
Does Thought Crime Pay?

Gilad Bracha

gilad@bracha.org

Abstract
Who controls the past controls the future;
who controls the present controls the past.
– George Orwell [11]

We examine the past, present and future of radical innovation
in programming languages. How did Lisp, Simula, Actors, Beta,
Smalltalk and Self give us the world of C++, Java, Javascript, Perl,
Python and PHP? We’ll ponder such questions and speculate what
new wonders await us down the road.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Object-oriented languages; Constraint and logic languages.
; D.3.3 [Language Constructs and Features]: Classes and objects;
Modules, packages.

Keywords Programming languages, Objects

1. Introduction
Thought crime is the thinking of heretical thoughts; thoughts that
question the assumptions that the majority never question. Innova-
tion and thought crime are related. If you doubt this point, I refer
you to the case of one Galileo Galilei.

Fortunately, today we know better. We live in a golden age of
technological innovation. Modern society loves innovators - as long
as they don’t innovate too much. True innovation also involves
questioning the assumptions that almost everyone agrees with. This
can sometimes make those of us engaged in research feel a bit like
thought criminals.

In my field, programming languages, there is a strong notion of
the mainstream. We speak of mainstream languages, tools and prac-
tices. Of course, no one is going to send inquisitors to our homes
to persecute us for disagreeing with the mainstream. However, you
can run out of funding very fast.

It was not always so. Once upon a time, programming languages
introduced new ways of thinking. Languages like Lisp, APL [9],
Simula [5], Smalltalk [8], Prolog, Beta [10], Self [13] and Miranda
[12] represented true innovation. Each such language opened a door
into a new world, a different way of looking at problems. So did
other languages like Forth, SETL, Snobol, Lucid and Esterel.

Today the programming language landscape is dominated by a
small number of languages that represent an even smaller number

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2508191

of ideas. Advocating for anything that substantially deviates from
the norm is a thought crime. In the words of Dijkstra [7]:

If the truths are sufficiently impalatable, our audience
is psychically incapable of accepting them and we will
be written off as totally unrealistic, hopelessly idealistic,
dangerously revolutionary, foolishly gullible or what have
you.

How did we get here, and is this where we want to be? Some
might argue that the languages of today evolved by a process
akin to natural selection. Current languages would then represent
a refinement of the languages of the past in response to the actual
requirements of widespread deployment and industrial scale use.

However, the one thing we can say with confidence is that
mainstream programming languages are inadequate in the face of
the aforementioned requirements. There is constant stream of new
versions of these languages, always adding new features. Yet, no
matter how many new features are added, there is always a need
for more.

Historically, today’s mainstream languages represent a school
of thought that constructs languages by agglomeration: specialized
constructs are tacked on one by one, each tailored to some specific
purpose.

These are the languages of the present. As noted above, there
is little evidence that this approach ever converges to a satisfactory
solution. I argue that we can ill afford to let the present control the
future.

There is another school of thought in programming language
design. It postulates that a language should have a small set of
very general constructs rather than a large number of very specific
ones. This approach is exemplified by the APL, Lisp and Smalltalk
families of languages. Interestingly, these languages have required
remarkably small adaptations over the past 30-50 years. Yet today,
such languages tend to be relegated to small niches. These are the
languages of the past.

Many innovations in implementation technology originally de-
veloped for non-mainstream languages have been commandeered
by the mainstream. Examples include garbage collection (originat-
ing in Lisp), JITs (pioneered in APL and later in Smalltalk) and
other aspects of advanced object-oriented runtimes (as introduced
in Self and Smalltalk systems).

The mainstream also adopts language ideas from its less popular
brethren. Object orientation is the most obvious example, coming
from Simula and Smalltalk. In addition to the original class based
form, we also have prototypes (Self and others). Other ideas include
closures (Scheme), actors ([3]), IDEs (Smalltalk and Lisp), and
reflection (Lisp and Smalltalk).

As ideas fllter through, they are often attenuated. For example,
when Gabriel and Steele et al. debated whether object-orientation
had succeeded [6], Gabriel argued that it had failed because the
widely adopted version is such a pale shadow of the original ideas.
It is small wonder that critics of object orientation are dissatisfied

7



with it; they mistake the dull artifacts of the languages of the
present for the real thing.

We can see the wages of sin: thought crime does pay; it just
doesn’t pay the criminals, it pays the broader society. The innova-
tions of unpopular languages are adopted, albeit often in inferior
form, by the popular ones.

Is this a satisfactory situation? Can we afford to to let the present
control the past, relegating the most brilliant artifacts in the field of
programming languages to the waste basket of history?

Perhaps this is as it should be. After all, aren’t the ideas the
important thing, not the specific artifacts in which they were first
manifested? One problem with this argument that we still need
significant new ideas. The mainstream is not a good incubator for
new ideas; it is in fact rather toxic to them. As evidence, consider
the list of innovations given above, produced by a very small
number of people with relatively minimal resources. Compare it to
the intellectual contributions of the mainstream, involving orders of
magnitude more people and resources.

