smeth), it is known

that the type must represent either a functional or

object type.’

The relation, t < 7, defined in the Appendix,

helps determine the smallest type expression, r,

which is not a type variable and is greater than t.

It turns out to be useful in determining minimum

types of terms. Note that the second message pass-

ing rule, in which the type of o is a type variable

rather than a ObjectType type expression, actually

arises frequently in practice when the user sends a

message to self, since self has type MyType.

The following theorem provides the basis for our

algorithm to find minimum types.

Theorem 4.6 Let C be a restricted type constraint

system, E a syntactic type assignment, e a pre-term

of TOOPLE, and T a type.

1. If C, E k&j e: r then C, E I- e: r.

2. If e is typable with respect to C, E, then there

is a r such that C, E FM e: r and r is the

minimum type for e with respect to C, E. r is

unique up to renaming of bound variables.

Proof. The proof of (1) is easy. The

proof of (2) is by induction on the size of e.

The most interesting cases are for conditionals,

classes, and message sending. The argument

for conditionals follows easily from Lemma 4.5,

part 2. The proof for classes is trivial since the

only possible type for cZass(self : My Type srneth

ObjectType(MyType)r)e is ClassType(MyType)r.

The proof for message sending is complex and di-

vides into two cases depending on whether the min-

imum type of the receiving object is an object type

or a type variable (e.g., MyType).

Suppose C, E I- o + m;: p. By induction we

may suppose that C, E FM o: p’. There are two

possibilities to consider. The tist is that p’ is an

‘While the extra cases for function application and record

extraction do not arise with our restricted type constraints,

they do for other reasonable restrictions on type constraints,

so we include those rules here.

37

object type and the second is that p’ is some type

variable t.

Case 1: Suppose that C, E EM

o: ObjectType(MyType){ml: 71;. . .; m,: m}. Then

by the (MMsg) rule, C, E t-M o -+ mi:

T;[ObjectType(MyType){ml: ~1;. . .; m,: -r,}/MyType].

We claim that the type
ri[ObjectType(MyType){ml: ~1;. . .; m,: 7;1}/MyType]

is the minimum for o + m; with respect to C, E.

Suppose that C, E I- o + m;: T’ for some r’.

Without loss of generality, we may assume that

the last step of the proof of that typing is (Msg).

Thus r’ = T;‘[Y/MyType] , where C, E I- o: y and

C I- y &,& ObjectType(MyType){m;: r;‘}. Since

ObjectType(MyType){ml: ~1;. . .; m,: r,} is mini-

mum for 0,

C I- ObjectType(MyType){ml: ~1;. . .; m,: r,,} 5 y.

Inspection of subtyping and inheritance rules in-

dicates that must be

of the form ObjectType(iyType){. . .; m;: r/‘; . . .}

(by the subtyping rules), and C I- r;” 5 r;’

(by the <m&h rules). In particular, C U {s <

t} I- {ml:q;... 77l;: Ti; . . .m,. . ~n~[s/WO’wel 5

{
* m.. +I.

“‘) ” I ‘*’ .}[t/MyType] (by the subtyping

rules). The latter implies that C U {s 5 t} l-

T;[s/MyType] 5 ~;“[t/MyType]. Letting t = y

and s = ObjectType(MyType){ml: ~1;. . .; m,: TV},

it follows that

C I- q[ObjectType(MyType){ml: ~1;. . .; m,: T”}/

&D”wel I q%/~~T~pel 5 dGfyTyw1,
confirming that

Ti[ObjectType(MyType){ml: ~1;. . .; m,: Tn}/MyType]

is minimum.

Case 2: Suppose that C, E I-M o: t, where t is a

type variable. Since o + m; is typable, there

is a y such that C, E I- o:y and C I- y <m&

ObjectType(MyType){m;: Ti}. Since t is minimum,

ctt<y.

Because

C I- Y Smeth Objec~Type(MyType){m;: Ti},

7 must be a type variable or of the form

ObjectType(MyType)a. However, since C is re-

stricted, it cannot be the case that C t- t 5

ObjectType(MyType)a. Thus y must be a type

variable.

