
Protocols for Processes:
Programming in the Large for Open Systems

(Extended Abstract)

Munindar P. Singh, Amit K. Chopra, Nirmit V. Desai, Ashok U. Mallya
{singh,akchopra,nvdesai,aumallya}@ncsu.edu

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

ABSTRACT
The modeling and enactment of business processes is being recog-
nized as key to modern information management. The expansion
of Web services has increased the attention given to processes, be-
cause processes are how services are composed and put to good
use. However, current approaches are inadequate for flexibly mod-
eling and enacting processes. These approaches take a logically
centralized view of processes, treating a process as an implementa-
tion of a composed service. They provide low-level scripting lan-
guages to specify how a service may be implemented, rather than
what interactions are expected from it. Consequently, existing ap-
proaches fail to adequately accommodate the essential properties
of the business partners in a process (the partners would be realized
via services)—theirautonomy(freedom of action),heterogeneity
(freedom of design), anddynamism(freedom of configuration).

Flexibly representedprotocolscan provide a more natural ba-
sis for specifying processes. Protocols specifywhat rather than
how; thus they naturally maximize the autonomy, heterogeneity,
and dynamism of the interacting parties. We are developing an
approach for modeling and enacting business processes based on
protocols. This paper describes some elements of (1) a conceptual
model of processes that will incorporate abstractions based on pro-
tocols, roles, and commitments; (2) the semantics or mathematical
foundations underlying the conceptual model and mapping global
views of processes to the local actions of the parties involved; (3)
methodologies involving rule-based reasoning to specify processes
in terms of compositions of protocols.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; D.2.10
[Software Engineering]: Design; D.2.13 [Software Engineer-
ing]: Reusable Software; I.2.11 [Artificial Intelligence]: Distributed
Artificial IntelligenceMultiagent Systems

Copyright is held by the author/owner.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

General Terms
Standardization, Languages, Design

Keywords
Open Systems, Interaction Protocols, Business Processes

1. INTRODUCTION
We think of business process modeling and enactment as a form

of programming in the large [8]. Programming in the large is dis-
tinguished from the more common programming in the small in
several ways. Programming in the large emphasizes putting to-
gether large software components (built by several people over a
long period of time) and having a local state, whereas program-
ming in the small is about developing the individual components.
Programming in the large is a much more challenging engineering
problem.

Business processes, which span multiple autonomous business
partners, are an example of programming in the large. Cross en-
terprise processes, in particular, involve a rich variety of interac-
tions among software components that are independently designed
and configured, and which represent independent (and sometimes
mutually competitive) business interests. Because Web services
simplify interoperation, they have led to a resurgence of interest
in technologies for process modeling and enactment.

Current approaches for the modeling and enactment of business
processes are woefully inadequate, and reflect the similar inade-
quacy of programming in the large in open environments. Whereas
the initial attempts at programming in the large were based on
simple module interconnections, more serious attempts, such as
megaprogramming, employed ontologies to address the heterogene-
ity of the information processes by various components [19].

However, no good abstractions have been developed to model
the interactive processing of information by multiple components.
Consequently, processes are still specified today as scripts essen-
tially providing the same level of abstraction as developed in the
job control languages (JCLs) of the mainframes of the 1950s. The
above claim may sound unduly harsh, but while we readily ac-
knowledge progress in technologies for process management, in
terms of abstractions for modeling processes the progress is incre-
mental at best. Whether you consider any of the modeling tools in
use today, or leading proposed standards such as the Business Pro-
cess Execution Language for Web Services (BPEL) [1] or the Web
Ontology Language for Services (OWL-S) [7], the process abstrac-
tions they offer are constructs such as sequence, iterate, fork, and

120

join. In other words, the abstractions are little more than what you
might find in a JCL. Hence our claim above.

But, still, why are such abstractions not adequate for processes?
Imperative languages are abstractions that are best suited to pro-
gramming in the small. They assume the invoked components be-
have as expected. However, the main problems that arise in pro-
cesses are problems of programming in the large. Because of en-
vironmental effects, exceptions can arise. Because the participants
are autonomous, they can act to exploit opportunities, and their be-
havior may appear to be unexpected to their partners.

