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Abstract
The AGERE! workshop focuses on programming systems,
languages and applications based on actors, active/concurrent
objects, agents and – more generally – high-level program-
ming paradigms promoting a mindset of decentralized con-
trol in solving problems and developing software. The work-
shop is designed to cover both the theory and the practice
of design and programming, bringing together researchers
working on models, languages and technologies, and practi-
tioners developing real-world systems and applications.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.2 [Software En-
gineering]; D.3 [Programming Languages]

Keywords actors, agent-oriented programming,
asynchronous programming, concurrent programming, event-
driven programming, decentralized control

1. Concurrent and Decentralized Thinking
Nowadays concurrency is part of every-day programming,
including aspects that are directly or indirectly related, such
as asynchronous/event-driven/reactive programming and
distributed programming. On the one hand, this calls for
introducing fine-grained mechanisms, libraries and frame-
works that make it possible to harness the power of con-
currency in mainstream programming languages, and finally

ease concurrent programming, which is a notoriously diffi-
cult task. On the other hand, it is not only a matter of per-
formance, but also of conceptual modeling and design, de-
vising proper abstractions that allow for developing modu-
lar, extensible, reusable concurrent/distributed/reactive pro-
grams. Like never before, we need to investigate program-
ming paradigms – either novel ones or those which have
evolved from existing ones – that allow one to naturally
think concurrent, and provide abstractions for modeling and
programming a concurrent and distributed world.

For this purpose – following the successful path set in
previous editions (2011, 2012, 2013, 2014) – AGERE!1 aims
to be the premier forum to explore these issues by draw-
ing on and contributing to work on actors/active/concurrent
objects and agents – as well as any programming paradigm
embracing a decentralized mindset [17] in solving problems
and designing systems.

2. Actors, Agents and High-Level
Abstractions

On the one hand, actors and object-oriented concurrent pro-
gramming [1–3, 7, 11, 13–15, 19, 22, 23] unify object-
oriented programming with concurrency, providing a clean
and powerful computation model which is being increas-
ingly adopted in languages, frameworks and libraries used
in the mainstream [8]. On the other hand, agents and agent-
oriented programming [4–6, 12, 16, 18, 20] – even if de-
veloped in the AI and distributed AI contexts – provide a
rich abstraction layer that could be effective for tackling the
main complexities that concern the development of complex
concurrent programs, featuring degrees of autonomy, proac-
tivity, and reactivity. The objective of the workshop is to

1 ago, agis, egi, actum, agere—latin verb meaning to act, to lead, to do,
common root for actors and agents
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promote the investigation of all features that would make
actor-based and agent-based programming approaches ef-
fective general-purpose tools for developing software sys-
tems as an evolution of the OO paradigm. Additionally, the
workshop is meant to be a venue for all those approaches
and paradigms that embrace concurrency in thinking and
programming, providing proper abstractions for tackling im-
portant concerns, e.g., asynchronous programming, event-
driven programming and reactive systems [9, 10].

In particular, a relevant issue today – especially in prac-
tice [8, 21] – concerns the adoption of actors/agents/etc. to-
gether with other existing concurrency models, as well as
with mainstream programming models and languages. Thus,
one of the main objectives of the workshop this year is to
investigate how to unify actors/agents and object-oriented
programming. Moreover, adoption of actors and agents on
a large scale requires integration with a variety of runtime
platforms, such as JavaScript execution engines, native plat-
forms, and heterogeneous many-core machines. Several con-
tributions this year investigate this important aspect.

3. Actors and Agents as a Software
Development Paradigm

All stages of software development are considered inter-
esting for the workshop, including requirements, modeling,
formalization, prototyping, design, implementation, tooling,
testing, and any other means of producing running software
based on actors and agents as first-class abstractions. The
scope of the workshop includes aspects that concern both
the theory and the practice of design and programming using
such paradigms, so as to bring together researchers working
on models, languages and technologies, as well as practition-
ers using such technologies to develop real-world systems
and applications.
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