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Abstract
Programming languages and coding standards provide in-
variants to ease reasoning about the correctness of code. Al-
though useful, invariants are often intentionally broken by
programmers for performance or compatibility purposes. An
operation that consists of multiple steps can preserve an in-
variant overall even though it breaks it temporarily during
the process—e.g., inserting a node into a doubly linked list
takes two operations between which the list is ill-formed. It
is important that intermediate states of these operations are
not observable by the rest of the program. We explore var-
ious devices that are used to bundle together the different
steps of such an operation in a way that hides intermediate
states—bringing some form of atomicity. However, while all
these constructs might work in a certain context there is no
way to ensure they still work for extensions and new versions
of the programming language, the underlying operating sys-
tem, the linked libraries, or even the processor architecture.
We propose a new construct, opaque, to overcome these
problems—decoupling code correctness and execution con-
text—and future-proof invariant-breaking code by insisting
that both current and future versions of the compiler treat the
enclosed block as having no observable intermediate states.

Categories and Subject Descriptors D.3.m [PROGRAM-
MING LANGUAGES]: misc

Keywords Invariants; Abstraction; Programming language
design; Feature interaction; Programming language evolu-
tion; Negative features; Close world assumption
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1. Introduction
Invariants are essential to writing and reading programs.
When a codebase grows too big, it becomes impossible
for humans to fully understand the whole program. For
this reason, large programs are (or should be) split into
components—functions, procedures, modules, etc.—with
simple interfaces. By restricting the possible interactions
with their associated components, interfaces guarantee cer-
tain behaviours in the form of invariants—properties that,
whatever happens in the execution of the program, remain
true. These invariants help programmers to modularise the
reasoning about the program.

Similarly to humans, analysis tools rely on invariants for
asserting the correctness of the code they are fed. Program-
ming languages such as Why3 and Dafny require their users
to annotate programs so the system can statically guarantee
some invariants.

The way programmers—and by extension analysis tools,
because they are built by programmers—reason about pro-
grams is based on programming language documentation
and specification. These explain, in a more or less formal
language, how programs are evaluated, how code behaves.
There are explanations about how such feature works and
what such construct does and how the evaluation of such ele-
ment unfolds. For example programmers might glance at the
code presented in Figure 1 and assess its correctness based
on the programming language documentation. Programmers
read the documentation of the different constructs used in the
program and assess the correctness of the behaviour and the
absence of crashes. If the documentation does not mention,
say, concurrency at all, programmers will not consider con-
currency at all. More importantly, programmers will assume
there is no concurrency and deem the program to behave as
expected.

That is, programmers follow a closed world assump-
tion: the rules for evaluating a program are exactly those
of the programming language specification. Unfortunately,
this assumption is wrong because programming languages
evolve—and linked libraries are updated, operating systems
are changed and new processor architecture are produced.
New versions of programming languages can add new con-
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(*invariant: there are [count] items in [stack]*)

type ’a t = {
mutable stack: ’a list;

mutable count: int

}
let push t x =

t.count <- t.count + 1;

t.stack <- x :: t.stack

let pop t =

if t.count = 0 then

None

else

(result = List.head t.stack;

t.count <- t.count - 1;

t.stack <- List.tail t.stack;

Some result)

Figure 1: A simple stack implementation.

structs and thus new ways to evaluate programs. This means
that code should be reasoned about—and analysed—in an
ever changing context. In particular, the code in Figure 1
becomes buggy the day the programming language acquires
concurrency or parallelism.

We take a close look at this issue. Through a series of ex-
amples, Section 2 exposes the necessity of breaking invari-
ants and the different recovery devices that are commonly
deployed. Section 3 details the issues the existing devices
have. We suggest, in Section 4, making invariant breakabil-
ity a central concern of programming language design and,
to such effect, we sketch plans for a new construct called
opaque.

2. Invariants
We now take a closer look at invariants: how and why they
are enforced and their limits.

2.1 Different kinds of invariants
Programming languages have their own invariants. These are
negative features, things that programmers cannot do. For
example, it is not possible to mutate values in Haskell, a
state monad may be used instead. This helps every Haskell
programmer to reason about their and others’ programs: by
merely inspecting the type of a function they know whether
it can have effects within the state monad or not.