The effect of the above is that current approaches for process
modeling and enactment have some key, well-known limitations
in practice. They are either too rigid (thus frustrating users and
causing systemic inefficiencies), or are extremely expensive in time
and effort to construct and manage, and usually both. Thus some
of the benefits of openness are lost.

2. VISION
Our diagnosis of the above challenges is that they reflect a fun-

damental problem for programming in the large. The traditional
(imperative) scripting constructs specify flows. Clearly any process
execution must correspond to a flow. However, this does not mean
that we must specify the set of flows explicitly. Instead, we pro-
pose that processes be captured in terms of protocols, where each
protocol is a flexible encoding of a meaningful set of interactions.

We define(business) protocolsas publishable specifications of
business interactions. We propose to model a business process as a
composition of protocols. For example, we can have protocols for
negotiation, for payment, for selecting a shipping company, and so
on. A protocol is an interface, meaning that it specifies only the key
desired aspects of the interactive behavior, not how the interacting
parties are implemented.

Each protocol constrains the business partners involved in it.
Protocols are modular, i.e., functionally decentralized. For exam-
ple, a payment protocol between a customer and a merchant would
be specified independently of the merchant’s inventory fulfillment
protocol for ordering goods from its suppliers. Thus, capturing pro-
cesses via protocols enables us to more easily represent and enact
interactions among autonomous business partners.

To model a process, we first identify the protocols using which
the different participants interact. For example, a merchant and a
customer may interact with each other using a negotiation proto-
col; the merchant, customer, and payment agency may interact via
an escrow protocol; and, the merchant, customer, and shipper may
interact through some specialized logistics protocol. When each
participant acts according to its local reasoning but respecting the
stated protocols, a multiparty business process is enacted but with-
out a global flow necessarily ever having been explicitly encoded.

2.1 Benefits
Our protocol-based approach offers the following natural advan-

tages. One, for processdesign, protocols are naturally reusable
whereas complete processes are not. More importantly, protocols
lend themselves to modeling abstractions such as specialization and
aggregation. Two, for processenactment, when protocols are flexi-
ble, they enable each party to exercise some discretion in applying
its local policies or preferences while obeying a protocol. For ex-
ample, a merchant may accept only cash for discounted goods and a
customer may prefer to pay for goods after using them for a month.
This flexibility also enables us to capture and handle business ex-
ceptions and opportunities in a natural manner at the level of proto-
cols. Three, for processmonitoring, protocols provide a clean basis
for determining that the interacting parties are complying with the
given protocols.

2.2 Trends
Just as network protocols enabled the expansion of the lower lay-

ers of the Web architectures, business protocols will enable the
development of processes involving autonomous, heterogeneous
business partners. For this reason, we expect to see an increasing
set of business protocols to be published and custom protocols to
be designed. Several business protocols have been defined. Some
general-purpose ones are NetBill [18], Secure Electronic Transac-
tions (SET) [17], Internet Open Trading Protocol (IOTP) [11], and
Escrow [10].

RosettaNet is a leading industry effort, involving about 400 elec-
tronics and telecommunications companies. The RosettaNet [16]
Partner Interface Processes (PIPs), of which 107 are currently listed,
are business protocols in spirit. These modularly describe several
important business interaction scenarios. RosettaNet is in active
production use with several billion dollars worth of commerce be-
ing conducted over it, e.g., [12]. Another major industry effort
is ebXML [9]. ebXML is similar to RosettaNet but more general
in style. Some of RosettaNet’s components are gradually shifting
over to using ebXML, e.g., for messaging formats. ebXML’s Busi-
ness Process Specification Schema (BPSS) describes partner roles
and the documents they would exchange. RosettaNet’s PIPs map
to instances of BPSS. ebXML’s Collaboration Protocol Agreement
(CPA) describes an agreement (including conversations) between
collaborating parties that is derived from their individual profiles.

