
Speeding Up Machine-Code Synthesis ∗

Venkatesh Srinivasan

University of Wisconsin–Madison,

USA

venk@cs.wisc.edu

Tushar Sharma

University of Wisconsin–Madison,

USA

tsharma@cs.wisc.edu

Thomas Reps

University of Wisconsin–Madison

and Grammatech, Inc., USA

reps@cs.wisc.edu

Abstract

Machine-code synthesis is the problem of searching for an

instruction sequence that implements a semantic specifica-

tion, given as a formula in quantifier-free bit-vector logic

(QFBV). Instruction sets like Intel’s IA-32 have around

43,000 unique instruction schemas; this huge instruction

pool, along with the exponential cost inherent in enumer-

ative synthesis, results in an enormous search space for a

machine-code synthesizer: even for relatively small speci-

fications, the synthesizer might take several hours or days

to find an implementation. In this paper, we present sev-

eral improvements to the algorithms used in a state-of-the-art

machine-code synthesizer MCSYNTH. In addition to a novel

pruning heuristic, our improvements incorporate a number

of ideas known from the literature, which we adapt in novel

ways for the purpose of speeding up machine-code synthe-

sis. Our experiments for Intel’s IA-32 instruction set show

that our improvements enable synthesis of code for 12 out

of 14 formulas on which MCSYNTH times out, speeding up

the synthesis time by at least 1981X, and for the remaining

formulas, speeds up synthesis by 3X.

Categories and Subject Descriptors D.1.2 [Programming

Techniques]: Automatic Programming; I.2.2 [Artificial In-

telligence]: Automatic Programming – Program Synthesis

Keywords Machine-code synthesis, flow independence,

flattening deep terms, pruning heuristics, move-to-front

heuristic, IA-32 instruction set

∗ Supported, in part, by a gift from Rajiv and Ritu Batra; by AFRL under DARPA

MUSE award FA8750-14-2-0270, and DARPA STAC award FA8750-15-C-0082; and

by the UW-Madison Office of the Vice Chancellor for Research and Graduate Edu-

cation with funding from the Wisconsin Alumni Research Foundation. Any opinions,

findings, and conclusions or recommendations expressed in this publication are those

of the authors, and do not necessarily reflect the views of the sponsoring agencies. T.

Reps has an ownership interest in GrammaTech, Inc., which has licensed elements of

the technology reported in this publication.

1. Introduction

Binary analysis and rewriting has received an increasing

amount of attention from the academic community in the last

decade (e.g., see references in [24, §7], [3, §1], [6, §1], [8,

§7]), which has led to the development and wider use of bi-

nary analysis and rewriting tools. Recently [26], it has been

observed that a machine-code synthesizer1 can play a key

role in several such tools, including partial evaluators [25],

slicers [27], and superoptimizers. A machine-code synthe-

sizer is a tool that synthesizes a straight-line instruction se-

quence that implements a specification, which is often given

as a formula in QFBV.

A key challenge in synthesizing machine code from a

specification is the enormous size of the synthesis search-

space: for example, Intel’s IA-32 instruction-set architecture

(ISA) has around 43,000 unique instruction schemas; this

huge instruction pool, along with the exponential cost inher-

ent in enumerative synthesis, results in an enormous search-

space for a synthesizer.

To cope with the enormous synthesis search-space, a

state-of-the-art machine-code synthesizer MCSYNTH [26]

uses (i) a divide-and-conquer strategy to split the synthe-

sis task into several independent smaller sub-tasks, and

(ii) footprint-based search-space pruning heuristics to prune

away candidates during synthesis. However, MCSYNTH

times out for several larger QFBV formulas; even for smaller

formulas, MCSYNTH takes several minutes to find an imple-

mentation. Consequently, if a binary-rewriter client supplies

a formula as input to MCSYNTH, the client has to wait sev-

eral minutes or hours before MCSYNTH finds an implemen-

tation. This delay might not be tolerable for a client that has

to invoke the synthesizer multiple times to rewrite an en-

tire binary. For example, the machine-code partial evaluator

WIPER [25] uses MCSYNTH for the purpose of residual-

code generation. For a small binary, WIPER calls MCSYNTH

tens to hundreds of times. If each formula supplied to MC-

SYNTH is relatively large, partial evaluation of an entire bi-

nary might take several hours or days.

1 We use the term “machine code” to refer generically to low-level code, and do

not distinguish between the actual machine-code bits/bytes and the assembly code to

which it is disassembled.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4444-9/16/11...$15.00

http://dx.doi.org/10.1145/2983990.2984006

165

In this paper, we present several techniques to improve

the synthesis algorithm used in MCSYNTH. Some of our

techniques improve the “divide” phase of MCSYNTH so

that MCSYNTH can better split a synthesis task into smaller

sub-tasks; the remaining techniques improve the “conquer”

phase of MCSYNTH so that MCSYNTH can find an imple-

mentation for a sub-task faster. Our techniques are not re-

stricted to machine code in particular, and can be applied

to speed up other enumerative program synthesizers as well.

We have implemented our techniques in MCSYNTH to create

a newer version of it called MCSYNTH++. Like MCSYNTH,

MCSYNTH++ can be parameterized by the instruction set of

the target instruction-sequence.

Because MCSYNTH++ is much faster than MCSYNTH

(see §6), MCSYNTH++ should improve the speed of exist-

ing binary-rewriting clients that use MCSYNTH [25, 27].

MCSYNTH++ should also allow existing clients to work on

larger QFBV formulas for the purpose of obtaining output

binaries of better quality. For example, WIPER currently

specializes individual instructions with respect to static in-

puts. With MCSYNTH++, instead of residuating code for

several specialized instructions in a basic block, WIPER

could perform specialization at a basic-block level, and

thereby create more optimized code. MCSYNTH++ should

also facilitate building of new clients that were impractical

to build with MCSYNTH.

MCSYNTH++ improves the “divide” phase of MCSYNTH

by addressing the two principal limitations of MCSYNTH’s

algorithm in the following manner:
• MCSYNTH treats memory conservatively while attempt-

ing to split the input formula into independent sub-

formulas. MCSYNTH++ reasons about individual mem-

ory locations, and thus allows splits that were conserva-

tively discarded by MCSYNTH.
• If a sub-formula has a “deep” term (a term with a deep

abstract-syntax tree), MCSYNTH does not attempt to split

the synthesis task into sub-tasks. MCSYNTH++ flattens

the deep term into a sequence of sub-terms, synthesizes

code for the sub-terms, and stitches the code fragments

in the correct order to obtain the final implementation.

MCSYNTH++ improves the “conquer” phase of MCSYNTH

via an additional pruner: in addition to the footprint-based

pruner in MCSYNTH, MCSYNTH++ prunes away candidates

based on the pre-state bits lost/destroyed by a candidate

instruction-sequence when it transforms a state. Addition-

ally for pragmatic purposes, MCSYNTH++ uses a “move-to-

front” heuristic that moves instructions that occur in synthe-

sized code to the front of the instruction pool for the next

synthesis task. This heuristic enables MCSYNTH++ to find

more quickly implementations of input formulas in terms

of more common instructions. Collectively, our techniques

work together to significantly reduce synthesis time, some-

times by a factor of over 1981X.

Our techniques incorporate a number of ideas known

from the literature, including
• alias testing to check for flow independence between

elements of an array [10, 17],
• flattening of an abstract-syntax tree (AST) via scratch-

register allocation for code-generation purposes [1],
• the observation that during synthesis, it is advantageous

to try out sooner the components that are more frequently

used in a codebase [20, 21].

In this paper, we use/adapt these ideas in novel ways for the

purpose of speeding up machine-code synthesis.

Contributions. The paper’s contributions include the fol-

lowing:
• We show how ideas related to array dependence-testing

furnish a better method for splitting a formula into in-

dependent sub-formulas for the purposes of synthesis

(§4.1.2.1).
• We show how one can use flattening and scratch locations

to convert a single large synthesis task involving a “deep”

term into multiple smaller synthesis tasks involving “flat”

terms (§4.1.2.2).
• We propose a novel way of pruning candidates and pre-

fixes during synthesis based on information about the

pre-state bits lost/destroyed by an instruction sequence

when it transforms a state (§4.2.2).
• We show how a simple “move-to-front” heuristic can be

used to prioritize instructions that are commonly used to

implement operations in an instruction set (§4.3).

Our techniques have been implemented in MCSYNTH++, an

improved synthesizer for IA-32. Our experiments show that

MCSYNTH++ synthesizes code for 12 out of 14 formulas

on which MCSYNTH times out, speeding up the synthesis

time by at least 1981X, and for the remaining formulas,

MCSYNTH++ speeds up synthesis by 3X.

2. Background

In this section, we briefly describe the logic in which in-

put formulas are expressed (§2.1). The logic allows a client

to specify some desired state change in a specific hardware

platform—in our case, Intel IA-32 (also known as x86). We

also give an overview of a state-of-the-art machine-code syn-

thesizer MCSYNTH: we briefly describe how binary-rewriter

clients use MCSYNTH to rewrite binaries, and summarize the

algorithm used in MCSYNTH (§2.2).

2.1 QFBV Formulas for Expressing Specifications

Input specifications to MCSYNTH++ can be expressed for-

mally by QFBV formulas. Consider a quantifier-free bit-

vector logic L over finite vocabularies of constant symbols

and function symbols. We will be dealing with a specific in-

stantiation of L, denoted by L[IA-32]. (L can also be instan-

tiated for other ISAs.) In L[IA-32], some constants repre-

sent IA-32’s registers (EAX, ESP, EBP, etc.), some represent

flags (CF, SF, etc.), and some are free constants (m, n, x, y,

etc.). L[IA-32] has only one function symbol “Mem,” which

166

T ∈ Term, ϕ ∈ Formula, FE ∈ FuncExpr

c ∈ Int32 = {..., -1, 0, 1, ...} b ∈ Bool = {True, False}

IInt32 ∈ Int32Id = {EAX, ESP, EBP, ... , m, n, ... }

IBool ∈ BoolId = {CF, SF, ... , x, y, ... }

F ∈ FuncId = {Mem}

op ∈ BinOp = {+, −, ...} bop ∈ BoolOp = {∧, ∨, ...}

rop ∈ RelOp = {=, 6=, <, >, ...}

T ::= c | IInt32 | T1 op T2 | ite(ϕ, T1, T2) | F(T1)

ϕ ::= b | IBool | T1 rop T2 | ¬ϕ1 | ϕ1 bopϕ2 | F = FE

FE ::= F | FE1[T1 7→ T2]

Figure 1: Syntax of L[IA-32].

denotes memory. The syntax of L[IA-32] is defined in Fig. 1.