There are also invariants that, although not guaranteed by
a programming language, are widespread amongst the whole
user community. As an illustration consider that Go users
are encouraged not to leak the panic mechanism outside
package boundaries in order to keep the control-flow simple:
“The convention in the Go libraries is that even when a
package uses panic internally, its external API still presents

explicit error return values.”1 This is not enforced by the
programming language, it is merely a style guide, a more
or less informal coding standard, shared by all users of the
language. It is not a grammar or semantic rule, simply an
idiom that the whole community adopts.

Additionally, users maintain their own invariants over the
whole or parts of projects. These are specific to the data han-
dled by the program. A programmers might, say, handle a
collection as an ordered list. The programmer is responsi-
ble for maintaining the ordering through every operation that
manipulates such a list.

Invariants can be maintained through a range of differ-
ent means: language specifications and implementations,
code reviews, type checkers, program verification, lint-
like tools, integrated and continuous test suites. . . In the
case of the 0install project2, the immutability of certain
objects was originally maintained by the programmer. Com-
ments in the documentation warned library users to beware
of modifying in place XML fragments returned by certain
functions. After some refactoring, the burden of enforcing
this invariant was shifted to the compiler. It involved remov-
ing a mutable annotation and rewriting the parts of the code
the compiler pointed out as breaking immutability. The au-
thor of 0install, Thomas Leonard, reported on the process
on his blog [3]. This illustrates the fact that the same invari-
ant can be maintained either by comments and carefulness
or with type system constraints.

2.2 Breaking invariants: why?
While invariants have their use, it is sometimes necessary
to break them. Even very strict programming languages
provide mechanisms to break their invariants. Invariant-
wrecking features of Haskell (including coerce: a -> b)
are grouped in the Unsafe modules in different parts of
the standard library [1]. The OCaml programming language
provides an Obj module with the tersest and most alarming
documentation [2]: “Operations on internal representations
of values. Not for the casual user.” The Rust programming
language allows programmers to tag functions and blocks
with the keyword unsafe [4] to indicate to the compiler that
safety checks are to be temporarily reduced to a minimum.

Common reasons for breaking invariants include the fol-
lowing.

• Executing performance-critical tasks. For example, in a
programming language with immutability, the inner loop
of a function performing hashing might be implemented
with in-place mutation.

• Interacting with other programming languages: calling
into a different language voids the guarantees of the caller
language.

1 From http://blog.golang.org/defer-panic-and-recover
2 Official website for the 0install project: http://0install.net/
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• Implementing specific categories of programs. As an ex-
ample, consider that a just-in-time (JIT) compiler needs
to mix writable data and executable code. It means that
a JIT compiler needs to cast an array of bytes (code as
a sequence of instructions) into a function (code as exe-
cutable, callable procedure)3. A strong type system with
no support for unsafe casting forbids such a program4.

Consider the compelling case of Rust where the type sys-
tem prevents users from distributing to distinct threads point-
ers to the same value. The original aim of this restriction is
to allow safe and efficient in-place mutation. The arc mod-
ule allows programmer to freely distribute pointers to read-
only values. It is safe because read-only values are never
mutated and thus can be accessed concurrently by multi-
ple threads. Thus, to implement arc it is either necessary
to make it a programming language primitive (i.e., a spe-
cial case in the type system), or to break type-system invari-
ants. The arc module is implemented as a library and relies
on unsafe blocks and functions to break programming lan-
guage invariants. The invariant breaking is restricted to spe-
cific parts of the implementation and is not apparent at all
in the interface of the module. This approach simplifies the
programming language implementation and documentation
and modularises development—the library can evolve inde-
pendently from the compiler and vice-versa.

For reasons such as these—that is, out of necessity and
because it makes code better—programming languages such
as Haskell, OCaml and Rust provide their users the means to
break even the strongest invariants of their runtimes. Pro-
gramming language support for invariant-breaking mecha-
nisms is driven by necessity. Their pervasiveness is evidence
that invariants are considered too restrictive by programming
language designers and programmers alike: their breakabil-
ity is recognised as vital to programming.