We find the above trends, along with the well-known expan-
sion of service-oriented computing, extremely encouraging. These
trends clearly suggest that industry has understood the problem of
developing cross-enterprise information systems, and is showing us
researchers the way (in terms of what is important). However, cur-
rent integration efforts are tedious and expensive, because they re-
quire extensive hard-coding. RosettaNet’s limitations include that
the PIPs specify interactions rather rigidly and do not offer a formal
semantics. Further, the PIPs seem to specify some internal opera-
tions of each partner. Lastly, the interactions are short (in fact, just
involving two parties and typically no more than a request and a
response pair) and exceptions, where accounted for, are encoded as
separate PIPs. ebXML has the same limitations.

Consequently, although current specifications of the business pro-
tocols are lacking in some respects, an increasing set of such proto-
cols is an indication of the significance of our approach. The main
reason behind the above limitations is that while business processes
apply among autonomous, heterogeneous partners, the program-
ming abstractions are still based on closed systems.

3. KEY TRADITIONAL APPROACHES
We briefly outline the key approaches here. Conventionally, a

business process is modeled in a conceptually centralized manner
as a global flow. Emerging standards and tools support the specifi-
cation and enactment of business processes specified as flows, but
they cannot escape the fundamental limitations of such representa-
tions. One, it is difficult to create and maintain flows: they become
complex in the face of exceptions and cannot easily be verified.
Two, because a flow represents a central view, it inevitably limits
the autonomy and heterogeneity of the business partners involved,
leading to a suboptimal treatment of exceptions and opportunities.
Three, flow representations are about how a process or composed
service is implemented; what we need are interfaces that assure us
that independent implementations will interoperate.

It helps to distinguishorchestration(how a process is imple-
mented by composing services) fromchoreography(how services
interact) [15]. Both BPEL [1] and OWL-S [7] emphasize orches-

121

tration by encoding flows. Service composition has drawn an in-
creasing amount of attention lately. However, work in this area has
concentrated on orchestrating services so as to accomplish a desired
composition. For example, McIlraithet al. [14] and Cardoso and
Sheth [5] show how composed services may be put together. This
body of work addresses how a composed service may be imple-
mented, not how an autonomous service would interact with other
services.

By contrast, the Web Services Choreography Interface (WSCI)
[20] describes “conversations” or constraints on how a service is
willing to interact with others, e.g., by requiring login before pur-
chase. Unfortunately, existing choreography approaches rigidly
specify a series of message exchanges but without an account of
how they could be modularized and combined and how they could
be related computationally to the orchestration approaches.

Like choreography, a protocol describes how services interact,
but unlike traditional choreography, a protocol would consider the
perspective of the interaction rather than of a particular partici-
pant. Further, protocols are conceptually composable to yield pro-
cesses. Lastly, protocols would map into the flows of the partici-
pants, where the flows would interact to yield the desired process,
thereby fulfilling the purpose of orchestration as well.

4. DISCUSSION
We introduced a technical approach for modeling protocols that

provides a natural basis for principled methodologies for design-
ing custom business protocols. The main contributions lie in the
formalization of protocol specialization and aggregation. This can
further be employed to perform subsumption reasoning and to carry
out more interesting operations on protocols, such as splicing. Re-
lated work can broadly be classified under the following research
areas.

4.1 Why is this an Onward! Paper
Programming in the large as a topic has been around for almost

three decades. Business process management has seen a phenom-
enal resurgence in interest as it has expanded into cross-enterprise
settings to serve the needs of e-business. The challenges the open
environments pose for process modeling and enactment call for
new approaches for software development. We provide a promis-
ing such approach. This paper outlines several technical aspects of
this approach, indicating that it could be a promising new paradigm
for scientific contributions. However, the results might need further
refinement before they are ready for conventional forums.

