
Sizing Multi-Space in Heap for Application Isolation
Kewei Sun

IBM China Research Laboratory
Beijing, P.R.China
86-10-58748485

sunkewei@cn.ibm.com

Ying Li
IBM China Research Laboratory

Beijing, P.R.China
86-10-58748054

lying@cn.ibm.com

Matt Hogstrom
IBM Software Group

Durham NC
1-919-656-0564

hogstrom@us.ibm.com

Ying Chen
IBM China Research Laboratory

Beijing, P.R.China
86-10-58748010

yingch@cn.ibm.com

Abstract
In this paper, we present a sizing algorithm using resonant model
based on a proposed novel heap structure – multiple spaces in
heap. Experiments using the algorithm and selected GC method
show that, in average, the performance overhead from managing
multi-spaces in heap can be reduced from 8.38% to 4.25% when
CPU utilization of server is 40% and from 42.42% to 3.52% when
CPU utilization of the server is 70%.

Categories and Subject Descriptors D.4.8 [Operating
Systems]: Performance – modeling and prediction.

General Terms Reliability, Performance, Experimentation,
Algorithms

Keywords Java heap, multiple spaces, isolation, resonant model

1. Motivation: Building Multiple Spaces in Heap for
Isolating Application
Typically, the Java middleware, like web server, or application
server, runs in a single Java virtual machine (JVM) instance
continuously. Given this single JVM model and the existing JVM
technology, the heap is shared and objects are allocated and
reclaimed randomly among middleware and applications. The
sharing heap strategy brings big negative impact to the system
that the bad logic (i.e., memory leak) or malicious intension in
one application may cause the degraded performance or even
crash of the whole system due to the heap memory competition or
deprivation among middleware and applications
We built a revised Java heap for Java middleware-based
applications by leveraging memory spaces in IBM JVM. To
isolate one application’s memory leaking behavior to prevent
middleware and other applications from being affected, traditional
Java heap is partitioned into multiple memory spaces, each of
which is associated with one application and bound by a limit size
Capped by the guaranteed heap size while allocating objects in
run time, application’s memory leaking or malicious intension can
not interfere with the others in terms of heap consumption, and
most importantly, the whole system including the middleware can
continue to operation with maintained performance, in face of
memory leaks, during runtime. The experiment result illustrates
the isolation effectiveness of the prototype based on the revised
Java heap.
One of the key challenges of multi-spaces Java heap is
determining the appropriate size of memory space which has a big

impact on the performance of the application binding to the
memory space. A memory space that barely meets the
application’s minimum requirements results in excessive garbage
collection overhead. While a memory space that always exceeds
the application’s maximum requirements leads to low utilization
of the heap. This paper presents a memory space sizing algorithm
that can select sizes of the memory spaces by both
accommodating applications’ requirement and minimizing the
overhead of garbage collection in whole heap. To achieve the
goal, the algorithm employs an analytic model – resonate model
that characterizes the relationship between memory space size and
GC frequency. The experiments results show that, on average,
based on the selected GC method and the memory space sizing
algorithm, the performance overhead caused by managing multi-
spaces in heap can be reduced from 8.38% to 4.25% when CPU
utilization of server is 40%, and from 42.42% to 3.52% when
CPU utilization of the server is about 70%.

2. Selecting Garbage Collection Method for Multiple
Spaces in Heap
Firstly, considering the major contribution of GC to performance
overhead on Java system, we investigated two typical garbage
collection (GC) methods supported by IBM JVM, global GC, and
scavenger GC, to evaluate their applicability to multiple memory
spaces in heap. Under the environment of multiple memory
spaces in a single Java heap, both global and scavenger GC lead
to scan the entire heap to identify living objects. The different is
that, after the heap is scanned, global GC reclaims the memory
from the entire heap, while scavenger GC usually limit the
memory reclamation action within the boundary of the memory
space that triggered the GC activity. Under such circumstance,
scavenger GC reclaims less memory than global GC, and is prone
to cause higher GC frequency. Correspondingly, compared with
scavenger GC, it seems that global GC is more suitable for
multiple spaces in heap. Our experiment confirms the above
analysis. We took Jetty 5.1.4 as the experimental Java
middleware, and the servlets of the Web application benchmark,
TPC-W, as the testing applications. TPC-W and Jetty5.1.4 are run
on IBM JVM. Jetty itself, as a middleware, has been assigned
with a dedicated memory space, and then each servlet of TPC-W
is bound to its dedicated memory space. Since this experiment is
just to evaluate the applicability of GC methods, we selected the
same size for each memory space of TPC-W servlets. The GC
overhead ratio, the portion of time that GC activity occupied in
the whole application execution time is defined as the metric to
compare the contribution to performance overhead of these two
GC methods. The experiment result shows that, on average, GC
overhead ratio by global GC is 1%, while by scavenger GC, it is
up to 23%. Based on the above empirical analysis and

Ying Li is the corresponding author

Copyright is held by the author/owner(s).
OOPSLA’06 October 22-26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

647

experimental results, we select global GC supported by IBM JVM
as the GC method for multiple spaces in heap.