A term of the form ite(ϕ, T1, T2) represents an if-then-else

expression. A FuncExpr of the form FE[T1 7→ T2] denotes a

function-update expression.

To write formulas that express state transitions, all

Int32Ids, BoolIds, and FuncIds can be qualified by primes

(e.g., Mem′). The QFBV formula for a specification is a re-

stricted 2-vocabulary formula that specifies a state transfor-

mation. It has the form
∧

m

(I′m = Tm) ∧
∧

n

(J′n = ϕn) ∧ Mem′ = FE,

where I′m and J′n range over the constant symbols for registers

and flags, respectively. The primed vocabulary is the post-

state vocabulary, and the unprimed vocabulary is the pre-

state vocabulary. For example, the QFBV formula for the

specification “push the 32-bit value in the frame-pointer

register EBP onto the stack” is given below. (Note that the

IA-32 stack pointer is register ESP.)

ESP′ = ESP − 4 ∧ Mem′ = Mem[ESP − 4 7→ EBP]

In this section, and in the rest of the paper, we show only

the portions of QFBV formulas that express how the state

is modified. QFBV formulas actually contain identity con-

juncts of the form I′ = I, J′ = J, and Mem′ = Mem for con-

stants and functions that are unmodified. Because we do not

want the synthesizer output to be restricted to an instruction

sequence that is located at a specific address, specifications

do not contain conjuncts of the form EIP′ = T. (EIP is the

program counter for IA-32.)

Expressing semantics of instruction sequences. In addi-

tion to input specifications, MCSYNTH++ also uses L[IA-

32] formulas to express the semantics of the candidate

instruction-sequences it considers. The function 〈〈·〉〉 encodes

a given IA-32 instruction-sequence as a QFBV formula.

While others have created such encodings by hand (e.g.,

[22]), we use a method that takes a specification of the con-

crete operational semantics of IA-32 instructions and cre-

ates a QFBV encoder automatically. The method reinterprets

Figure 2: Master-slave architecture of MCSYNTH.

each semantic operator as a QFBV formula-constructor or

term-constructor (see [15]).

Certain IA-32 string instructions contain an implicit mi-

crocode loop, e.g., instructions with the rep prefix, which

perform an a priori unbounded amount of work determined

by the value in the ECX register at the start of the instruction.

In other applications that use the infrastructure on which

MCSYNTH++ is built, this implicit microcode loop is con-

verted into an explicit loop whose body is an instruction

that performs the actions performed by the body of the mi-

crocode loop. (More details about this conversion is avail-

able elsewhere [15, §6].) However, the semantics cannot be

expressed as a single QFBV formula. Because of this ex-

pressibility limitation, neither MCSYNTH nor MCSYNTH++

tries to synthesize instructions that use the rep prefix.

2.2 Machine-Code Synthesis using MCSYNTH

In this section, we give an overview of a state-of-the-art

machine-code synthesizer MCSYNTH [26]. We also summa-

rize MCSYNTH’s algorithm while highlighting its key limi-

tations.

MCSYNTH synthesizes a straight-line machine-code in-

struction sequence from a semantic specification of the de-

sired behavior, given as a QFBV formula. The synthesized

instruction-sequence implements the input formula (i.e., is

equivalent to the formula). MCSYNTH is parameterized by

the ISA of the target instruction-sequence.

Binary rewriters transform binaries via semantic transfor-

mations. Using MCSYNTH, one can create multiple binary

rewriters using the following recipe:
• convert instructions in the binary to QFBV formulas,
• use analysis results to transform QFBV formulas, and
• use MCSYNTH to produce an instruction sequence that

implements each transformed formula.

Examples of semantics-based binary rewriters that can be

created using the above recipe include offline optimizers,

partial evaluators [25], slicers [27], and binary translators

[5]. For example, the machine-code partial evaluator WIPER

[25] specializes the QFBV formulas of instructions with re-

spect to a static partial state, and uses MCSYNTH to produce

residual instructions from the specialized formulas.

MCSYNTH uses enumerative strategies for synthesis.

However, an ISA like IA-32 has around 43,000 unique in-

struction schemas, which, when combined with the expo-

nential cost inherent in enumeration, results in an enormous

search space for synthesis. MCSYNTH attempts to cope with

the enormous search space using a master-slave architec-

ture. The design of MCSYNTH is depicted in Fig. 2. Given

167

a QFBV formula ϕ, MCSYNTH synthesizes an instruction

sequence for ϕ in the following way:

1. The master uses a divide-and-conquer strategy to split ϕ

into independent sub-formulas, and hands over each sub-

formula to a slave synthesizer.

2. The slave uses enumeration, along with an instantia-

tion of the counterexample-guided inductive synthesis

(CEGIS) framework and footprint-based search-space

pruning heuristics to synthesize code for a sub-formula.

3. If a slave times out, the master uses an alternative split.

(For example in Fig. 2, if synthesis of code for ϕm, 1 times

out, the master tries out an alternative split for ϕm-1, 1.)

If all candidate splits for a sub-formula time out, the

master hands over the entire sub-formula to a slave. (For

example in Fig. 2, if all candidate splits of ϕm-1, 1 time

out, the master supplies ϕm-1, 1 as an input to a slave.)

4. The master concatenates the results produced by the

slaves, and returns the final instruction sequence.

In the remainder of this section, we present an example to

illustrate MCSYNTH’s algorithm.

Consider the following QFBV formula ϕ:

ϕ ≡EAX′=Mem(ESP+4) ∧ Mem′=Mem[ESP 7→ EAX]∧

EBX′ = ((EAX ∗ 2) ≫ 2) + EAX

ϕ performs three updates on an IA-32 state: (i) it copies the

32-bit value in the memory location pointed to by ESP +
4 to the EAX register, (ii) copies the 32-bit value in the

EAX register to the memory location pointed to by the stack-

pointer register ESP, and (iii) updates the EBX register with

a value computed using the value in the EAX register.

The divide-and-conquer strategy tries to split the updates

in ϕ across a sequence of sub-formulas 〈ϕ1, ϕ2, ... , ϕk〉
such that if one were to synthesize an instruction sequence

Ii for each ϕi independently, and concatenate the synthe-

sized instruction-sequences in the same order, the result

will be equivalent to ϕ. Such a split is called a legal split.

A sufficient condition for a legal split is flow indepen-

dence—if we can split the updates in ϕ across the sequence

〈ϕ1, ϕ2, ... , ϕk〉 such that there is no flow dependence from

ϕi to any successor sub-formula ϕj (i < j), the split is legal.

The reason is as follows: because Ij is equivalent to some

sub-formula ϕj of ϕ, and Ij does not read any of the loca-

tions that could be modified by any predecessor instruction-

sequence Ii (i < j), I1; I2; ... ; Ik performs the same state

transformations as ϕ.

MCSYNTH uses a very conservative one-sided decision

procedure to check if a split 〈ϕ1, ϕ2, ... , ϕk〉 is flow-

independent. The decision procedure returns MAYBE if ei-

ther (or both) of the following conditions hold:

C1: ϕj might use a register or flag, and a predecessor sub-

formula ϕi (i<j) might modify the same register or flag

C2: ϕj might use some memory location, and a predecessor

sub-formula ϕi (i < j) might modify some memory

location

If neither of the conditions hold, the decision procedure

returns NO (meaning the split is flow independent). For our

example, divide-and-conquer identifies 〈ϕ1, ϕ2〉 as a legal

split of ϕ, where ϕ1 and ϕ2 are defined below.

ϕ1 ≡ EBX′ = ((EAX ∗ 2) ≫ 2) + EAX

ϕ2 ≡ EAX′=Mem(ESP + 4) ∧ Mem′=Mem[ESP 7→ EAX]

However, because the decision procedure returns MAYBE

for the split given below, divide-and-conquer does not iden-

tify 〈ϕ3, ϕ4〉 as a legal split, although it actually is one.

ϕ3 ≡ Mem′ = Mem[ESP 7→ EAX]

ϕ4≡EAX′=Mem(ESP+4)∧EBX′=((EAX∗2)≫2)+EAX

One can see that condition C2 is overly conservative: ϕ3

might update the value in a memory location (Mem(ESP))

that is always disjoint from memory location that might be

used by ϕ4 (Mem(ESP + 4)). Consequently, 〈ϕ3, ϕ4〉, and

many other legal splits, are missed by MCSYNTH.

MCSYNTH’s master produces the legal split 〈ϕ1, ϕ2〉 of

ϕ. MCSYNTH cannot split either ϕ1 or ϕ2 any further, so it

hands over ϕ1 and ϕ2, respectively, to slave synthesizers.

Given a sub-formula ϕi and—for pragmatic reasons—a

timeout value, MCSYNTH’s slave synthesizer either synthe-

sizes an instruction sequence that implements ϕi, or returns

FAIL if it could not find such an instruction sequence before

the timeout expires. The slave synthesizes an instruction se-

quence for ϕi using the following method:

1. The slave enumerates templatized instruction-sequences

of increasing length. A templatized instruction-sequence

is a sequence of instructions with template operands (or

holes) instead of one or more constant values.

2. The slave attempts to find an instantiation of a candidate

templatized instruction-sequence that is logically equiv-

alent to ϕi using CEGIS. If an instantiation is found, the

slave returns it. Otherwise, the next templatized sequence

is considered.

3. The slave uses heuristics based on the footprints of

QFBV formulas (see below) to prune away useless can-

didates during enumeration.

In the remainder of this section, we illustrate the working of

a slave synthesizer using ϕ1 as an example.

The slave starts enumerating templatized one-instruction

sequences. To prune away candidates during enumera-

tion, MCSYNTH uses an overapproximation of locations

that could potentially be touched by a formula. We define

the abstract semantic use-footprint SFP#
USE (kill-footprint

SFP#
KILL) as an overapproximation of the locations used

(modified) by a formula. Concretely, an abstract semantic-

footprint of a formula ϕ is a subset of the set of constant

symbols in ϕ and a special symbol “Mem,” which denotes

the entire memory. The symbols in SFP#
KILL are primed.

Let us assume that the first candidate enumerated by the

slave is C1 ≡ “mov eax, 〈Imm32〉.” The formula ψ1 for C1

is EAX′ = m. The abstract semantic footprints forϕ1 andψ1,

168

respectively, are given below.