4.2 Existing or Emerging Standards
Among conventional standards, BPEL [1] primarily captures a

flow model. BPEL also includes a significant component of data
handling. BPEL also includes so-called protocols, which are mod-
eled as processes whose variables are bound late to values. WSCI
describes conversations in which a given service may participate.
WSCI [20] conversations are not business protocols. Protocols im-
pose interrelated requirements on all participants, not just on the
users of a particular service. Each WSCI specification corresponds
to a role in our scheme. WSCI Conversations are specified with-
out any semantics, so that transitions and states cannot be reasoned
about.

The transactional requirements of the composition could be par-
tially derived from the nature of the composition. A leading ap-
proach for transactional support for Web service computations is
described in the WS-Coordination [4] and WS-Transaction specifi-
cations [3], which has support for Atomic Transactions (ATs) and
Business Activities (BAs). Most of our intended applications will

fall under business activities. OASIS’s Business Transaction Pro-
tocol (BTP) introduces an alternative, but similar, framework for
coordinating Web transactions [6]. BTP includes atom (all or none)
and cohesion (application-specific) transactions. The Web Services
Composite Application Framework (WS-CAF) [2] is another in-
dustry initiative to support transactional properties of business pro-
cesses. The above approaches are similar enough for our purposes.
They take a flow-oriented stance on processes and attempt to en-
capsulate certain steps as transactions. Our approach would apply
transactional properties at the level of protocols.

Semantic Web efforts have converged into the Web Ontology
Language (OWL) [13]. One of the best current works on semantic
Web services is OWL-S (derived from DAML-S) [7]. OWL-S is
an OWL ontology for services, which includes service grounding,
service profile, and process model. The profile is key for specifying
and discovering services. The process model describes how a ser-
vice may be implemented in terms of a set of scripting constructs,
such as for sequencing, concurrency, branching, and iteration. In
this respect, OWL-S resembles BPEL, which describes processes
with which services can be implemented as compositions of oth-
ers. Although such process specifications may be useful in tools
to implement services, they are not directly suited for standardiza-
tion. In our approach, some of this functionality shifts to protocol
specifications.

4.3 Contributions and Directions
To summarize, we have argued that the problems of program-

ming in the large arise with renewed vigor in open environments,
as exemplified by the world of cross-enterprise business process
management. Current programming abstractions are ineffective for
such settings. A simple, but promising, idea is to modularize in-
teractions analogous to the way we traditionally modularize local
behaviors: let’s have roles and protocols as first-class entities just
as classes and methods were in traditional programming. We de-
scribed key elements of our research program, which in simple
terms, seeks to take the above idea to its logical conclusion. We
hope to have convinced the reader that a number of benefits can be
derived from this exercise.

We don’t claim that all important problems are solved or even
framed with precision, but we think we are getting there. To this
end, we have identified some avenues of research that are especially
promising.

Design. Sophisticated process design tools based on our theory of
processes and protocols would help designers create process
models with greater productivity. Key questions are about
design rules and sanity checks on processes and protocols.

Enactment. An execution framework for agents to play roles in
different protocols so as to enact a process in a truly dis-
tributed manner would maximize the autonomy of business
partners. It would eliminate the need for centralized pro-
cess execution with its concomitant bottlenecks and failure
modes.

Monitoring. Compliance verification is a key challenge for open
environments. It becomes even more important when the par-
ticipants are given more autonomy as in our approach. The
richer semantics of our approach, in terms of commitments
and temporal models, would help us develop stronger results
than in other approaches.

Negotiation. We can frame the choice of protocol as a run-time de-
cision to be made by the various participants. In particular,

122

participants would then use the refined version of a proto-
col that best matches their local preferences. For example, a
customer might choose to deal with a business that requires
no authentication steps rather than with a business that of-
fers similar services, but requires a number of authentication
steps. In other cases, the parties involved may negotiate with
each other to settle upon the particular refinement of a proto-
col that they would follow in their mutual interactions.

Overall, we believe this could prove to be a fruitful research pro-
gram for our community.

5. FULL PAPER
The full paper (available from the author) describes our motiva-

tions in greater detail, presents our technical framework based on
commitments, and introduces our specific approach for modeling
and composing protocols. For reasons of space, this extended ab-
stract skips most of these details.