An example of what passes as innovation in the mainstream is
the practice known as dependency injection. Dependency injection
(DI) is an attempt to address modularity issues that have cropped
up in industrial scale programming. Such modularity issues are
best addressed at the language level; the designers of some DI
frameworks acknowledge this [1].

The languages of the present, the mainstream, do not address
the issue of DI, but neither do the languages of the past. We
need languages of the future to tackle such questions. We can
and have found inspiration for such languages by looking into the
past. Combining ideas from Smalltalk and Beta, Newspeak shows
how a very pure form of objects naturally answers these problems
[4]. Combining the idea that everything is an object, with nested
classes and the notion that all computation is based on exchanging
messages among objects yields a powerful approach to modularity.
Arguably it has been staring us in the face for thirty years.

These problems are not hypothetical. Today, we have examples
of entire libraries that need to be evolved independently by multiple
developers which are distributed geographically and organization-
ally. Consider the process of evolving web standards such as the
DOM. At any given time, there are multiple proposals for distinct
extensions to the DOM API. These proposals are prototyped in-
dependently by different teams in different places. To evaluate the
proposals, others should be able to run the prototypes, both sepa-
rately and together in various combinations to see how they inter-
act. It is not attractive to build and/or download many versions of a
complete web browser to achieve this.

An alternative is to extend and modify entire libraries, and com-
pose the modifications by mixing and matching them in different
ways. Javascript enables this through ad hoc and poorly structured
modifications to prototypes. Other languages would be even more
hard pressed to deal with the situation, but it can be handled grace-
fully in a language like Newspeak.

Programming tools and environments can also benefit greatly
from looking to the past. We are beginning to see a resurgence
in this area [2]. Tools that go beyond the view of programs as
static source code to support rich interaction with running programs
are desperately needed. Tooling needs to be treated as a legitimate
area of research, not a thought crime. We need to understand that
programming language design should not be divorced from the
tools and environments in which these languages are to be used.
Even more broadly, research in programming languages needs to
re-emphasize the building of complete systems, just as in the glory
days of Xerox PARC.

Logic programming is another old idea that is ripe for re-
examination. The need to reason about large datasets should prompt
us to revisit Prolog and similar languages. Today we have machines

that are a thousand times faster than in the 1980s, and the ability to
couple thousands of machines together. Not many conclusions are
valid across six orders of magnitude; whatever difficulties the field
encountered in decades are almost certainly irrelevant.

No doubt I have overlooked important languages and efforts in
this brief summary. What is important, however is that we remain
cognizant of the history of programming languages. In particular,
education is crucial; students need to be aware of a many different
ways of programming, lest they reinvent the wheel and reinvent it
badly. We must not let the languages of the present obscure our
view of the past, because it is the great languages of the past that
can lead us to the languages of the future. Only then can we make
thought crime really pay.

References
[1] Java on Guice: Guice user’s guide. Available at

http://code.google.com/p/google-guice/.
[2] First international workshop on live programming, May 2013. Held

at ICSE 2013. See http://liveprogramming.github.io/2013/.
[3] G. Agha and C. Hewitt. Actors: A conceptual foundation for

concurrent object-oriented programming. In Research Directions
in Object-Oriented Programming, pages 49–74. MIT Press, 1987.

[4] G. Bracha, P. von der Ahé, V. Bykov, Y. Kashai, W. Maddox,
and E. Miranda. Modules as objects in Newspeak. In European
Conference on Object-Oriented Programming, June 2010.

[5] O.-J. Dahl and K. Nygaard. Simula: An Algol-based simulation
language. Communications of the ACM, 9:671–678, 1966.

[6] M. Devos, B. Foote, R. Gabriel, and J. N. G. Steele. Debate at
OOPSLA 2002. See http://www.oopsla.org/2002/ap/files/pan-1.html.
See also http://www.dreamsongs.com/Essays.html.

[7] E. Dijkstra. How do we tell truths that might hurt? In Selected
Writings on Computing: A Personal Perspective. 1975.

[8] A. Goldberg and D. Robson. Smalltalk-80: the Language and Its
Implementation. Addison-Wesley, 1983.

[9] K. Iverson. A programming language. Wiley, 1962. URL
http://books.google.com/books?id=zR81AAAAIAAJ.

[10] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley,
1993.

[11] G. Orwell. 1984. 1949.
[12] D. Turner. Miranda: A non-strict functional language with polymor-

phic types. volume 201 of Lecture Notes in Computer Science, pages
1–16. Springer-Verlag, 1985.

[13] D. Ungar and R. Smith. SELF: The power of simplicity. In Proc. of the
ACM Conf. on Object-Oriented Programming, Systems, Languages
and Applications, Oct. 1987.

8