An examination of the &,eth rules shows that if

C I- 7 Lrneth ObjectType(MyType){m;: Ti}, for 7

a me variable, then <

ObjectType(MyType){. . .; m;: 7:;. . .>‘E C for<ZZ

object type such that C I- r;’ 2 7;‘. Again because

C is restricted, C I- t 5 y only if t = y. Thus

t ð ObjectType(MyType){. . . ; mi: 7;‘;. . .} E C.

Thus, C, E I-M o + m;: ~,![t/MyType]. Moreover,

C I- q![t/MyType] 5 ri[t/MyType]. Using similar

ideas, one can show that T;‘[t/MyType] is the mini-

mum type of o e m; with respect to C, E. n

We can now write down the algorithm for mini-

mum typing.

Algorithm M(C, E, e): return the minimum type

for e, with respect to C, E, if it exists, and false

otherwise.

(Sketch) Generally, the conclusion of only one of

the minimum typing rules will match the shape of

e. (In case of function application or message send-

ing, determining the minimum type of the function

or receiving object uniquely determines the appro-

priate rule.) For each hypothesis of that rule which

is a type assignment for a subterm of e, call this

algorithm recursively to determine the minimum

type (if any) of that subterm. If the hypothesis in-

cludes a subtype assertion, call algorithm S from

the previous section. If the hypothesis involves

computation of a lub of two types, use the algo-

rithm sketched at the end of Section 4.2. The only

other hypotheses involve looking up items in C. If

any of these fail, the entire algorithm fails. Other-

wise use the types returned from the hypotheses to

construct the appropriate type for e.

The correctness of the algorithm follows from the

previous theorem.

Corollary 4.7 There is an algorithm which, given

C, E, e, and r, determines if e is typable with re-

spect to C, E, and if so, whether C, E k e: r.

Proof. The algorithm proceeds by using Al-

gorithm M to compute the minimum type of e. If

there is no such type, then e is not typable. If e

does have a minimum type, r’, then call Algorithm

S with C, E, r’, and r. If it returns true then

C, E I- e: r by Theorem 4.6, part 1, and subsump-

38

tion. Hit returns false then e cannot possibly have

type r since r’ was the minimum type of e. w

Unfortunately, the algorithm given is not poly-

nomial in the size of the inputs. The problem is

that the size of the type of a term is not bounded

by a polynomial on the size of the term. It is easy

to write a sequence of terms, {on}, such that for

each n < w,

t- 0,: ObjectType(MyTypel)

{ml: ObjectType(MyType,)

{ma:ObjectType (MyType,)

{m,: MyTyiI’ + MyType +

. . . -+ My Type,)> . . J

It is then easy to show that the sizes of the types

of the terms,

0, -=k ml -e m2 X= . . . + m,

grow exponentially in n, whereas the sizes of the

terms themselves are proportional to n2.

As a result, algorithm M may involve calls to the

subtyping algorithm on types whose size is expo-

nential in the size of the term. On the other hand,

it is certainly not common to define terms whose

types involve nested (and dependent) object type

definitions. Thus while the worst case behavior of

the algorithm is not good, we expect it to perform

in acceptably small polynomial time in practice.

5 Adding Instance Variables to
TOOPLE

The extension of TOOPLE to include hidden in-

stance variables is described in [Bru93a]. The key

difference between methods and instance variables

is that methods are frozen when an object is cre-

ated, while the instance variables of an object may

be updated. Values of instance variables are spec-

ified in class definitions, providing initial values to

be used when new objects are created from classes

(using the new operator). However it is possible to

make a new copy of an object with a different value

for an instance variable using the “gets” expression.

In TOOPL we provide different notation for ac-

cessing instance variables than for sending mes-

sages. We write q.x to access the instance variable

x of q and p -t= getx to send the message getx to

p. We update an instance variable x of object p

by writing p gets {z = e}. The value of this ex-

pression is a new object identical to p but with the

value of e replacing the old value of x.

We do not wish to have instance variables visi-

ble outside of an object. Thus, we will have two

different views of an object: the view from inside

the object in which all instance variables are vis-

ible, and that from without, in which all instance

variables are hidden. We will continue to refer to

the type of an object from the outside using My-

Type, but we will now refer to the type from the

inside using SelfType. Inside a method, the type of

self will now be SelfType. Often we will need to

“close up” au object to hide the instance variables

from the outside world. The function “close” with

type SelfType -+ My Type will perform this action.

