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Abstract 
In this paper, we present a sizing algorithm using resonant model 
based on a proposed novel heap structure – multiple spaces in 
heap. Experiments using the algorithm and selected GC method 
show that, in average, the performance overhead from managing 
multi-spaces in heap can be reduced from 8.38% to 4.25% when 
CPU utilization of server is 40% and from 42.42% to 3.52% when 
CPU utilization of the server is 70%.  

Categories and Subject Descriptors    D.4.8 [Operating 
Systems]: Performance – modeling and prediction.  

General Terms   Reliability, Performance, Experimentation, 
Algorithms 

Keywords   Java heap, multiple spaces, isolation, resonant model 

1. Motivation: Building Multiple Spaces in Heap for 
Isolating Application 
Typically, the Java middleware, like web server, or application 
server, runs in a single Java virtual machine (JVM) instance 
continuously. Given this single JVM model and the existing JVM 
technology, the heap is shared and objects are allocated and 
reclaimed randomly among middleware and applications. The 
sharing heap strategy brings big negative impact to the system 
that the bad logic (i.e., memory leak) or malicious intension in 
one application may cause the degraded performance or even 
crash of the whole system due to the heap memory competition or 
deprivation among middleware and applications 
We built a revised Java heap for Java middleware-based 
applications by leveraging memory spaces in IBM JVM. To 
isolate one application’s memory leaking behavior to prevent 
middleware and other applications from being affected, traditional 
Java heap is partitioned into multiple memory spaces, each of 
which is associated with one application and bound by a limit size 
Capped by the guaranteed heap size while allocating objects in 
run time, application’s memory leaking or malicious intension can 
not interfere with the others in terms of heap consumption, and 
most importantly, the whole system including the middleware can 
continue to operation with maintained performance, in face of 
memory leaks, during runtime. The experiment result illustrates 
the isolation effectiveness of the prototype based on the revised 
Java heap.   
One of the key challenges of multi-spaces Java heap is 
determining the appropriate size of memory space which has a big 

impact on the performance of the application binding to the 
memory space. A memory space that barely meets the 
application’s minimum requirements results in excessive garbage 
collection overhead. While a memory space that always exceeds 
the application’s maximum requirements leads to low utilization 
of the heap. This paper presents a memory space sizing algorithm 
that can select sizes of the memory spaces by both 
accommodating applications’ requirement and minimizing the 
overhead of garbage collection in whole heap. To achieve the 
goal, the algorithm employs an analytic model – resonate model 
that characterizes the relationship between memory space size and 
GC frequency. The experiments results show that, on average, 
based on the selected GC method and the memory space sizing 
algorithm, the performance overhead caused by managing multi-
spaces in heap can be reduced from 8.38% to 4.25% when CPU 
utilization of server is 40%, and from 42.42% to 3.52% when 
CPU utilization of the server is about 70%. 

2. Selecting Garbage Collection Method for Multiple 
Spaces in Heap 
Firstly, considering the major contribution of GC to performance 
overhead on Java system, we investigated two typical garbage 
collection (GC) methods supported by IBM JVM, global GC, and 
scavenger GC, to evaluate their applicability to multiple memory 
spaces in heap. Under the environment of multiple memory 
spaces in a single Java heap, both global and scavenger GC lead 
to scan the entire heap to identify living objects. The different is 
that, after the heap is scanned, global GC reclaims the memory 
from the entire heap, while scavenger GC usually limit the 
memory reclamation action within the boundary of the memory 
space that triggered the GC activity. Under such circumstance, 
scavenger GC reclaims less memory than global GC, and is prone 
to cause higher GC frequency. Correspondingly, compared with 
scavenger GC, it seems that global GC is more suitable for 
multiple spaces in heap. Our experiment confirms the above 
analysis. We took Jetty 5.1.4 as the experimental Java 
middleware, and the servlets of the Web application benchmark, 
TPC-W, as the testing applications. TPC-W and Jetty5.1.4 are run 
on IBM JVM. Jetty itself, as a middleware, has been assigned 
with a dedicated memory space, and then each servlet of TPC-W 
is bound to its dedicated memory space. Since this experiment is 
just to evaluate the applicability of GC methods, we selected the 
same size for each memory space of TPC-W servlets. The GC 
overhead ratio, the portion of time that GC activity occupied in 
the whole application execution time is defined as the metric to 
compare the contribution to performance overhead of these two 
GC methods. The experiment result shows that, on average, GC 
overhead ratio by global GC is 1%, while by scavenger GC, it is 
up to 23%. Based on the above empirical analysis and 
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experimental results, we select global GC supported by IBM JVM 
as the GC method for multiple spaces in heap. 