2.3 Breaking invariants: how?
Programming language designers let programmers break
carefully designed invariants, because it’s ok. Breaking an
invariant is only bad if it is observed. As long as the invari-
ant is observably maintained, its breaking hidden, no one
cares. This is illustrated by the common idiom in ML: pro-
viding a purely functional interface to a library that relies on
mutable state internally. The (imperative) implementation of
the library is hidden and the library user is content with the
illusion of immutability.

In fact, programming language designers provide features
to hide invariant breaking. These devices are curtains behind
which invariants are disregarded. We discuss them now.

3 From an operating-system point of view, this bears resemblance with the
breaking of the WˆX invariant, designed to prevent virus mutation.
4 Very rich type systems (such as with dependent types) could express the
safety of—and thus allow—coercions of this sort.

2.3.1 Recovery
Programmers surround (or should surround) their dangerous
code with comments. This is a notice to other maintainers:
“here be dragons”. Although essential, comments are not
sufficient. The dangerous parts of the code are (or should
be) also surrounded by devices that will isolate the invari-
ant breaking. These devices are prologues and epilogues sur-
rounding the badly behaved code in a way that ensures the
invariants are consistently restored, the safe state recovered.
The effects of the badly behaved code is thus contained and
prevented from leaking into other parts of the program.

Consider the examples in Figure 2: distinct ways to deal
with the expression evil that breaks some invariant on the
value held by x. For example, evil might traverse x, looking
for a particular element, and mark the nodes it visits in order
to detect cycles. (While the particular examples in the Figure
2 are written in a functional programming language, simi-
lar devices exist for other paradigms.) In each of the exam-
ples, the original value held by x is duplicated (through the
deep-copy primitive copy) and distinct copies are passed to
the invariant-breaking code evil and the rest of the program
code. This effectively saves the original value and restores
it afterwards. The global α-renaming (Figure 2b) approach
differs notably from the two other solutions in that the orig-
inal value is passed to evil and the clean copy to the rest
of the code. The other differences are mostly stylistic with
shadowing (Figure 2c) being arguably the most localised:
the scope of the variable holding the copy does not extend
past the evil expression.

Also consider the case of optimisations and analyses in
the LLVM framework. The framework enforces the invariant
that, for each unit of the source code, the information pro-
vided by analyses continues to correspond to the code even
after it is modified by optimisations. This correspondence is
broken when the code is significantly transformed by some
optimisations. The framework deals with this breaking in the
following way: the programmer declares what set of analy-
sis results is preserved by the optimisations they write [5],
all the analyses not in this set are rerun by the framework.
Thus, the LLVM framework automatically re-computes the
data associated with the code. When the next optimisation in
the pipe-line is run, all the analyses’ results match the code
being compiled.

Another solution to deal with invariant-breaking code is
to append clean-up code: a piece of code that restores a data-
structure’s invariant by traversing it and mending it. Con-
sider the case of an ordered list that is passed to a procedure
dealing with lists in general (not necessarily ordered): the or-
dering might be lost. Running a sorting procedure afterwards
restores the invariant.

These are different ways by which a programmer can
deal with invariant breaking. Saving and restoring the data,
recomputing part of the data, or reshaping it.
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let x’ = copy x in

let z =

evil[ x’]

in

code[ x, z]

(a) Local α-renaming

let x’ = copy x in

let z =

evil[ x]

in

code[ x’, z]

(b) Global α-renaming

let z =

let x = copy x in

evil[ x]

in

code[ x, z]

(c) Shadowing

Figure 2: Save-and-restore devices.

2.3.2 Self-recovery
Some transformations do not need explicit recovery even
though they traverse unsafe intermediary states. Consider
the case of a struct with several fields, bound together by
some invariants. Such a struct might be used to represent
a node in a tree, with a field for each of the children, a field
for the depth, a field for the size, etc. When performing an
insertion in this tree, several field might need to be updated.
Until all the fields have been updated, the node is in an
inconsistent state that breaks its invariants—e.g., the tree is
deeper than the depth field indicates. Once all the fields have
been updated, the node has recovered its consistent state and
does not need further mending.

2.3.3 Bundling and the notion of opacity
Programming languages come with a number of features
meant to bundle different bits of code together. Functions,
methods, procedures, blocks, modules, objects, classes. . .
The function abstraction (amongst others) provides pro-
grammers with a means to place clear boundaries around
parts of the code. Bundling the badly behaved code and
the necessary recovery device—or all the steps of a self-
recovering transformation—together in a function effec-
tively hides the actual behaviour of the code.