3. Resonant Model – Sizing Multiple Spaces in Heap
After selecting the suitable GC method, the second challenge is to
select correct size of each memory space in heap since the size
has serious impact on performance of application that use this
memory space. The objective is to minimize the performance
overhead caused by managing multiple spaces in heap. We build a
analytical model, called Resonant Model, to characteristic the
relationship between memory space size and GC frequency. And
based on this, the memory space sizing algorithm can predict and
select correct size for each memory space in heap to achieve
minimized performance overhead.
To build analytical model for sizing memory spaces it is
important firstly to understand the relationship between GC
frequency and size. Typically, GC contains mark and sweep
phases. Our empirical evaluation shows that the mark phase
occupies the dominating portion of GC time. Therefore, given a
certain heap size, we can expect that the time consumed by each
GC is almost the same. As a result, GC overhead is in proportion
with the GC frequency. The experiment results of TPC-W on
Jetty and IBM JVM illustrated in Figure 1 strongly supports the
assumption.

Figure 1: Relationship between GC overhead and frequency

In the partitioned heap, global GC performs global mark and
global sweep, while it is triggers by each memory space
independently. As a result, there might be a lot of memory spaces,
who are compelled to perform garbage collection when they are
far from running out of memory. That is to say, when the Java
heap is partitioned into multiple memory spaces and global GC is
used, the GC frequency of the entire Java heap follows the
memory space with highest GC frequency.
When the application and its typical workload are determined, the
most efficient way to reduce the GC frequency is by assigning
more memory, and vice versa. However, assigning more memory
for one memory space means to reduce the total memory shared
by other memory spaces. This will result in higher GC frequency
of others. To achieve the lowest GC overhead, we need to make
the GC frequency in every memory almost the same. That is, to
make their GC pace “resonantly”. This is the essence idea of the
resonant model.
We define the workload as the requests to the application arrived
and processed by the application. GC frequency of a memory

space is determined by its memory space size and workload.
Formula (I) represents the relationship among memory space size,
workload and GC frequency. The aim of the Resonant Algorithm
is to achieve the lowest GC frequency of the heap. Therefore, we
need to make full use of memory resources in the heap by
allocating them to different memory spaces. As a result, heap size
would be the summary of the size of each memory space
(Formula II). In order to achieve the lowest GC frequency, the
resonant condition must be satisfied. That is, for any memory
spaces, the GC frequency should be the same (Formula III).
Related function is illustrated as follow:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=∀

=

=

∑ −

III))(,(

II),(

I),(
1

ji

i
iMS

iiMS

yGCfrequencyGCfrequencji

HeapSizeworkloadyGCfrequencg

yGCfrequencworkloadMSsizef

i

i

When the resonant condition is satisfied, the lowest GC frequency
and overhead would be achieved by assigning a suitable memory
space size for each memory space.

4. Experiment Result and Future Work Plan
In order to evaluate the effect of the resonant model, we have
done preliminary experiments on TPC-W benchmark on Jetty and
Trade6 benchmark with WAS6.1. Experiment results are similar.
Taking Trade6 on WAS6.1 as example, each servlet of Trade6 is
treated as an application and assigned a memory space in the
heap. Firstly, we select average equal size to each memory space,
which results in 30/second GC frequency, and 0.96% GC
overhead ratio. After applying resonant model and selecting
correct size of each memory space, the GC frequency reduced to
14/second, and GC overhead becomes to 0.59%, reduced by 39%.
Correspondingly, the performance overhead caused by managing
multi-spaces in heap can be reduced from 8.38% to 4.25% when
CPU utilization of server is 40% and from 42.42% to 3.52% when
CPU utilization of the server is about 70%.

Our future work would be focused on improve the resonant model
algorithm, which will make a rapid response when the workload
of the application switches. Leverage the memory space resizing
mechanism in the revised Java heap and make sure the stable
performance of the middleware-based applications.

References
[1] S. Borman, et al. A Serially Reusable Java Virtual Machine

Implementation for High Volume, Highly Reliable,
Transaction Processing, In IBM Technical Report TR
29.3406, IBM Hursley, UK.

[2] G Czajkowski. Application Isolation in the Java Virtual
Machine. In ACM SIGPLAN Proceedings of the 15th
conference on Object-Oriented Programming, Systems,
Languages, and Applications, Minneapolis, Minnesota, Oct,
2000

[3] D Menasce. TPC-W A Benchmark for E-Commerce. IEEE
Internet Computing, 6(3):83– 87, 2002.

[4] Jetty. http://jetty.mortbay.org/jetty/
[5] JProfiler. http://www.ej-technologies.com/products/

jprofiler/overview.html

648