The following example of a movable point in the

full TOOPLE should get across the basic idea.

Let PtInst = {x, y:lnt} and

PtMeth = {mu: Int + Int + MyType;
getx, gety: Int; eq: My Type -+ Bool})

The following class has instance variables x and y

which are initialized to 0.

PointClass = class
(self : SelfType 5 (PtInst, PtMeth),

close: SelfType + My Type)

({x = 0, Y = 01,
{mv(dx, dy: Int) = close(seZf gets

{x = se1f.x + dx, y = seZf.y + dy}),

getx = self.x,
gety = self.y,

eq = fun(p: MyType) (se1f.x =

(P t= setx)) 8~ Wf4 = (P += 9eW)

Notice that there is no way to directly ac-

cess the instance variables of the parameter p of

eq. The type of this class is PointClassType =

ClassType(MyType)(PtInst, PtMeth).

While the instance variables are visible in the

type of PointClass, they are not visible in the cor-

responding object types. If MyPoint = new Point-

CZass then the type of MyPoint is:

PointType = ObjectType(MyType)PtMeth.

We have extended our algorithm for determining

39

subtypes and minimum types in this more interest-

ing language.

5.1 Extending Subtype Checking for In-
stance Variables

In this section we sketch how algorithm S can be

extended to include instance variables.

The definition of same shape is loosened so that

s and r have the same shape ifs << (T and n and r

have the same top level constructor.

The type expressions of the full language include

pairs (6, y) where S is a record of instance variable

types and y is a record of method types. As with

the other structured types, the (SZ’rans) rule can

be moved through the components of a pair. How-

ever, a complication arises because the new (CZass),

(Update) and (Extend) rules introduce non-trivial

type constraints of the form SelfType 5 (6,~) into

the type constraint system.

Because these rules are constrained so that

SelfType is not included in either 6 or y, any

constraint t 5 r’ in C can be discharged when

used: the subgoals are provable in C if and only

if they are provable in the smaller constraint sys-

tem C - {t _< r’}.

In order to prove termination of the extended al-

gorithm on C t--a 5 r, we take as our metric the

number of subtype constraints in C and the com-

bined sizes of u and r. It is easy to see that the

metric is strictly decreasing: any use of the (Trans’)

rule reduces the size of C and the remaining struc-

tured rules reduce the size of CT and r.

The O(n2) complexity result continues to hold

since the case of (SZ’runs’) on a (Sobj) rule is iden-

tical, and because the side condition on the (Class)

rule ensures that in the new case of C I-SelfType 5

WY), C WY) I (S’, r’> * C ~WType 5
(S’, y’), that there are no SeZfType; variables in ei-

ther (6,~) or (S’, 7’).

5.2 Extending the Minimal Typing

The cases for type-checking terms which set or eval-

uate instance variables inside methods involve ex-

tra complications similar to those for function ap-

plication and message sending. One must distin-

guish between cases in which the (internal) type

of the object is given as an explicit pair of types

(one type for the record of instance variables, the

other for the record of methods) and the case in

which the type of the object is a type variable. This

latter case is actually the most common, since we

typically have access only to the instance variables

of self (or objects representing updated versions of

self), whose type is now SelfType.

By adding relatively minor and natural restric-

tions on r such that (t 5 r) E C (essentially, r

cannot represent an external object type), we can

still show all terms have minimum types. The al-

gorithm for type-checking is as before.

6 Comparison with previous
work

As noted earlier, Curient and Ghelli [CG92]

sketched out a plan for proving type checking is de-

cidable in F< by providing algorithms to check sub-

typing and for computing minimum types. They

were only able to provide a semi-algorithm for

checking subtypes, however. Later, the type-

checking problem for F< was shown to be unde-

cidable by Pierce ([PieS’L]), who showed that the

problem of determining whether one type was a

subtype of another type was undecidable in F<.

Amadio and Cardelli ([AC90]) described a.n al-

gorithm for determining subtyping relations in a

language with subtyping and recursive types, but

no polymorphic types. A simpler and more effi-

cient algorithm to solve this problem using finite

automata was later given in [KPS93].