When a function f calls another, the control flows to
instructions that are not in the body of f . We still consider
these instructions to be executed inside of f . Thus being
inside a function does not only depend on the value of the
program counter but also on the path the program counter
followed there, the call string. In general bundles can be
nested and thus inside and outside is relative.

One of the purposes of functions—and other bundling
construct—is to provide a boundary for distinguishing lo-
cal and global reasoning. It separates an interior (commonly
known as the body) from an exterior and prevents details
from the former (implementation) to be observed by the lat-
ter. (Another purpose is code re-use, but we are not presently
concerned with that aspect.) Inside the function body, invari-
ants might not hold. It is not problematic because the code
fragment is small and reasoning does not rely on invariants
as much. On the other hand, for the rest of the program the

function behaves nicely as an unsplittable, uninterruptible5

unit of code. The caller cannot know whether the invariant
was broken or not: for all reasoning purposes, the execution
of the function call has a “before” and an “after”, but no
“during”. This allows global reasoning to rely on invariants.
As an illustration, consider the push and pop functions in
Figure 1. Values of the type ’a t are meant to keep their
fields in sync: count describes the number of elements in
stack. From their callers’ perspective, both functions push
and pop keep this property true. Inside the body of both
functions however, the fields are temporarily out of sync.

We call functions, and similar bundling devices that make
their internal behaviour unobservable, opaque. From the ex-
terior, they make it appears as if the interior is—for the pur-
pose of reasoning about correctness—a single instruction.

2.3.4 Non-syntactic devices
Functions—like their variants: blocks, methods and procedures—
provide mostly syntactic isolation: there is code inside the
function borders and code outside. Nested function calls
make the distinction between inside and outside not entirely
syntactic as mentioned in Section 2.3.3.

Alternatively, programmers can use non-syntactic devices
such as monads. In Haskell, all values whose evaluation trig-
gers side effects or raise and handle exceptions need to be
wrapped inside the appropriate monad. These are not syn-
tactic constructs: whether a given value is inside or outside
a certain monad depends on its type. (Just like functions,
monads have other uses that we are not presently interested
in.) Monads focus on isolating values rather than fragments
of code. Thus, invariants can be encoded in the type system
rather than the source code layout.

Another, non-syntactic way to enforce invariants is to use
objects. The maintenance of invariants in object-oriented
code has been studied by Leino and Muller [9] amongst
other. (Objects provide other features that we are not con-
cerned with.)

The current work only focuses on syntactic constructions:
functions, methods, procedures, blocks, etc.

5 Although a synonym in English, the word atomic has a different meaning
in the programming language lexicon. The relation between the two con-
cepts is explored in Section 3.
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3. Feature interaction
Note that the opacity of functions is an assumption that does
not hold in every execution model. Therefore it may not
be preserved by compiler updates. We now look at specific
examples of features reducing the opacity of functions.

When considering a concurrent program, functions lose
their opacity as the execution can interleave code that may
observe the state of values handled in the function. Con-
sider the functions void f(){foo();bar();} and void

g(){bar();foo();}, where bar and foo are two functions
with side effects (both writing and reading) on disjoint sets
of global variables. The functions f and g are not (observ-
ably) equivalent in concurrent execution contexts. For the
same reason, the functions push and pop from the Figure
1 are not thread-safe. The concurrency feature interacts with
the function feature, modifying the latter’s semantics in non-
trivial ways: it gives functions a “during” along with their
“before” and their “after”. The opaque nature of functions
has become defeated by the interaction with concurrency. In
order to restore the opacity (and the atomicity) of the func-
tion it is necessary to introduce synchronisation devices such
as locks or semaphores.

Note that synchronisation devices can introduce dead-
locks in the program. Thus, it is not trivial for the compiler
to automatically wrap function bodies in appropriate syn-
chronisation devices. Gudka’s work on lock inference [6]
provides automation of this kind for the Java programming
language.