SFP#
USE(ϕ1) = {EAX} SFP#

KILL(ϕ1) = {EBX′}

SFP#
USE(ψ1) = {} SFP#

KILL(ψ1) = {EAX′}

One can see that the abstract semantic KILL-footprint of

ψ1 is outside that of ϕ1, and thus C1 can never implement

ϕ1 without possibly modifying a value in a location that

is otherwise unmodified by ϕ1. Therefore, the slave prunes

away C1 because it is a useless candidate.

Suppose that the next candidate is C2 ≡ “mov ebx,

[eax].” The formula ψ2 for C2 is EBX′ = Mem(EAX). The

abstract semantic footprints for ψ2 are given below.

SFP#
USE(ψ1) = {EAX, Mem} SFP#

KILL(ψ1) = {EBX′}

The abstract semantic USE-footprint of ψ2 is outside that

of ϕ1 because ψ2 might use some memory location, but ϕ1

does not use any memory location. Therefore, the slave also

prunes away the useless candidate C2.

Suppose that the slave has exhausted all one-instruction

sequences, and the next candidate is C3 ≡ “lea ebx,

[eax + eax]; lea ebx, [ebx + 〈Imm32〉].” The for-

mula ψ3 for C3 is EBX′ = 2 ∗ EAX + m. The abstract se-

mantic USE/KILL-footprints of ψ3 are within those of ϕ1.

So the slave uses a CEGIS-based loop to check if there ex-

ists an instantiation of the candidate that implements ϕ1. The

CEGIS loop says that no such instantiation exists, and so the

slave discards C3.

The slave eventually enumerates the candidate C4

≡ “imul ebx, eax, 〈Imm32〉; shr ebx, 〈Imm32〉; lea

ebx, [ebx + eax].” (For this example, we pretend that

the shr instruction does not set flags.) The slave returns

the instantiation “imul ebx, eax, 2; shr ebx, 2; lea

ebx, [ebx + eax]” of C4 as the synthesized code for ϕ1.

Because of the depth of the AST of ϕ1, and the large num-

ber of templatized instructions in IA-32 (around 43,000), the

slave takes a few days to synthesize this instruction sequence

for ϕ1 via enumerative synthesis.

In a similar manner, the slave synthesizes the instruction

sequence “mov [esp],eax; mov eax,[esp+4]” for ϕ2.

MCSYNTH concatenates the results produced by the slaves

and returns the resulting instruction sequence. MCSYNTH

takes a few days to complete the overall synthesis task.

In summary, MCSYNTH uses a divide-and-conquer strat-

egy in combination with footprint-based search-space prun-

ing to combat the exponential cost of enumerative synthesis.

However, MCSYNTH suffers from the following limitations:

1. MCSYNTH’s one-sided decision procedure for flow in-

dependence treats memory conservatively. Consequently,

MCSYNTH loses opportunities to find legal splits.

2. If a synthesis task involves a “deep” term (a term whose

AST is deep), MCSYNTH does not attempt to split the

task into smaller sub-tasks.

The overall effect of these limitations is the high synthesis

time for even relatively small QFBV formulas.

3. Overview

At a high level, MCSYNTH++ has the same design as MC-

SYNTH: MCSYNTH++’s master splits the input QFBV for-

mula into a sequence of independent sub-formulas, and

hands over each sub-formula to a slave synthesizer. How-

ever, MCSYNTH++’s master and slave are improved versions

of those of MCSYNTH. MCSYNTH++’s master uses an im-

proved divide-and-conquer strategy that addresses the limi-

tations of MCSYNTH in the following ways:

1. MCSYNTH++ uses an improved one-sided decision pro-

cedure for flow independence. MCSYNTH++’s decision

procedure is capable of reasoning about flow indepen-

dence between different memory locations.

2. If the input formula contains a conjunct with a

“deep” term/sub-formula, MCSYNTH++ flattens the deep

term/sub-formula into a sequence of sub-formulas.

Compared to the master used in MCSYNTH, the improved

master identifies more and finer-grained legal splits. Each

of the sub-formulas in a split is given to a slave synthe-

sizer, which synthesizes an instruction sequence for the

sub-formula. MCSYNTH++’s improved slave uses an addi-

tional pruner based on the bits lost/destroyed by a candidate

instruction-sequence to prune away candidates during syn-

thesis. Additionally, the slave uses a “move-to-front” heuris-

tic to boost the priority of instructions that have already been

used in synthesized code. MCSYNTH++’s master concate-

nates the results produced by the slaves, and returns the con-

catenated instruction-sequence as the synthesized code. Be-

cause of the aforementioned improvements, MCSYNTH++

typically finishes the synthesis task much faster than MC-

SYNTH.2

This section presents an example to illustrate the work-

ings of MCSYNTH++. Consider the same QFBV formula ϕ

that was used in §2.2 to illustrate MCSYNTH’s algorithm.

ϕ ≡ EAX′=Mem(ESP+4) ∧ Mem′=Mem[ESP 7→ EAX]∧

EBX′ = ((EAX ∗ 2) ≫ 2) + EAX

MCSYNTH++’s master first flattens the EBX′ = ... conjunct

into a sequence of conjuncts using interface constants. An

interface constant is a symbolic constant that facilitates the

flow of data between conjuncts created by MCSYNTH++.

Each interface constant will be replaced by a concrete lo-

cation (register, flag, or memory location) in a later step. For

example, MCSYNTH++ rewrites ϕ as ϕ′ by adding interface

constants m and n.

ϕ′ ≡ EAX′ = Mem(ESP + 4) ∧ (1)

Mem′ = Mem[ESP 7→ EAX] ∧

m = EAX ∗ 2 ∧ n = m ≫ 2 ∧ EBX′ = n + EAX

Note that ϕ′ and ϕ are equisatisfiable. (They are equisat-

isfiable instead of equivalent because the vocabulary of ϕ′

2 Note that MCSYNTH++ is not guaranteed to be faster because it has more

legal splits to consider.

169

contains extra constant symbols. However, if we disregard

these constants in the meaning of ϕ′, then ϕ′ ⇔ ϕ.)

MCSYNTH++’s master now uses the improved divide-

and-conquer strategy to identify legal splits of ϕ′. (Recall

from §2.2 that a legal split splits the updates in ϕ′ across a

sequence of sub-formulas 〈ϕ1, ϕ2, ... , ϕk〉 such that if one

were to synthesize instructions for each ϕi independently,

and concatenate the synthesized instruction-sequences in the

same order, the result will be equivalent to ϕ′.) Because

the updates in ϕ′ contain interface constant-symbols, flow

independence is no longer a sufficient condition for a le-

gal split. If the following two conditions hold, then a split

〈ϕ1, ϕ2, ... , ϕk〉 is legal:
• Flow independence for registers, flags, and memory lo-

cations: there is no flow dependence through registers,

flags, or memory locations from a sub-formula ϕi to any

successor sub-formula ϕj (i < j)
• Mandatory flow dependence for interface constants: each

interface constant that gets used in a sub-formula ϕj is

defined in some predecessor sub-formula ϕi (i < j)
Given a candidate split, it is straightforward to check the sec-

ond property. To check the first property, MCSYNTH++ uses

an improved one-sided decision procedure. We illustrate the

improved decision-procedure using examples. Consider the

candidate split 〈ϕ1, ϕ2〉 given below.

ϕ1 ≡ m = EAX ∗ 2 ∧ n = m ≫ 2 ∧ EBX′ = n + EAX ∧

EAX′ = Mem(ESP + 4)

ϕ2 ≡ Mem′ = Mem[ESP 7→ EAX]

The decision procedure for flow independence first checks

whether condition C1 from §2.2 holds. If it does, the decision

procedure returns MAYBE; otherwise, it moves to the next

step. C1 holds for 〈ϕ1, ϕ2〉 because of register EAX, and so

the decision procedure returns MAYBE. (Note that the one-

sided decision procedure in MCSYNTH also returns MAYBE

for this split.)

Consider another candidate split 〈ϕ3, ϕ4〉 given below.

ϕ3 ≡ Mem′ = Mem[ESP 7→ EAX]

ϕ4 ≡ m = EAX ∗ 2 ∧ n = m ≫ 2 ∧ EBX′ = n + EAX ∧

EAX′ = Mem(ESP + 4)

C1 does not hold for 〈ϕ3, ϕ4〉. The improved decision pro-

cedure now collects the terms that denote the addresses of

memory locations that might be modified by ϕ3 (denoted by

MemUpdateTerms(ϕ3)), and the set of terms that denote the

addresses of memory locations that might be used by ϕ4 (de-

noted by MemAccessTerms(ϕ4)). The sets are given below.

MemUpdateTerms(ϕ3) = {ESP}

MemAccessTerms(ϕ4) = {ESP + 4}

If any term T1 in MemUpdateTerms might alias with any

term T2 in MemAccessTerms, the decision procedure returns

MAYBE; otherwise, it returns NO. The decision procedure

checks if T1 and T2 might be aliases of each other by testing

the satisfiability of T1 = T2. In our example, ESP = ESP+4

is UNSAT, so the decision procedure returns NO, mean-

ing that there is no flow dependence from ϕ3 to ϕ4. (Note

that the one-sided decision procedure in MCSYNTH returns

MAYBE for this split.)

The master recursively splits ϕ4 in a similar manner.

Ultimately, the master splits ϕ into the following sequence

of sub-formulas:

ϕ3 ≡ Mem′ = Mem[ESP 7→ EAX] ϕ5 ≡ m′ = EAX ∗ 2

ϕ6 ≡ n′ = m ≫ 2 ϕ7 ≡ EBX′ = n + EAX

ϕ8 ≡ EAX′ = Mem(ESP + 4)

Note that when the two occurences of an interface constant

are put in different sub-formulas of a split, the occurence on

the left of the = operator is primed. The master adds the

primes when it enumerates the candidate splits of a formula.

Before giving the sub-formulas in a legal split to

slave synthesizers, MCSYNTH++’s master assigns con-

crete locations to the interface constants. We illustrate

how MCSYNTH++ assigns concrete locations to the split

〈ϕ3, ϕ5, ϕ6, ϕ7, ϕ8〉. (Note that concrete-location assign-

ment is done on a per-split basis.) Suppose that the regis-

ters {EAX, EBX} are dead at the point where code is to be

synthesized, and these registers are supplied as scratch regis-

ters to MCSYNTH++. MCSYNTH++ can assign an interface

constant any scratch register that is definitely not used in a

downstream sub-formula. For example, MCSYNTH++ can-

not assign m the register EAX because EAX might be used

in ϕ7. If MCSYNTH++ were to assign m the register EAX,

then it introduces a flow dependence that was originally not

present in the split, making the split illegal. So MCSYNTH++

assigns m the register EBX. MCSYNTH++ also assigns the

interface constant n the register EBX. The sub-formulas ϕ5,

ϕ6, and ϕ7 after register assignment are given below.