While the denotational meaning of object types

in TOOPLE can be given recursively, and the sub-

typing rules for object types are based on the

rules in [AC90], the subtyping rules for TOOPLE

are slightly weaker than for their language. We

do not directly support recursively defined types

in the language and we do not allow object def-

initions to be unwound to be recursively defined

records. Unfortunately, we see no way of adapt-

ing the clever algorithm of [KPS93] for determin-

ing subtypes to our situation. The algorithm for

subtyping in TOOPLE is fairly straightforward

(though its proof of correctness is complex). On

the other hand, the computation of minimum types

is more complex than originally anticipated, with

conditional expressions raising unexpected difficul-

40

ties, and with the size of minimal types exponential

in the size of the terms in the worst case.

7 Summary

In this paper we have described a type-checking al-

gorithm for the language, TOOPLE, a functional

object-oriented language whose semantics is based

on F<. While the algorithm described in this ex-

tended abstract does not include instance variables,

a similar algorithm can be described for the full

language.

This paper is one of a series investigating theo-

retical and computational properties of TOOPLE.

[Bru93a] and [Bru93b] presented type-checking

axioms and rules, a denotational semantics for

TOOPLE, and showed that the type system was

safe. [BCK93] p resented a natural (operational)

semantics, proved a subject reduction theorem

for the language (giving au alternative proof of

type safety), and proved the relative consistency

of the denotational and operational semantics for

TOOPLE.

Our goal in this paper was to show that

TOOPLE has good practical as well as theoret-

ical properties. We believe this provides rather

convincing evidence that one can indeed use F<

as a foundation for the study of object-oriented

programming languages. In particular, the design

and implementation of TOOPLE shows that one

can design a type-safe statically-typed program-

ming language which captures the most impor-

tant features of object-oriented languages, includ-

ing classes, objects, methods, hidden instance vari-

ables, subtypes, and inheritance, while retaining

important practical features (e.g., the decidability

of type checking). While the type-checking algo-

rithm for TOOPLE is not polynomial, the exam-

ples generating this behavior are very unnatural

and are unlikely to arise in practice.

We have implemented a fully functional inter-

preter for TOOPLE (with instance variables) in

ML. The interpreter parses expressions, applies a

type checking algorithm which is based on the min-

imum typing rules for the language, and then evil-

uates the expression by implementing the natural

semantics given in [BCK93]. Further work is con-

tinuing on extending the language to include im-

perative features and to develop formal techniques

for verifying programs in TOOPLE, with special

emphasis on avoiding the need for re-verifying in-

herited methods in subclasses.

While TOOPLE is certainly not a full-featured

language at this point, we believe that it can

serve as the basis for the core of a practical, well-

behaved, object-oriented language.

References

[AC901 Roberto Amadio and Luca Cardelli.

Subtyping recursive types. Technical

Report 62, Digital Systems Research

Center, 1990.

[BCK93] K. Bruce, J. Crabtree, and G. Kana-

[BL90 1

[BM92]

[Bru92]

[Bru93a]

pathy. An operational semantics for

TOOPLE: A statically-typed object-

oriented progr amming language. To

appear in Proceedings of MFPS IX,

1993.

K. Bruce and G. Longo. A mod-

est model of records, inheritance and

bounded quantification. Information

and Computation, 87(1/2):196-240,

1990.

Kim B. Bruce and J. Mitchell. PER

models of subtyping, recursive types

and higher-order polymorphism. In

Proc. ACM Symp. on Principles of

Programming Languages, pages 316-

327, 1992.

K. Bruce. The equivalence of two

semantic definitions of inheritance

in object-oriented languages. In

S. Brookes, M. Main, A. Melton,

M. Mislove, and D. Schmidt, edi-

tors, Proceedings of the 7th Inter-

national Conference on Muthemuti-

cul Foundations of Programming Se-

mantics, pages 102-124. LNCS 598,

Springer-Verlag, 1992.

K. Bruce. A paradigmatic object-

oriented progr amming language: de-

sign, static typing and semantics.

41

[Bru93b]

[BTCGSSl]

[Car891

[Car92]

[CCH+89]

[CCH089]

[CG92]

[CHCSO]

TechnicaI Report CS-92-01, revised,

Williams College, 1993. To appear in

Journal of Functional Programming.

K. Bruce. Safe type checking in a

statically typed object-oriented pro-

gr amming language. In Proc. ACM
Symp. on Principles of Programming

Languages, pages 285-298,1993.