Some programming languages feature constructs that
provide opacity under concurrency: synchronisation prim-
itives. The synchronized keyword in Java is one such
construct: it partially6 restores the opacity of the method
it is applied to. Semaphores, locks, and other devices can be
used to surround the parts of the code that need to become
opaque. If not provided as primitives of the programming
language, they can be coded manually by the programmer
and used as a library.

Similarly to concurrency, mutability can reduce function
opacity. An impure function that leaks some state during
execution—by writing it to a mutable value—will have its
internal behaviour partly exposed.

Another feature that can defeat function opacity is excep-
tions. A raised exception will flow across function bound-
aries to the closest exception handler. This handler might
observe the state the program was in when the exception
was raised—e.g., the handler might be given data that has
only been partially updated. Thus, exceptions can degrade
function opacity.

6 A synchronized method is never interleaved with another
synchronized method of the same object, however, interleaving is
possible with non-synchronized methods of the same object and any
methods of another object. For this reason, synchronized makes methods
partially opaque only.

4. A new look at programming language
design

We now look at invariant-breaking features and opacity con-
structs from a programming language designer perspective.

4.1 Invariant breaking as a core concern of
programming language design

Considering the pervasiveness of invariant breaking, and all
the effort put by programming language designers to allow
it, why do we even bother with invariants? The important
point of invariants is that—even though they may not hold
locally—they do hold globally, which is vital for understand-
ing and maintaining the program. As detailed in Section 2.2,
there are valid reasons to break invariants.

It is necessary to be pragmatic while developing a pro-
gramming languages for the real world: invariants are vi-
tal but so is their breaking. A good programming language
is one that provides appropriate means for programmers to
misbehave. While this might not be ideal when teaching be-
ginners to print an infinite stream of Fibonacci numbers,
it is a necessary tool for seasoned practitioners interested
in writing useful programs that interact with the system on
which they run. Just like public health programmes encour-
age the distribution of clean needles to drug addicts in or-
der to minimise risks of infection, we encourage program-
ming language creators to provide all the apparatus that al-
lows programmers to misbehave in a safe way. In a good
programming language, it should be possible to go in and
out of safety, compartmentalise “bad” behaviour, and escape
any of the harmful consequences of invariant breaking.

4.2 The need for future-proofing constructs
Consider the following example: a collection being mutated
in-place one element at a time. We consider, more specifi-
cally, the case of an array of integer mutated into an array of
floats—thus temporarily mixing values of different types in
a single collection and breaking invariants of the program-
ming language runtime. (Another example is re-encoding
text stored in ropes, say, from latin1 into utf8. When only
part of the rope has been re-encoded, attempts to compute
its length are bound to fail and attempts to print it would
most likely result in gibberish.) In our chosen example—
as in any similar situations—it is important that the inter-
mediary states that the transformation goes through are not
observed by other parts of the code: a partially updated ar-
ray should not be traversed because it is heterogeneous. The
operation as a whole maintains the programming language
runtime invariant, but the individual updates of each element
does not. Thus the whole update needs to behave as if exe-
cuted in one single step in all the mental models the pro-
grammer uses when thinking about their code.
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4.2.1 Bundles and sections
A first attempt towards making the update look, feel and,
more importantly, behave as a single step is to bundle all of
the intermediary operations together. As detailed in Section
2.3.3, there are different constructs for that purpose: func-
tions, methods, procedures, macros—the example in Figure
3a illustrate the use of a function. All these help the program-
mer reason about the update as a single operation. However,
they all fall short if the context—whether through evolutions
of the programming language compiler, execution platform,
linked library, or source code—changes and, say, concur-
rency is introduced.

In addition to bundling the updates together, the pro-
grammer then must surround the bundled code with a syn-
chronisation device: locks, semaphores, or atomic sections
marker—in the example in Figure 3b an atomic block is
used. All these, when handled correctly, can make the in-
termediary states of the transformation invisible to the out-
side. However, they all fall short if the context—for similar
reasons—changes further and exceptions are introduced.

On top of all the changes to the original code, the pro-
grammer now needs to enclose everything in an exception
handler—as illustrated in Figure 3c.

This example exposes the shortcomings of the existing
programming language constructs for the purpose of isola-
tion. They tie code correctness with the execution context
very tightly: each change to the feature set or the execution
model of the programming language or execution environ-
ment of the program can create7 bugs.

