
Workshop Preview of the 2015 Workshop on Programming based
on Actors, Agents, and Decentralized Control (AGERE! 2015)

Elisa Gonzalez Boix
Vrije Universiteit Brussel, Belgium

egonzale@vub.ac.be

Philipp Haller
KTH Royal Institute of Technology,

Sweden
phaller@kth.se

Alessandro Ricci
University of Bologna, Italy

a.ricci@unibo.it

Carlos Varela
Rensselaer Polytechnic Institute, USA

cvarela@cs.rpi.edu

Abstract
The AGERE! workshop focuses on programming systems,
languages and applications based on actors, active/concurrent
objects, agents and – more generally – high-level program-
ming paradigms promoting a mindset of decentralized con-
trol in solving problems and developing software. The work-
shop is designed to cover both the theory and the practice
of design and programming, bringing together researchers
working on models, languages and technologies, and practi-
tioners developing real-world systems and applications.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.2 [Software En-
gineering]; D.3 [Programming Languages]

Keywords actors, agent-oriented programming,
asynchronous programming, concurrent programming, event-
driven programming, decentralized control

1. Concurrent and Decentralized Thinking
Nowadays concurrency is part of every-day programming,
including aspects that are directly or indirectly related, such
as asynchronous/event-driven/reactive programming and
distributed programming. On the one hand, this calls for
introducing fine-grained mechanisms, libraries and frame-
works that make it possible to harness the power of con-
currency in mainstream programming languages, and finally

ease concurrent programming, which is a notoriously diffi-
cult task. On the other hand, it is not only a matter of per-
formance, but also of conceptual modeling and design, de-
vising proper abstractions that allow for developing modu-
lar, extensible, reusable concurrent/distributed/reactive pro-
grams. Like never before, we need to investigate program-
ming paradigms – either novel ones or those which have
evolved from existing ones – that allow one to naturally
think concurrent, and provide abstractions for modeling and
programming a concurrent and distributed world.

For this purpose – following the successful path set in
previous editions (2011, 2012, 2013, 2014) – AGERE!1 aims
to be the premier forum to explore these issues by draw-
ing on and contributing to work on actors/active/concurrent
objects and agents – as well as any programming paradigm
embracing a decentralized mindset [17] in solving problems
and designing systems.

2. Actors, Agents and High-Level
Abstractions

On the one hand, actors and object-oriented concurrent pro-
gramming [1–3, 7, 11, 13–15, 19, 22, 23] unify object-
oriented programming with concurrency, providing a clean
and powerful computation model which is being increas-
ingly adopted in languages, frameworks and libraries used
in the mainstream [8]. On the other hand, agents and agent-
oriented programming [4–6, 12, 16, 18, 20] – even if de-
veloped in the AI and distributed AI contexts – provide a
rich abstraction layer that could be effective for tackling the
main complexities that concern the development of complex
concurrent programs, featuring degrees of autonomy, proac-
tivity, and reactivity. The objective of the workshop is to

1 ago, agis, egi, actum, agere—latin verb meaning to act, to lead, to do,
common root for actors and agents

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

SPLASH Companion’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3722-9/15/10
http://dx.doi.org/10.1145/2814189.2833203

99



promote the investigation of all features that would make
actor-based and agent-based programming approaches ef-
fective general-purpose tools for developing software sys-
tems as an evolution of the OO paradigm. Additionally, the
workshop is meant to be a venue for all those approaches
and paradigms that embrace concurrency in thinking and
programming, providing proper abstractions for tackling im-
portant concerns, e.g., asynchronous programming, event-
driven programming and reactive systems [9, 10].

In particular, a relevant issue today – especially in prac-
tice [8, 21] – concerns the adoption of actors/agents/etc. to-
gether with other existing concurrency models, as well as
with mainstream programming models and languages. Thus,
one of the main objectives of the workshop this year is to
investigate how to unify actors/agents and object-oriented
programming. Moreover, adoption of actors and agents on
a large scale requires integration with a variety of runtime
platforms, such as JavaScript execution engines, native plat-
forms, and heterogeneous many-core machines. Several con-
tributions this year investigate this important aspect.