V. Breazu-Tarmen, T. Coquand, C.A.

Gunter, and A. Scedrov. Inheri-

tance and implicit coercion. Informa-

tion and Computation, 93(1):172-221,

1991.

L. CardeIIi. Typeful programming.

Technical Report 45, DEC Systems

Research Center, 1989. Presented at

IFIP Advanced Seminar on Formal

Descriptions of Programming Con-

cepts.

Luca CardeRi. Typed foundations

of object-oriented programming, 1992.

Tutorial given at POPL ‘92.

P. Canning, W. Cook, W. Hill,

J. Mitchell, and W. Olthoff. F-

bounded quantification for object-

oriented programming. In Func-

tional Prog. and Computer Architec-

ture, pages 273-280,1989.

P. Camring, W. Cook, W. Hi&

and W. Olthoff. Interfaces for

strongly-typed object-oriented pro-

gramming. In Proc. ACM Conf. on

Object-Oriented Programming: Sys-

tems, Languages and Applications,

pages 457-467,1989.

P.L. Curien and G. Ghelh. Coher-

ence of subsumption, minimum typing

and type-checking in F.. Muthemat- -
icul Structures in Computer Science,

2:55-91,1992.

William R. Cook, Walter L. Hi& and

Peter S. Canning. Inheritance is not

subtyping. In Proc. 17th ACM Symp.

[CL911

[CM901

[CW85]

[GheSO]

[Ghe92]

[KPS93]

[MitSO]

[Pie921

[PT92a]

on Principles of Progmmming Lun-

guages, pages 125-135, January 1990.

Luca CardeRi and Giuseppe Longo.

A semantic basis for Quest. Journal

of Func tionul Programming, l(4) :4 17-

458, 1991.

L. Cardelh and J.C. Mitchell. Oper-

ations on records. In Muth. Foundu-

tions of Prog. Lung. Semuntics, pages

22-52. Springer LNCS 442, 1990.

L. CardeIIi and P. Wegner. On un-

derstanding types, data abstraction,

and polymorphism. Computing Sur-

veys, 17(4):471-522, 1985.

G. GheIIi. Proof Theoretic Studies

about a minimal type system integrut-

ing inclusion and parametric polymor-

phism. PhD thesis, Universita di Pisa,

1990.

G. GheBi. Divergence of F<

type-checking, 1992. unpublished

manuscript.

Dexter Kozen, Jens Palsberg, and

Michael I. Schwartzbach. Efficient

recursive subtyping. In 90th ACM

Symp. Principles of Programming

Languages, 1993.

J.C. Mitchell. Toward a typed founda-

tion for method specialization and in-

heritance. In Proc. 17th ACM Symp.

on Principles of Progmmming Lun-

guuges, pages 109-124, January 1990.

Benjamin C. Pierce. Bounded quan-

tification is undecidable. In Proc 19th

ACM Symp. Principles of Progmm-

ming Languages, pages 305-315,1992.

Benjamin C. Pierce and David N.

Turner. Object-oriented programming

without recursive types. Technical Re-

port ECS-LFCS-92-226, University of

Edinburgh, 1992.

42

[PT92b] Benjamin C. Pierce and David N.

Turner. Simple type-theoretic foun-

dations for object-oriented program-

ming. Technical report, University of

Edinburgh, 1992.

A The Formal Definition of
TOOPLE

As explained in the body of the paper, 5 represents

the subtype relation between types, while lrneth is

an ordering relating types of objects whose classes

could have been defined using inheritance.

Definition A.1 Relations of the form u < r and

~7 <_meth r, where c and r are type expressions,

are said to be type constraints. If, moreover, t is

a type variable or constant then we say t 2 r and

t <meth r are simple type constraints. If for some

7-r t < r or t <m&h r are included in a set C of

simple type constraints, then we say t is declared in

C. A restricted type constraint system is defined

as follows:

1. The empty sequence, E, is a restricted type con-

straint system.

2. If C is a type constraint system and t and u are

distinct type variables OT constants such that t

does not appear in C and there is no constraint

of the form v <m&h r in C, then C; t 5 u is

a restricted type constraint system.

3. If C is a restricted type constraint system,

r is of the form ObjectType(MyType)a, and

t imeth r is a simple type constraint such that

t does not appear in C or r, then C; t snetb r

is a restricted type constraint system.