4.2.2 Inconsistent constructs
The reason for this state of affairs is that programming lan-
guage constructs offer partial features: atomic blocks effec-
tively prevent another thread jumping in and witnessing any
of the temporary states traversed by the computation in the
block, but they do nothing to prevent the current thread from
jumping out—e.g., by raising and exception—and exposing
the same temporary states to the rest of the world. There
are no constructs that hide intermediate states consistently
across contexts.

The different contexts appear due to the evolution of dif-
ferent elements of the tool-chain, surrounding libraries, etc.
Because this evolution generally occurs over time, consistent
constructs are more commonly known as future-proof.

Additionally, most programming language constructs
have multiple uses: functions and methods provide code re-
use, classes provide inheritance and initialisers, etc. These
additional uses can be sources of further feature interactions.

7 Bugs are not merely exposed by the changes in context: bugs that might
have not existed at all can appear.

4.3 Future-proofing through negative features
We classify programming language features into two cate-
gories: positive and negative, and show how the latter can be
used to future-proof code.

4.3.1 Positive and negative features
We call positive features those that bring more ways to un-
fold the evaluation of a program. Consider exceptions: they
offer new ways for control to flow, new ways for programs
to behave. In operational semantics, positive features are ex-
pressed as rules that can be applied to make the evaluation
progress.

Conversely, we call negative features those that reduce
the set of possible evaluation steps that can be taken. Con-
sider Java’s final: a keyword that makes certain behaviours
invalid. When formalised in operational semantics, negative
features are expressed as guards and patterns that limit the
set of rules that can apply to a specific program.

Note that some features can simultaneously have positive
and negative aspects. For example, cooperative concurrency
makes concurrency possible, but restricts the points at which
the scheduler can make another thread run.

4.3.2 Closed world assumption
Consider a formal proof of, say, the absence of crashes in
a specific program written in a programming language with
only positive features. (Interestingly, the absence of crashes
is a negative property: it is concerns with things not hap-
pening.) The proof shows that, in the states visited by the
program, the operations it performs are safe. Such a proof
uses an often unspoken assumption: there are no other eval-
uation rules than the rules given in the specification. Without
this additional closed world assumption, there are no limits
to the behaviour of programs and thus no way to guaran-
tee that something cannot happen8. Note for example that
the Haskell 2010 Language Report [10]—the specifications
for the Haskell programming language—only mention mu-
tability or immutability in the title of a section “Immutable
non-strict arrays”. Programmers reasoning about the correct-
ness of Haskell programs will assume values are immutable
because there are no construct to mutate them.

The set of rules used to evaluate a program evolves with
the successive releases of the compiler. Note that, for reasons
of backwards compatibility, constructs are very rarely re-
moved. Whenever a (positive) feature—with associated new
constructs and evaluation rules—is added to the program-
ming language, the closed world assumption is invalidated,
and so are the proofs of correctness. For each state that the

8 This bears resemblance to inductive reasoning on integers. When
defining the natural numbers inductively, after (a) 0 ∈ N and
(b) x ∈ N =⇒ S(x) ∈ N, a third axiom is necessary:
(c) N is the smallest set satisfying (a) and (b). Axioms (a) and (b) are posi-
tive and allow integers to be constructed; axiom (c) is negative and prevents
additional integers to be included. Without this last negative axiom, it is not
possible to show ∀-properties by induction.
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tofloats (x) =

for (i in x){tofloat (i)}

(a) Bundled iterations. . .

tofloats (x) =

atomic {
for (i in x){tofloat (i)}

}

(b) . . . in a concurrent setting. . .

tofloats (x) =

handle {
atomic {
for (i in x){tofloat (i)}

}
} with {
...

}

(c) . . . with exception handling

Figure 3

program traverses, it is necessary to show that either the
new evaluation rules cannot apply or that applying them is
harmless—and keeps the program in a safe state with respect
to previous invariants.