3. Resonant Model – Sizing Multiple Spaces in Heap 
After selecting the suitable GC method, the second challenge is to 
select correct size of each memory space in heap since the size 
has serious impact on performance of application that use this 
memory space. The objective is to minimize the performance 
overhead caused by managing multiple spaces in heap. We build a 
analytical model, called Resonant Model, to characteristic the 
relationship between memory space size and GC frequency. And 
based on this, the memory space sizing algorithm can predict and 
select correct size for each memory space in heap to achieve 
minimized performance overhead. 
To build analytical model for sizing memory spaces it is 
important firstly to understand the relationship between GC 
frequency and size. Typically, GC contains mark and sweep 
phases. Our empirical evaluation shows that the mark phase 
occupies the dominating portion of GC time. Therefore, given a 
certain heap size, we can expect that the time consumed by each 
GC is almost the same. As a result, GC overhead is in proportion 
with the GC frequency. The experiment results of TPC-W on 
Jetty and IBM JVM illustrated in Figure 1 strongly supports the 
assumption. 

 
Figure 1: Relationship between GC overhead and frequency 

In the partitioned heap, global GC performs global mark and 
global sweep, while it is triggers by each memory space 
independently. As a result, there might be a lot of memory spaces, 
who are compelled to perform garbage collection when they are 
far from running out of memory. That is to say, when the Java 
heap is partitioned into multiple memory spaces and global GC is 
used, the GC frequency of the entire Java heap follows the 
memory space with highest GC frequency. 
When the application and its typical workload are determined, the 
most efficient way to reduce the GC frequency is by assigning 
more memory, and vice versa. However, assigning more memory 
for one memory space means to reduce the total memory shared 
by other memory spaces. This will result in higher GC frequency 
of others. To achieve the lowest GC overhead, we need to make 
the GC frequency in every memory almost the same. That is, to 
make their GC pace “resonantly”. This is the essence idea of the 
resonant model. 
We define the workload as the requests to the application arrived 
and processed by the application. GC frequency of a memory 

space is determined by its memory space size and workload. 
Formula (I) represents the relationship among memory space size, 
workload and GC frequency. The aim of the Resonant Algorithm 
is to achieve the lowest GC frequency of the heap. Therefore, we 
need to make full use of memory resources in the heap by 
allocating them to different memory spaces. As a result, heap size 
would be the summary of the size of each memory space 
(Formula II). In order to achieve the lowest GC frequency, the 
resonant condition must be satisfied. That is, for any memory 
spaces, the GC frequency should be the same (Formula III). 
Related function is illustrated as follow: 
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When the resonant condition is satisfied, the lowest GC frequency 
and overhead would be achieved by assigning a suitable memory 
space size for each memory space.  

4. Experiment Result and Future Work Plan 
In order to evaluate the effect of the resonant model, we have 
done preliminary experiments on TPC-W benchmark on Jetty and 
Trade6 benchmark with WAS6.1. Experiment results are similar. 
Taking Trade6 on WAS6.1 as example, each servlet of Trade6 is 
treated as an application and assigned a memory space in the 
heap. Firstly, we select average equal size to each memory space, 
which results in 30/second GC frequency, and 0.96% GC 
overhead ratio. After applying resonant model and selecting 
correct size of each memory space, the GC frequency reduced to 
14/second, and GC overhead becomes to 0.59%, reduced by 39%. 
Correspondingly, the performance overhead caused by managing 
multi-spaces in heap can be reduced from 8.38% to 4.25% when 
CPU utilization of server is 40% and from 42.42% to 3.52% when 
CPU utilization of the server is about 70%. 

Our future work would be focused on improve the resonant model 
algorithm, which will make a rapid response when the workload 
of the application switches. Leverage the memory space resizing 
mechanism in the revised Java heap and make sure the stable 
performance of the middleware-based applications. 
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