We define type constraint derivations of the form

C k 0 5 r and C I- u &,,& r, for C a restricted

type constraint system, and u, r type expressions,

via the sets of axioms and rules given below. Note

that r[u/t] denotes the expression obtained by re-

placing all free occurrences of variable t in r by

u.

The following are the axioms and rules for sub-

types.

(SRef 1) Cl-T<T,

(SVar) c; t<rkt57-,

(STrans)
Ct-y<u, Cl-u<r

cl-yir ’

(S 4
Ct-u’<u, Cl-r<_r’
cl-u--tr<u’-+r’ ’

(SRec)
C I- Uj 2 Tj’j, forl<j<_b<n

C t- {ml:ul.. .;mk:Tk;...;m,:u,} ’

C; s 5 t I- r[s/MyType] 5

(SW)
WMYTwel

C I- ObjectType(MyType)r 5 *
ObjectType(MyType)r’

In the SObj rule, neither s nor t may occur free

in C, r, or r’.

Definition A.2 (from [CG921) We write C k t <

r, if t is a type variable, and C I- t 5 r is provable

using only (SVar) and (STrans).

This ordering is useful in determining the min-

imum type of a term. The axioms and rules for

< -m&h are given below:

(MeVar) c; t kzth I- t- t %eth 7,

(MeRefE)
C I- ObjectType(MyType)r &#,

ObjectType(MyType)r,

C I- Y <m&h WectTyw(MyTwe)~,

(MeTTans)
Cl-T<+

C t- 7 <meth objectType(JW”ype)~’ ’

Definition A.3 A syntactic type assignment, E,

is a finite set of the form:

E = {x,: rl, x la: 5-J

with no variable x; appearing more than once in E.

The type assignment axioms and rules for

TOOPLE are given in Figures 4 and 5.

As discussed in the body of the report, there

is another set of axioms and rules which can be

used to derive the minimum types for terms of

TOOPLE. They are given in Figures 6 and 7.

43

VW C,Ekx:7 ifE(z)=r

(Cond)
C,Et- B:Bool, C,EkM:r, C,El-N:r

C,E I- if B then M else N:r

wJ4

(PT0.i)

C,Eu{~:a}t-M:r

C,El- Xv:a.M:a+ T

C,El- M:a+ r, N:a

C,El- M N:r

C,El-M:Num, C,Ei-N:Num

C, E I- M = N: Boo1

C’,Ekei:Ti foralll<i<n

C,El-{ml=el,..., m,=e,}:{m~:r~;...;m,:~,,}

C,El-e:{ml:rl;...;m,:7,}

C, E I- e.m;: 7; for all 1 5 i 5 n

(CZass)
c; MyType %neth ObjectType(MyType)r, E U {self : MyType} I- e: 7

C, E I- class(self : MyType lrneth ObjectType(MyType)r)e: ClassType(MyType)r

(New)

Pfs9)

C, E I- c: ClassType(MyType)r

C, E I- new c: Tobj(MyType)r

C I- Y <m&l, ObjectType(MyType)(m: T), C,Ek o:y

C, E I- o + m: ~[y/MyType]

C, E I- c: ClassType(MyType){ml: T1;. . .; m,: m}, c t- 7; 2 71)

C; N&w Fmeth ObjectType(MyType){ml: T:; m2: ~2;. . .; m,: TV},
E u (self : MyType, super: {ml: ~1;. . .; m,: r”}} I- ei: r:,

(Update)
C; MyType lmeth ObjectType(MyType){ml: 7;; ma: ~2; . . . ; m,: bin) k 7: 5 pi

C, E I- update c by (self : MyType <,,& ObjectType{ml: ri; . . .; m,: TV}, super)
{ml = ei}: CZassType(MyType){ml: pi; m2: 7-z;. . .; m,: T,.,}

Figure 4: Type Assignment Axioms and Rules

44

C, E k c: ClassType(MyType){ml: ~1;. . .; m,: TV},

C; MY Type &neth ObjectType(MyType){ml: q; . . .; m,: r,; m,+l: 7;1+1},

E u {self : MyType, super: {ml: ~11; . . . ; m,: TV}} t- e,+l: T,!,+~,

(Extend)
C; MyType imeth WectType(Wh”ype){ml: ~1;. . .; m,+l: ~,,+l} t TA+~ i r,+l