4.3.3 Resilient proofs of correctness
A negative feature, one that restricts the set of possible eval-
uation steps rather than enlarging it, is fundamentally differ-
ent. By restricting the way programs are evaluated, negative
features offers guarantees that positive features cannot give.
In a programming language with negative features, program-
mers can make deductions that continue to hold after other
features have been added. Negative features allow program-
mers to consider only a subset of the evaluation rules on spe-
cific parts of the program. If this subset is unaffected by an
update of the compiler—i.e., if the introduced positive fea-
tures are forbidden by the protecting negative feature—then
the proof remains valid across the update. More specifically,
code that is protected by a negative construct (e.g., atomic)
that makes a specific behaviour impossible (e.g., parallelism)
will not need to be checked again when adding features that
have the same specific behaviour (e.g., parallel execution
constructs).

Note that negative features are not magic bullets: some
proofs need to be redone. Only those concerned with parts
of the programs that are protected by an appropriate negative
features preserve their validity.

4.4 A future-proof device: opaque
We look into a specific proposition for protecting invariant
breaking code with a negative feature: the opaque construct.

4.4.1 The opaque keyword
We propose that programming language designers and main-
tainers have an explicit agreement with their users about fea-
ture interaction and future-proof opacity. This treaty can take
the form of the introduction of the special negative construct
opaque with the following specification: the intermediate
states traversed by the code inside of the opaque construct is
not observable by the code outside. This property must hold
in the first release of the programming language and must

continue to hold in further versions, rendering the opacity
future-proof. The details of how the responsibility of ensur-
ing opacity is shared are given in Section 4.4.2.

Blocks can be qualified (opaque {...}), in which case
the intermediary states the code traverses are not observ-
able. Because blocks are the simplest syntactic construct
opaque can also be used with functions (void f () {
opaque {...} }) or be combined with macros (#define
SWAP(x,y) opaque {...}) or other syntactic constructs.
The opaque constructs can protect all the invariant breaking
parts of the code that in principle expose dangerous states.

4.4.2 The opaque treaty
The opaque treaty is bipartite, binding both the program-
ming language users and the programming language devel-
opers/maintainers.

For code that does not use unsafe features (such as
unchecked type cast or pointer arithmetic), the treaty binds
the programming language maintainers in the following
way: the compiler tries to make state unobservable. The
compiler might analyse the code and realise it is already
opaque, or insert some runtime checks, or add code to copy
data to avoid sharing. If the compiler fails to render the code
opaque, it does not emit code and returns an error to the
programmer. This gives the programmers the total assurance
that, during execution, opaque blocks are indeed opaque.
When changing the execution context—e.g., by introducing
a new feature—the programming language maintainers en-
sure that the opacity of the block is preserved. Two different
such cases are detailed in Sections 4.4.3 and 4.4.4.

The treaty binds the programming language users, the
programmers, in the following way: programmers using
unsafe features of the programming language (such as
Haskell’s coerce or Rust’s unsafe) in an opaque block are
responsible for guaranteeing the opacity of the whole block.
The original aim of unsafe features is for programmers to
be able to take full responsibility for the correctness of their
code with respect to the current programming language run-
time safety. In an opaque block, opacity is a criterion of
correctness. Thus programmers using unsafe features take
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let rec inplace map f xs =

opaque {
match xs with

| [] -> []

| x::xs -> inplace map x (f x); map f xs

}

Figure 4: Higher-order opaque function.

full responsibility for guaranteeing opacity. A discussion on
the utility of opaque in such a context is given in Section
4.4.5.

4.4.3 Opacity through static analysis
Consider the case of a programming language that evolves
and acquires support for exceptions. (Or similarly a project
that used to rely on an error monad and switches to native
exceptions.) Raising an exception exposes the intermediate
state of a computation to the closest handler. Thus excep-
tions must not be allowed to cross the borders of an opaque

construct. This restriction prevents opaque blocks from hav-
ing multiple exit points, preventing code executing outside
of the opaque construct to observe partially updated data.

Exception raising and catching can be tracked through ef-
fect analysis [8]. Specific patterns of usage of exceptions can
be rejected by the compiler based on the results of this anal-
ysis. In particular, it is possible to detect whether a piece
of code has exceptions flowing out and to refuse to com-
pile the corresponding program. (Java programmers are fa-
miliar with the concept: the compiler rejects code that lets
exceptions leave methods if they are not annotated with
the raises keyword.) Whenever the programming language
maintainers add exceptions to a new version of the program-
ming language, the opaque treaty requires them to imple-
ment something similar to the effect analysis and to make
the compiler reject code which has exceptions flowing out
of opaque blocks.