ϕ5 ≡ EBX′ = EAX ∗ 2 ϕ6 ≡ EBX′ = EBX ≫ 2

ϕ7 ≡ EBX′ = EBX + EAX

MCSYNTH++ supplies the sub-formulas as inputs to the

improved slave-synthesizers. (Note that, as in MCSYNTH,

if synthesis for any sub-formula in a split times out, MC-

SYNTH++’s master tries an alternative split; if MCSYNTH++

fails to synthesize code for all candidate splits, the entire for-

mula is given to a slave.) In the remainder of this sub-section,

we illustrate the working of the improved slave-synthesizer

using ϕ7 as an example.

MCSYNTH++’s slave—just like MCSYNTH’s slave—

enumerates templatized instruction-sequences of increas-

ing length, and prunes away candidates based on abstract

semantic-footprints. However unlike MCSYNTH, candidates

enumerated by MCSYNTH++ pass through an additional

bits-lost-based pruner before reaching the CEGIS loop.

The role of the bits-lost-based pruner is illustrated by

the following example: suppose that the slave is currently

170

enumerating templatized one-instruction candidates, and the

current candidate is C1 ≡ “mov ebx, eax.” The formula

ψ1 for C1 is EBX′ = EAX. (Note that the abstract semantic-

footprints of C1 are within those of ϕ7, and so C1 does not

get pruned away by the footprint-based pruner.) ϕ7 requires

the pre-state bits in register EBX for the computation it per-

forms. However, when C1 transforms a pre-state to a post-

state, C1 loses the pre-state bits that were in EBX because

they were overwritten by the pre-state bits that were in reg-

ister EAX. (Note that this overwrite is explicitly shown in

the QFBV formula ψ1.) This observation has two implica-

tions: (i) C1 cannot implement ϕ7 because it has lost some

of the pre-state bits that are required to implement ϕ7, and

(ii) no matter what instruction sequence we append to C1, we

can never get back the pre-state bits in register EBX. Conse-

quently, MCSYNTH++ discards C1.

Suppose that the next candidate enumerated by the slave

is C2 ≡ “sub ebx,eax.” The formula ψ2 for C2 is EBX′ =
EBX − EAX. (To simplify the presentation of this example,

we pretend that the sub instruction does not set any flags.)

One requires the pre-state bits in registers EAX and EBX

to implement ϕ7. When C2 transforms a pre-state to a post-

state, C2 overwrites the pre-state bits in register EBX with a

value computed from the pre-state bits in registers EAX and

EBX. Even though C2 has overwritten the pre-state bits in

register EBX per se, those bits are latent in the post-state

value in EBX (denoted by the term “EBX − EAX”), and

could be recovered from that post-state value. In this spe-

cific example, one can restore the pre-state bits in register

EBX by appending the instruction “add ebx,eax” to C2.

However, recovery of the pre-state bits is not always pos-

sible, e.g., consider C3 ≡ “and ebx,eax.” When the pre-

state bits required to implement ϕ7 are possibly latent in the

current candidate, such as C2 or C3, MCSYNTH++ conser-

vatively assumes that they can be recovered by additional in-

structions, and does not prune the candidate. (The algorithm

used in the bits-lost-based pruner is described in §4.2.2.)

Eventually, the slave enumerates C4 ≡ “add ebx,

eax.” The formula ψ4 for C4 is EBX′ = EBX + EAX. (To

simplify the presentation of this example, we pretend that

the add instruction does not set any flags.) C4 is not dis-

carded by the footprint-based pruner and the bits-lost-based

pruner, and enters the CEGIS loop. CEGIS tests equivalence

and returns C4 as the implementation of ϕ7. MCSYNTH++

also moves C4 to the front of the instruction pool for the

next synthesis task. In clients like partial evaluators where

MCSYNTH++ is invoked multiple times, this heuristic allows

MCSYNTH++ to try out sooner the instructions that are com-

monly used in synthesized code.

MCSYNTH++’s slaves synthesize code for the remaining

sub-formulas in a similar manner. Each slave finishes the

synthesis task in a few seconds, and MCSYNTH++’s master

returns the concatenated instruction-sequence given below

Algorithm 1 Algorithm McSynthMaster

Input: ϕ, timeout

Output: Cconc or FAIL

1: splits← EnumerateSplits(ϕ)

2: for each split 〈ϕ1, ϕ2〉 ∈ splits do

3: if IsFlowDependent(〈ϕ1, ϕ2〉) = MAYBE then

4: continue

5: end if

6: ret1← McSynthMaster(ϕ1, timeout)

7: if ret1 = FAIL then

8: continue

9: end if

10: ret2← McSynthMaster(ϕ2, timeout)

11: if ret2 = FAIL then

12: continue

13: end if

14: ret← Concat(ret1, ret2)

15: return ret

16: end for

17: return McSynthSlave(ϕ, timeout)

as the synthesized code.

mov [esp], eax; imul ebx, eax, 2;

shr ebx, 2; add ebx, eax;

mov eax, [esp + 4]

The entire synthesis task finishes in under a minute. For this

example, in comparison to MCSYNTH, MCSYNTH++ speeds

up synthesis by over four orders of magnitude.

4. Algorithm

In this section, we describe the algorithms used by MC-

SYNTH++. First, we present the algorithms for the improve-

ments to the “divide” phase. Second, we present the algo-

rithm for the improvement to the “conquer” phase. Third, we

describe the “move-to-front” heuristic. Finally, we provide

the correctness guarantees for MCSYNTH++’s algorithm.

4.1 “Divide” Phase

MCSYNTH++’s master implements the “divide” phase of

synthesis. The goal of the “divide” phase is to split the input

formula into as many smaller independent sub-formulas as

possible. We start by briefly presenting the base algorithm

used by MCSYNTH’s master; we then present the algorithms

for the improvements to the “divide” phase in MCSYNTH++.

4.1.1 Base Algorithm

The algorithm used by MCSYNTH’s master is given as

Alg. 1. The algorithm takes a formula ϕ and a timeout

value as inputs, and either returns an implementation Cconc

or FAIL. Alg. 1 first enumerates all possible splits 〈ϕ1, ϕ2〉
of ϕ via EnumerateSplits (Line 1). EnumerateSplits effec-

tively divides the updates (to registers, flags, and memory lo-

171

Algorithm 2 Algorithm IsFlowDependent

Input: 〈ϕ1, ϕ2〉
Output: NO or MAYBE

1: killed← DropPrimes(SFP#
KILL(ϕ1))

2: used← SFP#
USE(ϕ2)

3: if killed ∩ used = ∅ then

4: return NO

5: else

6: return MAYBE

7: end if

cations) in ϕ between ϕ1 and ϕ2 in all possible ways.3 Alg. 1

then uses the one-sided decision procedure IsFlowDepen-

dent to test if a split is legal (Lines 3–5). (Recall from §2.2

that a sufficient condition for legality of a split in MCSYNTH

is flow independence.) Alg. 1 discards illegal splits; for a

given legal split 〈ϕ1, ϕ2〉, Alg. 1 tries to synthesize code

for ϕ1 and ϕ2, respectively, by recursively calling McSynth-

Master (Lines 6–13). If Alg. 1 synthesizes code for all sub-

formulas in a split, it returns the concatenated instruction-

sequence (Line 15). If none of the splits work out, Alg. 1

hands over the entire formula to a slave synthesizer (Line

17). In Alg. 1, McSynthSlave invokes the slave synthesizer.

The one-sided decision procedure IsFlowDependent is

given as Alg. 2. Alg. 2 checks for possible flow dependence

by computing the abstract semantic-footprints of the input

formulas. If there are no common symbols in SFP#
KILL(ϕ1)

and SFP#
USE(ϕ2), then Alg. 2 returns NO (meaning that

there is definitely no flow dependence from ϕ1 to ϕ2);

otherwise, Alg. 2 returns MAYBE (Lines 3–6). In Alg. 2,

DropPrimes drops the primes from the symbols in the kill

footprint.

4.1.2 Improvements

MCSYNTH++’s master improves upon MCSYNTH’s master

in two ways:
• MCSYNTH++ uses an improved one-sided decision pro-

cedure for flow dependence, and
• MCSYNTH++ flattens “deep” terms before splitting a for-

mula into subformulas.

In this sub-section, we describe these improvements in

greater detail.

4.1.2.1 Improved one-sided decision procedure for flow

dependence. One can see that IsFlowDependent (Alg. 2)

is overly conservative in its treatment of memory. Because

IsFlowDependent uses abstract semantic-footprints, which

in turn overapproximate all memory locations by a single

symbol “Mem,” IsFlowDependent can return MAYBE for

splits that are actually flow-independent.

MCSYNTH++ uses a more precise one-sided deci-

sion procedure (ImprovedIsFlowDependent) to test split

〈ϕ1, ϕ2〉 for possible flow dependence. The decision proce-

3 For the interested reader, the algorithm for EnumerateSplits is given as

Alg. 6 in [26] (excluding lines 13–15).

Algorithm 3 Algorithm ImprovedIsFlowDependent

Input: 〈ϕ1, ϕ2〉
Output: NO or MAYBE

1: killed← DropPrimes(SFP#
KILL(ϕ1))

2: used← SFP#
USE(ϕ2)

3: killedRegsFlags← killed − {Mem}
4: usedRegsFlags← used − {Mem}
5: if killedRegsFlags ∩ usedRegsFlags 6= ∅ then

6: return MAYBE

7: end if

8: killedMem← CollectMemUpdateTerms(ϕ1)

9: usedMem← CollectMemAccessTerms(ϕ2)

10: for T1 ∈ killedMem do

11: for T2 ∈ usedMem do

12: if SAT(T1 = T2) then

13: return MAYBE

14: end if

15: end for

16: end for

17: return NO

dure is given as Alg. 3. To check for the absence of flow

dependences via registers and flags, Alg. 3 uses abstract

semantic-footprints (Lines 1–7). If there are no flow depen-

dences introduced through registers or flags, Alg. 3 collects

the terms denoting memory locations that might be mod-

ified by ϕ1 via CollectMemUpdateTerms (Line 8), and

the terms denoting memory locations that might be accessed

by ϕ2 via CollectMemAccessTerms (Line 9). Alg. 3 then

uses an SMT solver to test if any modified location might

overlap with any used location, and returns MAYBE if that is

the case; otherwise, it returns NO (Lines 10–17). (In Alg. 3,

SAT checks satisfiability of a formula.) Consequently, Im-

provedIsFlowDependent returns NO (meaning that the split

is flow independent) only when each memory location pos-

sibly modified by ϕ1 is guaranteed to not overlap with any

memory location that might be used by ϕ2.