C, E k extend c with (self : MyType srneth ObjectType{ml: ~1;. . . ; m, + 1: r,, + l},
super){m,+l = e,.,+*}: CZassType(MyType){ml: ~1;. . .; m,: 7,; m,+l: 7,+1)

(Subsum)

(MVar)

Cl-a<r, C,El-e:a

C, E I- e: r

Figure 5: Type Assignment Axioms and Rules (continued)

C, E I-M x: 7 if E(x) = T

(MCond)

c,Ek~B:p, Cl-p< Bool,

c, E FM M: r’, C, E k&f N: r”

C, E FM if B then M else N: Eub(r’, r”)
if Ivb(T’, 7”) exists

(MAbs)
C,EU{V:O}I-M M:T

C,E I-M XV:U.M:U+ T

(MAPPZ)
C,Et-MM:u-+T, c, E k&f N: u’, C t u’ 5 u

C,El-MMN:T

C,Ek-Mkf:t, C,El-MN:u’, Ck-t<u-+r, Cku’<u
(MAPP~‘) 3 C,EFMM N:T

(MW)
C,El-M M:T, C,El-M N:T’, Cl--<Iurn, Ckr’<Num

C,El-MM = N:Bool

(MRec)
c, E !-M e;: 7; for d 1 5 i 5 n

C,E t-,$.f {ml = el,..., m, = e,}:{ml:~l;...;m,:r,}

(MProj)
c, E FM e: {ml: ~1; . . . ; m,: rn} for i s t 1 < i < n

C, E I-M e.m;:T;
*- - -

Figure 6: Minimum Type Assignment Axioms and Rules

45

(Mproj')
C,E t-M e:t, Ct-t<<{ml:r~;...;m,:r,}forist l<i<n

c, E k~ e.m;: Ti
** _ -

C; MyType _<meth ObjectType(MyType)r, E u {self : MyType} I-M e: r’,

(MClass)
c; WG’we <meth ObjectType(MyType)r k r’ 2 T

c, E k&f class(self : MyType &,& ObjectType(MyType)r)e: ClassType(MyType)r

(MNew)
C, E k-M c: ClassType(MyType)r

C, E FM new c: ObjectType(MyType)r

(MM4
C, E kf,.f o: ObjectType(MyType){ml: ~1;. . .; m,: ‘r,}

C, E t‘M o e m;: T;[ObjectType(MyType){ml: ~1;. . .; m,: T,,}/MyType]

(MM4
C, E FM 0: t, t lrneth ObjectType(MyType){. . . ; mi: 7-i; . . .} E C

C, E FM o -@ m;: T;[t/MyType]

C, E k&f c: CZassType(MyType){ml: ~1;. . .; m,: m}, ct7; 571,

c; MyType <m&h ObjectType(MyType){ml: ri:; m2: ~2;. . .; m,: m},

E U {self : MyType, super: {ml: ~1;. . .; m,: TV}} !-j&f ei: rt,

(M Update)
c; MyType <m&h ObjectType(MyType){ml: ri; m2: ~2;. . .; m,: rn} !- r[5 ri

C, E !-M update c by (self : MyType &,& ObjectType(MyType){ml: ri; . . .; m,: T,,},
super){ml = e\}: CZassType(MyType){ml: pi; m2: r2;. . .; m,: T,,}

C, E FM c: ClassType(MyType){ml: ~11; . . . ; m,: r,,},

C; MyType <m&h ObjectType(MyType){ml: rl; . . .; m,: r,; m,+l: ~,+l},
E U {self : MyType, super: {ml: ~1;. . .; m,: TV}} FM e,+l: T:+~,

(MExtend)
c; MyType <m&h ObjectType(MyType){ml: ~1;. . .; m,+l: ~“+l} I- q!,+l 5 r,tl

C, E FM extend c with

(self : MyType <m&h ObjectType(MyType){ml: ~1;. . .; m,+l: 7,+1}, super)

{ m,+l = e,+l}: CZassType(MyType){ml: ~1;. . .; m,: T,,,; mn+l: 7;1+1}

Figure 7: Minimum Type Assignment Axioms and Rules (continued)

46