3. Actors and Agents as a Software
Development Paradigm

All stages of software development are considered inter-
esting for the workshop, including requirements, modeling,
formalization, prototyping, design, implementation, tooling,
testing, and any other means of producing running software
based on actors and agents as first-class abstractions. The
scope of the workshop includes aspects that concern both
the theory and the practice of design and programming using
such paradigms, so as to bring together researchers working
on models, languages and technologies, as well as practition-
ers using such technologies to develop real-world systems
and applications.

References
[1] G. Agha. Concurrent object-oriented programming. Commun.

ACM, 33:125–141, 1990.

[2] G. Agha, P. Wegner, and A. Yonezawa, editors. Research
directions in concurrent object-oriented programming. MIT
Press, 1993.

[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A
foundation for actor computation. J. Funct. Program., 7(1):
1–72, 1997.

[4] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
editors. Multi-Agent Programming Languages, Platforms and
Applications - Volume 1. Springer, 2005.

[5] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
editors. Multi-Agent Programming Languages, Platforms and
Applications - Volume 2. Springer, 2009.

[6] R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni. Special issue on multi-agent programming.
Autonomous Agents and Multi-Agent Systems, 23 (2), 2011.

[7] P. Haller and M. Odersky. Scala actors: Unifying thread-
based and event-based programming. Theoretical Computer
Science, 410(2):202–220, 2009.

[8] P. Haller. On the integration of the actor model in mainstream
technologies: the Scala perspective. In AGERE! 2012, pages
1–6. ACM, 2012.

[9] D. Harel and A. Pnueli. On the development of reactive
systems. Springer, 1985.

[10] D. Harel, A. Marron, and G. Weiss. Behavioral programming.
Commun. ACM, 55(7):90–100, 2012.

[11] C. Hewitt. Viewing control structures as patterns of passing
messages. Artificial Intelligence, 8(3):323–364, 1977.

[12] N. R. Jennings. An agent-based approach for building com-
plex software systems. Commun. ACM, 44(4):35–41, 2001.

[13] E. B. Johnsen and O. Owe. An asynchronous communication
model for distributed concurrent objects. Software & Systems
Modeling, 6(1):39–58, 2007.

[14] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Stef-
fen. ABS: A core language for abstract behavioral specifica-
tion. In Formal Methods for Components and Objects, pages
142–164. Springer, 2012.

[15] M. Miller, E. Tribble, and J. Shapiro. Concurrency among
strangers: programming in E as plan coordination. In Trust-
worthy Global Computing, pages 195–229. Springer, 2005.

[16] J. J. Odell. Objects and agents compared. Journal of Object
Technology, 1(1):41–53, 2002.

[17] M. Resnick. Turtles, Termites and Traffic Jams. Explorations
in Massively Parallel Microworlds. MIT Press, 1994.

[18] A. Ricci and A. Santi. Designing a general-purpose program-
ming language based on agent-oriented abstractions: The sim-
pal project. In Proceedings of the Compilation of the Co-
located Workshops, SPLASH ’11 Workshops, pages 159–170.
ACM, 2011.

[19] J. Schäfer and A. Poetzsch-Heffter. JCoBox: generalizing
active objects to concurrent components. In ECOOP 2010,
pages 275–299. Springer, 2010.

[20] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[21] S. Tasharofi, P. Dinges, and R. Johnson. Why do Scala devel-
opers mix the actor model with other concurrency models? In
ECOOP 2013, pages 302–326. Springer, 2013.

[22] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker,
and W. De Meuter. AmbientTalk: Object-oriented event-
driven programming in mobile ad hoc networks. In SCCC
2007, pages 3–12. IEEE, 2007.

[23] A. Yonezawa and M. Tokoro. Object-oriented concurrent
programming. MIT Press, 1987.

100