4.1.2.2 Flattening “deep” terms. During the “divide”

phase, MCSYNTH splits the conjuncts (updates to registers,

flags, and memory locations) in ϕ between ϕ1 and ϕ2. How-

ever, the master does not attempt to split the terms within a

conjunct, and the smallest formula that a MCSYNTH slave

can receive as input is an entire conjunct in ϕ. If such a con-

junct contains a term/sub-formula with a deep AST that can

only be implemented by three or more (IA-32) instructions,

searching for an implementation by a slave might take days.

Consequently to speed up synthesis, the master must attempt

to split such “deep” terms/sub-formulas in ϕ. (In the remain-

der of this sub-section, we use “deep term” as shorthand for

“deep term/sub-formula.”)

MCSYNTH++ flattens such “deep” terms using interface

constants. An interface constant is an extra symbolic con-

stant that MCSYNTH++ adds to the vocabulary of ϕ. Given

a “deep” term T, MCSYNTH++ iteratively picks a term/sub-

formula t in T, replaces t by a fresh interface constant n in T,

172

Algorithm 4 Algorithm McSynth++Master

Input: Flattened ϕ, ρ, L, Idef, timeout

Output: Cconc or FAIL, updated ρ
1: ϕ← Substitute(ϕ, ρ)

2: splits← EnumerateSplits(ϕ)

3: for each split 〈ϕ1, ϕ2〉 ∈ splits do

4: if ImprovedIsFlowDependent(〈ϕ1, ϕ2〉) = MAYBE then

5: continue

6: end if

7: I1use ← UsedInterfaceConsts(ϕ1)

8: I1def ← DefinedInterfaceConsts(ϕ1)

9: I2use ← UsedInterfaceConsts(ϕ2)

10: if I1use − Idef 6= ∅ or I2use − Idef − I1def 6= ∅ then

11: continue

12: end if

13: L1← L ∪ UsedRegs(ϕ2)

14: 〈ret1, ρ1〉 ← McSynth++Master(ϕ1, ρ, L1, Idef, timeout)

15: if ret1 = FAIL then

16: continue

17: end if

18: 〈ret2,ρ2〉←McSynth++Master(ϕ2,ρ1,L,Idef ∪ I1def,timeout)

19: if ret2 = FAIL then

20: continue

21: end if

22: ret← Concat(ret1, ret2)

23: return 〈ret, ρ2〉
24: end for

25: for each interface constant c ∈ ϕ do

26: r← PickRegister(L)

27: ρ[c] = r
28: end for

29: ϕ← Substitute(ϕ, ρ)

30: return 〈McSynth++Slave(ϕ, timeout), ρ〉

and appends the conjunct n= t to ϕ. After flattening all such

“deep” terms in ϕ, the resultant formula ϕ′ and ϕ are equi-

satisfiable. (In fact, ϕ and ϕ′ have identical sets of models if

we disregard interface constants in models.) An example of a

flattened formula ϕ′ is given in Eqn. (1) in §3. MCSYNTH++

supplies ϕ′ as input to its master.

The algorithm for MCSYNTH++’s master is given as

Alg. 4. Because the input formula now contains interface

constants, MCSYNTH++’s master must (i) take into account

interface constants while checking if a split is legal (Lines 7–

12), and (ii) assign interface constants concrete locations be-

fore invoking slave synthesizers (Lines 25–28). (To simplify

the presentation of Alg. 4, we assume that MCSYNTH++’s

master assigns interface constants scratch registers. It is

straightforward to use memory locations as scratch locations

in Alg. 4.) To solve the aforementioned tasks, Alg. 4 has ad-

ditional inputs and outputs in comparison to Alg. 1. To solve

task (i), Alg. 4 takes as input the set of interface constants

defined in predecessor sub-formulas (Idef). To solve task (ii),

Alg. 4 takes as input a map ρ that maps interface constants

to assigned scratch registers, and the set of registers L that

are live at the point where code is to be synthesized. Alg. 4

also returns an updated version of ρ as an additional output.

For each interface constant c that has been assigned a

register r in predecessor sub-formulas, Alg. 4 first substi-

tutes r for c in ϕ via Substitute (Line 1). This step en-

sures that each interface constant is uniformly replaced by

the same register in all sub-formulas of a split. Alg. 4 then

enumerates the candidate splits of ϕ, and uses Improved-

IsFlowDependent (Alg. 3) to check if a split 〈ϕ1, ϕ2〉 of

ϕ is flow-independent (Line 4). Once Alg. 4 finds a flow-

independent split, it checks if each use of an interface con-

stant is preceded by its definition: each interface constant

used in ϕ1 must be defined in a predecessor sub-formula,

and each interface constant used in ϕ2 must be defined ei-

ther in a predecessor sub-formula or ϕ1 (Line 10). (In Alg. 4,

UsedInterfaceConsts returns the set of interface con-

stants used in a formula; DefinedInterfaceConstants

returns the set of interface constants that are defined in a for-

mula.) At this point, Alg. 4 has found a legal split of ϕ.

Alg. 4 computes the set of registers L1 that are live after

ϕ1 (Line 13). (In Line 13, UsedRegs returns the set of un-

primed registers in a formula.) Alg. 4 then recursively calls

itself on the sub-formulas ϕ1 and ϕ2, respectively, while

passing the suitable sets of live-after registers and defined

interface-constants (Lines 14–21). If the algorithm fails to

synthesize code for all candidate splits of ϕ, Alg. 4 assigns

dead registers to interface constants via PickRegister, and

records the assignments in ρ (Lines 25–28). (Note that any

register not in the live-after set L is dead at the point where

code is to be synthesized.) Finally, Alg. 4 replaces interface

constants in ϕ with the assigned registers via Substitute,

and invokes the slave synthesizer (Lines 29 and 30).

In summary Alg. 4 recursively splits the input formula

into sub-formulas, while assigning dead registers to inter-

face constants, and ensuring legality of splits. If there are

sufficient dead registers available at the point where code is

to be synthesized, one can also use a more naı̈ve register-

assignment technique in Alg. 4, e.g., each interface constant

gets a unique dead register.

4.2 Conquer Phase

MCSYNTH++’s slave implements the “conquer” phase of

synthesis. The goal of the “conquer” phase is to synthesize

an instruction sequence for a given sub-formula. First, we

briefly present the base synthesis-algorithm used by MC-

SYNTH’s slave; we then present the algorithm for the im-

provement to the “conquer” phase in MCSYNTH++.

4.2.1 Base Algorithm

The algorithm used by MCSYNTH’s slave is given as the un-

highlighted and unboxed lines of Alg. 5. Given a formula

ϕ, the slave enumerates templatized instruction-sequences

of increasing length, and uses CEGIS to check if there ex-

ists an instantiation of a candidate instruction-sequence that

implements ϕ (Lines 16–21). Before the CEGIS loop, the

slave tries to prune away candidates via abstract semantic-

footprints: if the abstract semantic-footprints of the candi-

173

Algorithm 5 Algorithm McSynth++Slave (Unhighlighted

and unboxed lines constitute algorithm McSynthSlave)

Input: ϕ, timeout

Output: Cconc or FAIL

1: instrPool← ReadInstrPool()

2: prefixes← {ǫ}
3: while prefixes 6= ∅ do

4: for each prefix p ∈ prefixes do

5: prefixes← prefixes − {p}
6: for each templatized instruction i ∈ instrPool do

7: C← Append(p, i)
8: ψc← 〈〈C〉〉
9: if SFP#

USE(ψc) * SFP#
USE(ϕ) ∨ SFP#

KILL(ψc) *
SFP#

KILL(ϕ) then

10: continue

11: end if

12: if BITS
#

available(ψc) + BITS
#

required(ϕ) then

13: continue

14: end if

15: prefixes← prefixes ∪ {C}
16: ret = CEGIS(ϕ, C, ψc)

17: if ret 6= FAIL then

18: instrPool← MoveToFront(ret, instrPool)

19: WriteInstrPool(instrPool)

20: return ret

21: end if

22: end for

23: end for

24: end while

25: return FAIL

date are outside those of ϕ, the slave prunes the candidate

away (Lines 9–11). The slave prunes away only useless can-

didates (candidates that either do not implement ϕ, or im-

plement ϕ but superfluously use or modify locations that

are otherwise unused/unmodified by ϕ). If an instance of

any of the remaining candidates implements ϕ, the slave re-

turns that instance as the implementation of ϕ. In Alg. 5,

ReadInstrPool populates an instruction list by reading

templatized instructions from a file; Append appends an in-

struction to an instruction sequence.

4.2.2 Improvements

MCSYNTH++’s slave improves upon MCSYNTH’s slave by

using an additional pruner based on the pre-state bits lost by

an instruction sequence when it transforms a pre-state to a

post-state.

MCSYNTH uses abstract semantic-footprints to prune

away candidates that might either use/modify a location

that is otherwise unused/unmodified by the specification ϕ.

While this pruning heuristic prunes away candidates that

might use extra information in comparison to ϕ, it does not

prune away candidates that do not have enough information

to implement ϕ. We now present a pruning heuristic that dis-

covers when candidates have insufficient information to im-

plement ϕ.

Suppose that BITSrequired(ϕ) represents the set of regis-

ters and flags that are required to implement a specification

ϕ. (The bits-lost-based pruner in MCSYNTH++ currently

handles only registers and flags. Extending this pruner to

handle memory locations is a possible direction for future

work.) For example, consider the formula ϕ1 ≡ EAX′ =
EAX + EBX. To implement ϕ1, one needs the pre-state

bits in registers EAX and EBX, i.e., BITSrequired(ϕ1) =
{EAX, EBX}. Consider another formula ϕ2 ≡ EAX′ =
EAX & 0x0000ffff. To implement ϕ2, one needs only

the least-significant 16 pre-state bits in register EAX, i.e.,

BITSrequired(ϕ1) = {AX}. (In IA-32, register AX denotes the

least-significant half of register EAX.) One can semantically

characterize BITSrequired as follows:

Definition 1.