6. ACKNOWLEDGMENTS
This research is supported by DARPA and by the National Sci-

ence Foundation under grant DST-0139037.

7. REFERENCES
[1] BPEL. Business process execution language for web

services, version 1.1, May 2003. www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

[2] D. Bunting, M. Chapman, O. Hurley, M. Little,
J. Mischkinsky, E. Newcomer, J. Webber, and K. Swenson.
Web services composite application framework (WS-CAF),
July 2003. http://www.iona.com/ devcenter/ standards/
WS-CAF/ WS-CAF.pdf.

[3] F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein,
T. Storey, and S. Thatte. Web services transaction
(WS-Transaction), Aug. 2002. http://www-106.ibm.com/
developerworks/ webservices/ library/ ws-transpec/.

[4] L. F. Cabrera, G. Copeland, W. Cox, M. Feingold, T. Freund,
J. Johnson, C. Kaler, J. Klein, D. Langworthy, A. Nadalin,
D. Orchard, I. Robinson, J. Shewchuk, and T. Storey. Web
services coordination (WS-Coordination), Sept. 2003.
ftp://www6.software.ibm.com/ software/ developer/ library/
ws-coordination.pdf.

[5] J. Cardoso and A. Sheth. Semantic e-workflow composition.
Journal of Intelligent Information Systems (JIIS),
12(3):191–225, Nov. 2003.

[6] S. Dalal, S. Temel, M. Little, M. Potts, and J. Webber.
Coordinating business transactions on the Web.IEEE
Internet Computing, 7(1):30–39, Jan. 2003.

[7] DAML-S. DAML-S: Web service description for the
semantic Web. InProceedings of the 1st International
Semantic Web Conference (ISWC), July 2002. Authored by
the DAML Services Coalition, which consists of
(alphabetically) Anupriya Ankolekar, Mark Burstein, Jerry
R. Hobbs, Ora Lassila, David L. Martin, Drew McDermott,
Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci,
Terry R. Payne and Katia Sycara.

[8] F. DeRemer and H. H. Kron. Programming-in-the-large
versus programming-in-the small.IEEE Transactions on
Software Engineering, 2(2):80–86, June 1976.

[9] ebXML. Electronic business using eXtensible markup
language, 2002. Technical Specifications release, URL:
http://www.ebxml.org/specs/index.htm.

[10] Escrow.com. Online escrow process, 2003.
http://www.escrow.com/solutions/escrow/process.asp.

[11] IOTP. Internet open trading protocol (IOTP), Oct. 2003.
IETF: Internet Engineering Task Force,
http://www.ietf.org/html.charters/trade-charter.html.

[12] T. Krazit. Intel conducts $5b in transactions via RosettaNet,
Dec. 2002. http://archive.infoworld.com/ articles/ hn/ xml/
02/12/10/ 021210hnintelrose.xml.

[13] D. L. McGuiness and F. van Harmelen. Web Ontology
Language (OWL): Overview.
www.w3.org/TR/2003/WD-owl-features-20030210/, Feb.
2003. W3C working draft.

[14] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web
services.IEEE Intelligent Systems, 16(2):46–53, Mar. 2001.

[15] C. Peltz. Web service orchestration and choreography.IEEE
Computer, 36(10):46–52, Oct. 2003.

[16] RosettaNet. Home page, 1998. www.rosettanet.org.
[17] SET. Secure electronic transactions (SET) specifications,

2003. http://www.setco.org/ setspecifications.html.
[18] M. A. Sirbu. Credits and debits on the Internet.IEEE

Spectrum, 34(2):23–29, Feb. 1997.
[19] G. Wiederhold, P. Wegner, and S. Ceri. Toward

megaprogramming.Communications of the ACM,
35(11):89–99, Nov. 1992.

[20] WSCI. Web service choreography interface 1.0, July 2002.
wwws.sun.com/ software/ xml/ developers/ wsci/
wsci-spec-10.pdf.

123