These restrictions are not as trivial as the previous state-
ments make them appear. Indeed, higher-order functions—
as well as function pointers, dynamic dispatch and other
such mechanisms—complicate effect analysis. In particu-
lar, consider the function inplace map of Figure 4 when
the programming language evolves and gets support for
exceptions. Initially (before the exceptions are available
in the programming language), the type of the function
might be as simple as (’a -> ’b) -> ’a list ->
’b list. However, with the new feature, the type system
needs to track exception raising and catching in the body of
inplace map and, thus, needs to impose restrictions on the
argument f. We use the notation -[e1,e2,. . . ]-> for the
arrows of functions possibly raising the exceptions e1, e2, . . .
The type of inplace map once the exceptions are supported
in the programming language is (’a -[]-> ’b) -> ’a

list -[]-> ’b list.

Thus, adding a feature to the programming language—
here exceptions—may require carrying out important modi-
fications to the rest of the programming language—here the
type system. This work, carried out by the programming lan-
guage maintainers, ensures the consistency of the opaque

construct. Existing programs will still work with the new
version of the programming language because, in the ab-
sence of exceptions, every function of the old codebase will
have empty effects—i.e., arrows of the form -[]-> only—
in the new system.

4.4.4 Opacity through runtime checks
Consider now a programming language acquiring concur-
rency. As pointed out in Section 3, opacity under concurrent
contexts requires synchronisation which, if applied care-
lessly, can cause deadlocks or livelocks. This means that
adding concurrency to the programming language causes the
behaviour of opaque to evolve in potentially harmful ways.
When the compiler is unsure about whether it can render the
code opaque without introducing deadlocks and livelocks, it
will interrupt compilation and explain the error to the user.

This means that, with the update, some projects will stop
compiling. This is an argument that could deter adoption of
the opaque treaty, and to some extent of negative features
in general. However, note that without the opaque construct
the problem also exists. Indeed, blindly adding concurrency
to a programming language effectively breaks backwards
compatibility in subtle and important ways: code that is
correct and bug free in a sequential setting (e.g., such as code
in Figure 1) can be incorrect in a concurrent setting. The
opaque treaty does not create new issues in programming
language evolution, it merely makes them explicit. It exposes
the problem at compile-time with an error message rather
than creating subtle bugs at run-time.

Note that there are other ways to provide concurrency. If
the programming language maintainers provide cooperative
threading concurrency, the compiler will instead check that
opaque blocks do not contain primitives that cause yield-
ing. If the programming language maintainers choose to use
STM [7] instead of locks, races are handled by a transaction
manager. In a way, these two proposals are less backwards
incompatible.

4.4.5 Opacity with unsafe features
Unsafe features are included because programming lan-
guage designers recognise the limits of their compiler’s
safety checks. It is meant for use when the programmer does
know better and can ensure safety themselves. Within an
opaque block, the use of unsafe features means the program-
mer, knowing better than the compiler, takes responsibility
for correctness, and thus for opacity.

In the case where the programmer uses an (intrinsically)
unsafe feature of the programming language—such as a type
coercion, assertion check, unchecked upcast, etc.—it is still
beneficial to use the opaque construct. For each new release,
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the programmers can ask the compiler to point out all uses of
unsafe features within an opaque block. After having read
all these occurrences and made the necessary changes to the
code, the programmer can be certain again of the opacity of
every opaque block.

5. Conclusion
The pervasiveness of both the practice of and the support
for invariant-breaking code is a clear indication that invari-
ant breaking is seen as a necessity by programmers and pro-
gramming language designers alike. The current abstractions
that programming languages offer for bundling sets of in-
structions together are not resilient to feature interaction and,
thus, to programming language evolution. It burdens pro-
grammers by placing responsibility on them to keep track of
their whole code and of the evolution of their programming
language of choice. Programming languages need future-
proofing devices that allow their users to hide the real be-
haviour of their code. The opaque construct is our (“clean
needles”) attempt to improve programming languages con-
cerning this particular issue. It is a showcase for negative
features that apply consistently across different versions of a
programming language.
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