A bit b /∈ BITSrequired(ϕ) iff ∀m,m |= ϕ⇔ mb |= ϕ,

where mb is m with bit b flipped.

Recall from §2.1 that the QFBV formula that specifies the

state transformation performed by an instruction sequence is

a restricted 2-vocabulary formula of the form
∧

m

(I′m = Tm) ∧
∧

n

(J′n = ϕn) ∧ Mem′ = FE,

where FE is a function-update expression of the form

Mem[L1 7→ V1][L2 7→ V2] . . . [Lp 7→ Vp]. (Each Li is a

term that denotes a memory location l, and each Vi is a term

that denotes the value in l in the post-state.) In such a 2-

vocabulary formula, we call each term/formula Tm, ϕn, and

Vp an r-value term4 because they denote the post-state r-

values. Given a candidate C whose state transformation is

represented by the formula ψc, let BITS
#
available(ψc) repre-

sent the set of unprimed register and flag constant-symbols

that appear in r-value terms in ψc. BITS
#
available(ψc) is really

an over-approximation of the registers and flags whose pre-

state bits can be recovered from ψc. For example, consider

the candidate C1 ≡ “mov eax, ebx” whose formula ψ1 is

EAX′ = EBX ∧ EBX′ = EBX ∧ . . . ∧ EDI′ = EDI ∧ . . .

CF′ = CF ∧ SF′ = SF ∧ . . . ∧ Mem′ = Mem.

(Note that we have explicitly shown in ψ1 the identity con-

juncts for parts of the state that are unmodified by C1.) Then

BITS
#
available(ψ1) = {EBX, . . . , EDI, CF, SF, . . . }. (Note that

EAX is not in BITS
#
available(ψ1).) MCSYNTH++ computes

BITS
#
available for a formula ψ via a syntax-directed transla-

tion over ψ. In the following definitions, RF is the set of

unprimed constant symbols used for registers and flags, T is

the set of QFBV terms, and FE is the set of function-update

expressions over the function symbol Mem.

4 In compiler parlance, the l-value of an assignment denotes the location

that is assigned to by the assignment; the r-value denotes the value that is

assigned to the location.

174

Definition 2.

BITS
#

available(c) =

{

{c} if c ∈ RF

∅ otherwise

BITS
#

available(Mem(t)) = ∅, where t ∈ T

BITS
#

available(Mem) = ∅

BITS
#

available(fe[l 7→ v]) = BITS
#

available(v) ∪ BITS
#

available(fe),

where l, v ∈ T, and fe ∈ FE

For all other cases, BITS
#

available is the union of BITS
#

available

of the constituents.

In the implementation, if a register R is in BITS
#
available,

MCSYNTH++ adds the smaller registers enclosed by R to

BITS
#
available. (For example, if EAX is in BITS

#
available, MC-

SYNTH++ adds AX, AL, and AH to BITS
#
available.)

MCSYNTH++ prunes away any candidate C (with QFBV

formula ψc) that satisfies the following property:

BITS
#
available(ψc) + BITSrequired(ϕ).

Suppose that one can obtain BITSrequired(ϕ) precisely for an

input formula ϕ. Even when BITS
#
available overapproximates

the registers/flags whose pre-state bits are available in ψc,

if a candidate C satisfies the above property, then it could

never implement ϕ, and thus MCSYNTH++ prunes away C.

Moreover, no matter what instruction sequence we append

to C, we can never get back the lost bits. Consequently, MC-

SYNTH++ also does not retain C as a prefix for enumerating

future candidates. If BITSrequired can be obtained precisely

for an input formula, then the bits-lost-based pruner does not

affect the completeness properties of the synthesizer.

Because it is difficult to obtain BITSrequired(ϕ) pre-

cisely for an input formula ϕ, MCSYNTH++ uses an over-

approximation of BITSrequired(ϕ): MCSYNTH++ computes

SFP#
USE(ϕ), and disregards the symbol “Mem,” which de-

notes the entire memory in abstract semantic-footprints. (i.e.,

BITS
#
required(ϕ) = SFP#

USE(ϕ) − {Mem}). Even though this

overapproximation makes MCSYNTH++’s synthesis algo-

rithm incomplete (Thm. 2), the bits-lost-based pruner pro-

vides an additional 7–14% improvement on top of the im-

provements obtained by our other techniques (see §6).

The algorithm used by MCSYNTH++’s slave is given as

Alg. 5. The bits-lost-based pruning is shown in the high-

lighted lines of Alg. 5.

4.3 Pragmatics

The principal use case of MCSYNTH++ is that of a code gen-

erator in semantics-based binary-rewriting clients (e.g., the

residual-code generator in the machine-code partial evalua-

tor WIPER [25]). Binary rewriters would typically convert

instructions in a program into a formula, modify the formula

based on various semantic criteria, and supply the modified

formula as input to MCSYNTH++. In programs, certain op-

erations tend to occur more frequently than others (e.g., in-

crement/decrement the stack pointer, write to the stack, etc.)

and certain instructions tend to be used more frequently than

others to implement such operations. It is beneficial to prior-

itize during synthesis the instructions that are used to imple-

ment common operations in input formulas.

To prioritize useful instructions, MCSYNTH++ uses a

“move-to-front” heuristic: whenever a slave finds an imple-

mentation, MCSYNTH++ moves the templatized instructions

that occur in that implementation to the front of the list that

serves as the instruction pool in the next synthesis task; the

next synthesis task could be the invocation of a slave on a

different sub-formula in the same input formula, or the invo-

cation of a slave on a sub-formula in a new input formula. In

Alg. 5, this heuristic is denoted by the call to MoveToFront

(Line 18); WriteInstrPool dumps the instruction list to

a file (Line 19), which would be read by the next synthesis

task (Line 1).

Both MCSYNTH and MCSYNTH++ also incorporate func-

tion caching to reuse implementations of previously seen

formulas.

4.4 Correctness

In this sub-section, we present the soundness and complete-

ness properties of MCSYNTH++.

Lemma 1. Alg. 5 is sound. (The formula 〈〈I〉〉 for instruction

sequence I returned by Alg. 5 is logically equivalent to the

input QFBV formula ϕ.)

Proof. The CEGIS loop of the slave (Line 16 in Alg. 5)

returns an instruction sequence I only if 〈〈I〉〉 is equivalent

to ϕ.

Lemma 2. For any legal split 〈ϕ1, ϕ2〉 of ϕ, if ϕ1 ⇔ 〈〈I1〉〉,
ϕ2 ⇔ 〈〈I2〉〉, and l is a set of scratch locations that appear

in I1 and I2 but not in ϕ, then ϕ ⇔ 〈〈I1; I2〉〉 disregarding

scratch locations l.

Proof. If there are no interface constants in ϕ, then flow in-

dependence is the only criterion for a legal split, and the

proof for this lemma under the aforementioned case is avail-

able elsewhere (Lemma 2 in [26]). Thus, we only have to

prove that the lemma still holds when interface constants are

present in a flow-independent split 〈ϕ1, ϕ2〉. Without loss

of generality, let us assume that there is only one interface

constant n, which replaces term T in ϕ. Because 〈ϕ1, ϕ2〉
is a legal split, “n′ = T” would appear in ϕ1, and n would

be used in ϕ2. MCSYNTH++ assigns n a location l that is

dead at the point where code is to be synthesized, and I1 ini-

tializes the location l according to T. Because I2 follows I1,

I2 always reads the value written by I1 in l. Consequently,

ϕ and 〈〈I1; I2〉〉 are equisatisfiable, and ϕ ⇔ 〈〈I1; I2〉〉 disre-

garding l.

Theorem 1. Soundness. MCSYNTH++ is sound.

Proof. Follows from Lemmas 1 and 2.

175

With the exception of candidates pruned away because of

the imprecision introduced while computing BITS
#
required for

an input formula, MCSYNTH++ has the same completeness

guarantees as MCSYNTH (Thm. 2 in [26]).

Theorem 2. Completeness. Modulo SMT timeouts and can-

didates that are pruned away because of imprecision in

BITS
#
required(ϕ), if there exists an instruction sequence I that

(i) is equivalent to ϕ, and (ii) does not superfluously use/-

modify locations that are otherwise unused/unmodified by

ϕ, then MCSYNTH will find I and terminate.

Proof. In comparison with MCSYNTH, the only source of in-

completeness in MCSYNTH++ is the bits-lost-based pruner.

If BITS
#
required(ϕ) is imprecise, then a candidate that actually

has enough information to implement ϕ might be pruned

away. Apart from the bits-lost-based pruner there are no

other sources of incompleteness: the “move-to-front” heuris-

tic does not prune any candidate; MCSYNTH++’s master

tries out all candidate splits of ϕ, and if MCSYNTH++ fails to

synthesize code for all candidate splits, MCSYNTH++ sup-

plies the entire ϕ as input to a slave synthesizer.

5. Implementation

MCSYNTH++ uses Transformer Specification Language

(TSL) [14] to convert instruction sequences into QFBV for-

mulas. The concrete operational semantics of the integer

subset of IA-32 is written in TSL, and the semantics is rein-

terpreted to produce QFBV formulas [15]. MCSYNTH++

uses ISAL [14, §2.1] to generate the templatized instruc-

tion pool for synthesis. MCSYNTH++ uses Yices [7] as its

SMT solver. In the examples presented in this paper, we have

treated memory as if each memory location holds a 32-bit in-

teger. However, in our implementation, memory is addressed

at the level of individual bytes. MCSYNTH++, just like MC-

SYNTH, is capable of accepting scratch registers for synthe-

sis [26, §4.4].

6. Experiments

We tested MCSYNTH++ on QFBV formulas obtained from

instruction sequences from the SPECINT 2006 benchmark

suite [11], and also in the context of a client—the machine-

code partial evaluator WIPER [25]. Our experiments were

designed to answer the following questions:

1. In comparison with MCSYNTH, what is the speedup in

synthesis time caused by each individual improvement

to the “divide” phase? What is the speedup when both

improvements are used together?

2. In comparison with MCSYNTH, how many timeouts re-

main with each individual improvement to the “divide”

phase? How many timeouts remain with both improve-

ments together?

3. With both improvements to the “divide” phase turned

on, what is the speedup in synthesis time caused by the

bits-lost-based pruner and the “move-to-front” heuristic,

respectively? What is the speedup when both improve-

ments are used together?

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

S
y

n
th

e
si

s
ti

m
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

Im
p

ro
v
e

d
 D

P
 (

se
co

n
d

s)

Synthesis time - baseline McSynth (seconds)

(i) Synthesis Time - Effect of improved DP for flow independence

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

S
y

n
th

e
si

s
ti

m
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

fl
a

tt
e

n
in

g
 o

f
"d

e
e

p
"

te
rm

s
(s

e
co

n
d

s)

Synthesis time - baseline McSynth (seconds)

(ii) Synthesis Time - Effect of flattening

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

S
y

n
th

e
si

s
T

im
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

Im
p

ro
v
e

d
 D

P
 +

 F
la

tt
e

n
in

g
 (

se
co

n
d

s)

Synthesis time - baseline McSynth (seconds)

(iii) Synthesis Time - Effect of both "divide" improvements

Figure 3: Synthesis times obtained via improvements to the “di-

vide” phase in MCSYNTH++ for the corpus of 50 QFBV formulas.

4. What is the speedup in residual-code-synthesis time

when MCSYNTH++ is used in the place of MCSYNTH

in WIPER?

All experiments were run on a system with a quad-core,

3GHz Intel Xeon processor; however, MCSYNTH++’s algo-

rithm is single-threaded. The system has 32 GB of memory.

To answer the first three questions, we used the same

benchmark suite that was used to test MCSYNTH: QFBV

formulas obtained from a representative set of “important”

instruction sequences that occur in real programs. We har-

vested the five most frequently occurring instruction se-

quences of lengths 1 through 10 from the SPECINT 2006

benchmark suite (50 instruction sequences in total). We con-

verted each instruction sequence into a QFBV formula and

used the resulting formulas as inputs for our experiments.

Note that in general there is no restriction on the source

of the input formula, and the formula can come from any

client; we simply chose to obtain the input formulas from

instruction sequences for experimental purposes.

To answer the first two questions, we measured the syn-

thesis time with (i) only the improved decision-procedure for

flow independence turned on, (ii) only flattening of “deep”

terms turned on, and (iii) both improvements turned on. We

compared the numbers against the baseline synthesis-time

numbers obtained from MCSYNTH.

The results are shown in Fig. 3(i), (ii), and (iii), respec-

tively. In Fig. 3, the blue lines represent the diagonals of

the scatter plots. If a point lies below and to the right of

the diagonal, the baseline performs worse. All axes in Fig. 3

176

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

S
y

n
th

e
si

s
ti

m
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

b
o

th
 "

d
iv

id
e

"
im

p
ro

v
e

m
e

n
ts

 +
 b

it
s-

lo
st

-b
a

se
d

 p
ru

n
in

g
 (

se
co

n
d

s)

Synthesis time - baseline McSynth + both "divide" improvements (seconds)

(i) Synthesis Time - Effect of bits-lost-based pruning

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

S
y

n
th

e
si

s
ti

m
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

b
o

th
 "

d
iv

id
e

"
im

p
ro

v
e

m
e

n
ts

 +
 "

m
o

v
e

-

to
-f

ro
n

t"
 h

e
u

ri
st

ic
 (

se
co

n
d

s)

Synthesis time - baseline McSynth + both "divide" improvements (seconds)

(ii) Synthesis Time - Effect of "move-to-front" heuristic

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000S
y

n
th

e
si

s
ti

m
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

a
ll

 i
m

p
ro

v
e

m
e

n
ts

 (
se

co
n

d
s)

Synthesis time - baseline McSynth + both "divide" improvements (seconds)

(iii) Synthesis Time - Effect of both "conquer" improvements

Figure 4: Synthesis times obtained via improvements to the “con-

quer” phase in MCSYNTH++ for the corpus of 50 QFBV formulas.

use logarithmic scales. MCSYNTH timed out on 14 formulas.

(The timeout value was three days.) With only the improved

decision-procedure turned on, the number of timeouts was

10; with only flattening turned on, the number of timeouts

was 6; with both improvements to the “divide” phase turned

on, the number of timeouts was 2. For the formulas that

timed out in MCSYNTH but did not timeout in MCSYNTH++,

the average speedup in synthesis time was over 233X (com-

puted as a geometric mean). For 3 formulas, the speedup

was over three orders of magnitude (surrounded by a cir-

cle in Fig. 3(iii)). Among the formulas that did not timeout

in MCSYNTH, the two improvements reduced the synthesis

time considerably only for three formulas (surrounded by a

square in Fig. 3(iii)). For the formulas that did not timeout,

the average speedup in synthesis time caused by the two im-

provements was 1.34X.

To answer the third question, we turned on both improve-

ments to the “divide” phase, and we measured the synthesis

time with (i) only the bits-lost-based pruner turned on, (ii)

only the “move-to-front” heuristic turned on, and (iii) both

improvements turned on. We compared the numbers against

the synthesis times obtained when both improvements to the

“divide” phase were turned on. The results are shown in

Fig. 4(i), (ii), and (iii), respectively. The average speedup

in synthesis time caused by the bits-lost-based pruner was

1.07X (computed as the geometric mean). If we consider

only formulas whose baseline synthesis-time numbers are

100 seconds or more, the speedup is slightly higher: 1.14X.

We believe that the speedup is relatively small because MC-

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000S
y

n
th

e
si

s
ti

m
e

 -
b

a
se

li
n

e
 M

cS
y

n
th

 +

a
ll

 i
m

p
ro

v
e

m
e

n
ts

 (
se

co
n

d
s)

Synthesis time - baseline McSynth (seconds)

Synthesis Time - Effect of all improvements

Figure 5: Effect of all improvements in MCSYNTH++ for the

corpus of 50 QFBV formulas.

SYNTH’s footprint-based pruner already prunes away most

of the candidates that could potentially be pruned away by

the bits-lost-based pruner. For example, consider the input

formula ϕ ≡ EBX′ = EAX + EBX, and the candidate C

≡ “mov eax, ebx” with the QFBV formula ψ ≡ EAX′ =
EBX. The candidate loses the pre-state bits in register EAX

when it transforms a state. Because ϕ requires the pre-state

bits in EAX for the computation it performs, C will be po-

tentially pruned away by the bits-lost-based pruner. How-

ever, SFP#
KILL(ϕ) = {EBX′} and SFP#

KILL(ψ) = {EAX′},

and the abstract semantic kill-footprint of ψ is outside that

of ϕ. Consequently, C will be pruned away by the footprint-

based pruner, and will never reach the bits-lost-based pruner.

The “move-to-front” heuristic caused more pronounced

speedup. The average speedup in synthesis time caused by

the heuristic was 3X (computed as a geometric mean). If we

consider only formulas whose baseline synthesis-time num-

bers are 100 seconds or more, the speedup is 6X. Our cor-

pus consists of formulas obtained from the most frequently-

occurring instruction sequences, and programs tend to per-

form certain computations more frequently than others (e.g.,

increment/decrement the stack pointer, write to a stack loca-

tion, etc.). Consequently, many formulas in our corpus con-

tain specifications for such frequently performed computa-

tions. (Note that this would be the case even if a binary-

rewriter client like a partial evaluator were producing the

corpus of formulas because the rewriter originally obtains

the base formulas from instructions in the binary.) The

“move-to-front” heuristic produced a sizeable speedup be-

cause it prioritizes instructions that are used to implement

common operations in the input formulas. The heuristic

caused a slowdown in two formulas because it moved some

instructions to the front of the instruction list, pushing later

some more-infrequently-used instructions required to imple-

ment the formulas.

The comparison of synthesis-time numbers produced by

MCSYNTH and MCSYNTH++ is shown in Fig. 5. In sum-

mary, with all the improvements turned on and in compar-

ison with MCSYNTH, MCSYNTH++ speeds up the synthe-

sis time by over 1981X for formulas that timed out in MC-

SYNTH but did not timeout in MCSYNTH++. For the formu-

las that did not timeout in MCSYNTH, MCSYNTH++ speeds

up the synthesis time by 3X. If we consider only formulas

whose baseline synthesis-time numbers are 100 seconds or

more, the speedup is 11X.

177

Table 1: Comparison of residual-code-synthesis time using MC-

SYNTH and MCSYNTH++, respectively, in WIPER.

Application No. of

calls to

the syn-

thesizer

Synthesis

time using

MCSYNTH

(seconds)

Synthesis

time using

MC-

SYNTH++

(seconds)

Speedup

power 6 16 13.5 1.19

interpreter 19 30 22.8 1.32

sha1 23 25.4 21 1.21

filter 212 241 177 1.36

dotproduct 306 312 267 1.17

To answer the fourth question, we measured the total

time taken to synthesize residual code using MCSYNTH and

MCSYNTH++, respectively, while partially evaluating the

microbenchmarks used in [25] with WIPER. The results are

shown in Table 1. The average speedup in residual-code-

synthesis time caused by MCSYNTH++ is 1.25X (computed

as a geometric mean). Note that the microbenchmarks are

fairly small programs (see Table 1 in [25]); the specialized

formulas given to the synthesizer are also small, and are

often implemented by one instruction.

7. Related Work

Superoptimization. Superoptimization aims to find an op-

timal instruction-sequence for a target instruction-sequence

[4, 5, 13, 16, 18, 19, 23]. Peephole superoptimization [4]

uses “peepholes” to harvest target instruction-sequences,

and replace them with equivalent instruction sequences that

have a lower cost. A superoptimizer can be implemented by

using a machine-code synthesizer that has been enhanced

to bias its search toward short instruction sequences. Recall

that 〈〈·〉〉 converts an instruction-sequence into a QFBV for-

mula. Suppose that SynthOptimize is a client of the synthe-

sizer that is biased to synthesize short instruction sequences.

Then a superoptimizer can be constructed as follows:

Superoptimize(InstrSeq) = SynthOptimize(〈〈InstrSeq〉〉)

However, one cannot construct a synthesizer from a super-

optimizer. Moreover, recent superoptimizers sacrifice com-

pleteness for reduced superoptimization times by resorting

to stochastic search [18, 23]. In contrast, the techniques used

in MCSYNTH++ aim to reduce the synthesis time as much as

possible without losing its completeness properties.

From a practical standpoint, certain techniques used in

modern superoptimizers like STOKE [23] can be applied to

machine-code synthesis. The following points outline how

one could potentially adapt STOKE for machine-code syn-

thesis:
• The cost function in STOKE takes into account both

correctness and performance. If a client of the synthesizer

does not care about performance, one could drop the

performance component of the cost function.
• STOKE uses Markov Chain Monte Carlo (MCMC) sam-

pling to search through the space of instruction se-

quences, and validates candidates by executing the in-

put and candidate instruction-sequences on bare metal

using a finite set of test inputs. Executing tests on bare

metal allows STOKE to meet the sampling-rate require-

ments of MCMC sampling. For machine-code synthesis,

the specification of the input is a QFBV formula and not

an instruction sequence, and for candidate validation, one

needs to evaluate the input QFBV formula on test inputs.

QFBV evaluation is much slower than executing tests on

bare metal, and might not meet the rate requirements of

MCMC sampling. However, one could evaluate the in-

put formula using the test inputs a priori, and just use the

post-states for comparison inside the MCMC loop.
• While generating candidates, STOKE restricts immedi-

ate operands in candidates to take values only from a

small set S. If the input formula ϕ contains values that

are not in S, STOKE might not find an implementation

for ϕ. One possible workaround is to add all constants

occurring in ϕ to S, and sample immediate operands

from the updated S in the MCMC loop. However, this

strategy might preclude STOKE from finding potentially

better implementations. For example, suppose that ϕ ≡
EAX′ = (EAX+2)+2. The aforementioned strategy will

not find the implementation “lea eax, [eax + 4]”

for ϕ.

It remains for future work to adapt STOKE for machine-

code synthesis, evaluate on our set of benchmarks, and com-

pare empirical completeness and performance with MC-

SYNTH++.

Clients of a machine-code synthesizer. Partial evaluation

[12] is a program-specialization technique that optimizes a

program with respect to certain static inputs. A machine-

code partial evaluator [25] partially evaluates a binary either

to specialize it with respect to certain inputs, or to extract

an executable component from a binary. In a machine-code

partial evaluator, a synthesizer is used to synthesize residual

code from formulas of instructions specialized with respect

to static inputs. Because MCSYNTH++ is much faster than

MCSYNTH, MCSYNTH++ should speed up residual-code

synthesis in a partial evaluator. Moreover, MCSYNTH++

should enable the partial evaluator to perform specialization

on a per-basic-block basis instead of a per-instruction basis,

leading to more compact and optimized residual code.

A machine-code synthesizer also plays a key role in a

machine-code slicer [27]. For purposes of precise slicing, a

machine-code slicer converts a machine-code program into

an intermediate representation (IR) that is at the microcode

level (microcode is at an even lower level than machine

code), and performs slicing on the microcode IR. However,

if a client of the slicer wants a machine-code slice instead

of a microcode slice, the slicer has to now reconstitute a

machine-code program from the slice. To solve the program-

reconstitution issue, a machine-code synthesizer can be used

to synthesize instructions from the microcode fragments in-

178

cluded in the slice. Because MCSYNTH++ is much faster

than MCSYNTH, MCSYNTH++ should reduce slicing times.

Dependence testing in arrays. A parallelizing compiler

employs a series of tests to check for flow dependences be-

tween array references [10, 17]. The tests are often ordered

as a sequence, ranging from cheapest (but approximate) to

most expensive (but exact). If the tests say that an 〈array-

update, array-access〉 pair is flow-independent, the paral-

lelizing compiler proceeds to parallelize the sequential code.

The one-sided decision procedure in MCSYNTH++ aims

to solve the same problem as the aforementioned work: test

if an 〈array-update, array-access〉 pair is flow-independent.

However, instead of array variables in programs, MC-

SYNTH++ deals with the memory array in QFBV formulas.

Also, because state-of-the-art SAT solvers are quite efficient,

MCSYNTH++ uses SAT for alias testing instead of the series

of tests used in the aforementioned work.

Alternatives to machine-code synthesis: QFBV-to-IA-32

compiler. One could try to build a QFBV-to-IA-32 com-

piler by (i) defining a set of patterns P that map basic QFBV

fragments to IA-32 instruction sequences, and (ii) using a

bottom-up rewriting system [2, 9] that computes the least-

cost IA-32 cover for the input QFBV formula. However, one

finds that the QFBV-to-IA-32 translation problem has some

subtleties that make it difficult to create such a compiler.

• Not all QFBV formulas would be straightforward to han-

dle. The easy formulas would be ones that specify a pre-

state to post-state transformation (e.g., ϕ1 ≡ EAX′ =
EAX+2∧EBX′ = EBX+2). Such a formula is said to be

in explicit form. However, a client can supply a formula

that expresses a property over pre-states and post-states

(e.g., ϕ2 ≡ EAX′ + EBX′ = EAX + EBX + 4). Such a

formula is said to be in implicit form. In such cases, the

client would expect an instruction sequence whose pre-

state-to-post-state transformation satisfies the input for-

mula. For example, “lea eax, [eax + 4]” is one in-

struction sequence that satisfies ϕ2. Both MCSYNTH and

MCSYNTH++ are capable of searching for an instruction

sequence that satisfies a formula in implicit form. (See

[26, §4.4], “Synthesizing code that satisfies properties.”)

However, it would be difficult to create a compiler that

handles formulas in implicit form.
• Formulas use operators that are associative and commu-

tative, and consequently different elements in a formula

that are relevant for selecting a given instruction can

be arbitrarily far apart. This situation prevents one from

creating a compiler for formulas based on a bottom-up

rewrite system (e.g., iburg [2], Twig [9], etc.).
• Certain clients might want the output instruction-

sequence to possess a certain “quality” (small size, short

runtime, low energy consumption, etc.). For example, a

superoptimizer would like the synthesized code to have

a short runtime. Because a QFBV-to-IA-32 compiler

would have a fixed set of patterns P , the compiler would

not be able to produce instruction sequences with vary-

ing qualities: given input formula ϕ, it would always re-

turn the instruction sequence specified by P . In contrast,

because a synthesizer searches over the space of instruc-

tion sequences, it can find different implementations of ϕ

with varying qualities. The algorithm used by MCSYNTH

and MCSYNTH++ to find an implementation with a cer-

tain quality is given in [26, §4.4], “Quality of synthesized

code.”

8. Conclusion

In this paper, we described several improvements to the

algorithms used in a state-of-the-art machine-code syn-

thesizer MCSYNTH. We presented MCSYNTH++, an im-

proved synthesizer for IA-32. Our experiments show that

MCSYNTH++ synthesizes code for 12 out of 14 formulas

on which MCSYNTH timed out, speeding up the synthesis

time by over 1981X, and for the remaining formulas, MC-

SYNTH++ speeds up the synthesis time by 3X.

References

[1] Compilers: Principles, Techniques, and Tools, chapter

8: Code Generation. Addison-Wesley, 2007.

[2] A. Aho, M. Ganapathi, and S. Tjiang. Code genera-

tion using tree matching and dynamic programming.

TOPLAS, 35(4), 1989.

[3] G. Balakrishnan and T. Reps. WYSINWYX: What You

See Is Not What You eXecute. TOPLAS, 32(6), 2010.

[4] S. Bansal and A. Aiken. Automatic generation of peep-

hole superoptimizers. In ASPLOS, 2006.

[5] S. Bansal and A. Aiken. Binary translation using peep-

hole superoptimizers. In OSDI, 2008.

[6] D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz.

BAP: A Binary Analysis Platform. In CAV, 2011.

[7] B. Dutertre and L. de Moura. Yices: An SMT solver,

2006. http://yices.csl.sri.com/.

[8] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and

R. Barua. Scalable variable and data type detection in

a binary rewriter. In PLDI, 2013.

[9] C. Fraser, D. Hanson, and T. Proebsting. Engineering a

simple, efficient code-generator generator. LOPLAS, 1

(3), 1992.

[10] G. Goff, K. Kennedy, and C. Tseng. Practical depen-

dence testing. In PLDI, 1991.

[11] J. Henning. SPEC CPU2006 Benchmark descriptions.

SIGARCH Comput. Archit. News, 34(4):1–17, 2006.

[12] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation

and Automatic Program Generation. Prentice-Hall,

Inc., 1993.

[13] R. Joshi, G. Nelson, and K. Randall. Denali: A goal-

directed superoptimizer. In PLDI, 2002.

179

[14] J. Lim and T. Reps. TSL: A system for generating ab-

stract interpreters and its application to machine-code

analysis. TOPLAS, 35(4), 2013.

[15] J. Lim, A. Lal, and T. Reps. Symbolic analysis via se-

mantic reinterpretation. Softw. Tools for Tech. Transfer,

13(1):61–87, 2011.

[16] H. Massalin. Superoptimizer: A look at the smallest

program. In ASPLOS, 1987.

[17] D. Maydan, J. Hennessy, and M. Lam. Efficient and

exact data dependence analysis. In PLDI, 1991.

[18] P. Phothilimthana, A. Thakur, R. Bodik, and D. Ghur-

jati. Scaling up superoptimization. In ASPLOS, 2016.

[19] P. Phothilimthana, A. Thakur, R. Bodik, and D. Ghur-

jati. GreenThumb: Superoptimizer construction

framework. UCB/EECS-2016-8, University of

California–Berkeley Tech Report, Feb. 2016. URL

http://www.eecs.berkeley.edu/Pubs/

TechRpts/2016/EECS-2016-8.pdf.

[20] V. Raychev, M. Vechev, and E. Yahav. Code completion

with statistical language models. In PLDI, 2014.

[21] V. Raychev, M. Vechev, and A. Krause. Predicting

program properties from“big code”. In POPL, 2015.

[22] H. Saı̈di. Logical foundation for static analysis: Ap-

plication to binary static analysis for security. ACM

SIGAda Ada Letters, 28(1):96–102, 2008.

[23] E. Schkufza, R. Sharma, and A. Aiken. Stochastic

superoptimization. In ASPLOS, 2013.

[24] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,

M. Kang, Z. Liang, J. Newsome, P. Poosankam, and

P. Saxena. BitBlaze: A new approach to computer se-

curity via binary analysis. In Int. Conf. on Information

Systems Security, 2008.

[25] V. Srinivasan and T. Reps. Partial evaluation of ma-

chine code. In OOPSLA, 2015.

[26] V. Srinivasan and T. Reps. Synthesis of machine code

from semantics. In PLDI, 2015.

[27] V. Srinivasan and T. Reps. An improved algorithm for

slicing machince code. In OOPSLA, 2016.

180

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-8.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-8.pdf

	Introduction
	Background
	QFBV Formulas for Expressing Specifications
	Machine-Code Synthesis using McSynth

	Overview
	Algorithm
	``Divide" Phase
	Base Algorithm
	Improvements

	Conquer Phase
	Base Algorithm
	Improvements

	Pragmatics
	Correctness

	Implementation
	Experiments
	Related Work
	Conclusion

