Refactoring Support for the C++ Development Tooling

Emanuel Graf Guido Zgraggen Peter Sommerlad

IFS Institute for Software at HSR Rapperswil
Oberseestr. 10, CH-8640 Rapperswil, Switzerland

{emanuel.graf,guido.zgraggen,

Abstract

This article reveals our work on refactoring plug-ins for
Eclipse’s C++ Development Tooling (CDT).

With CDT a reliable open source IDE exists for C/C++
developers. Unfortunately it has been lacking of overarching
refactoring support. There used to be just one single refactor-
ing - Rename. But our plug-in provides several new refactor-
ings which support a C++ developer in his everyday work.

Categories and Subject Descriptors D [2]: 7—Restruc-
turing, reverse engineering, and reengineering

General Terms Design, Languages

Keywords Refactoring, C++, Eclipse

1. Introduction

A C++ programmer is often burdened with routine editing
tasks when refactoring code. Wearing the refactoring hat,
keeping corresponding header and implementation files con-
sistent is very time-consuming

In the JDT! the Java development environment of Eclipse
a lot of routine refactoring work is automated. The CDT?
contains only the rename refactoring. This refactoring pro-
vides the functionality to change names of methods, fields,
etc in a global context. No further refactorings are supported
by CDT yet.

A big difficulty in automating refactorings for C++ is
the immense variety of the language and particularly the
handling of macros as well as templates is a challenge.

A first approach was the PhD Thesis® of William F.
Opdyke. But it didn’t result in wide spread use.

I'http://www.eclipse.org/jdt/
Zhttp://www.eclipse.org/cdt/
3http://www.laputan.org/pub/papers/opdyke-thesis.pdf

Copyright is held by the author/owner(s).

OOPSLA07, October 21-25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

781

peter.sommerlad}@hsr.ch

2. Implemented Refactorings

After the realisation of one term project, two diploma theses
and a lot more work we finally have a plug-in to provides the
following refactorings:

® Declare Method
Builds the method declaration from an existing method
implementation.

¢ Extract Baseclass
Creates an abstract class from an existing class and ap-
plies its inheritance structure.

¢ Extract Method
Creates a new method from existing code and replaces
the selected code with a method invocation.

e Extract Subclass

Creates a subclass for an existing class and applies the
inheritance structure.

e Hide Method
Changes the visibility of a method to private.

¢ Implement Method
Builds the method definition for a method declaration.

* Move Field / Method
Moves a field or a method to an other class.

¢ Replace Number
Creates a new constant with a given name and replaces
all occurence with it.

¢ Separate Class
Moves a class into an own/new file.

int Foo::bar(){
int something = 0;
something += 3;
something++;
return something;

'

void Foo::doSomething () {
int five = 0;

five += 3;

five++;

five++;

int Foo::bar(){
int something = 0;

something = addFour (something);

return scmething;
}

int Foo::addFour (int something)
{

something += 3;

something++;

return something;

1

void Foo::doSomething () {
int five = 0;
five = addFour (five);
fivet++;

}

Figure 1. Extract Method Refactoring

2.1 Example: Extract Method

The key idea of extract method is to scale down the length of
methods or to gather redundant code in one method. As you
can see in figure 1 in the upper box there are redundancies in
the code. To extract this piece of code, the code lines must be
marked and the refactoring extract method must be called.
After refactoring the result will look like the code in the
lower box. Variables which are used in the extracted code
will be passed into the method as parameter or reference. If
an result of the extracted code is used in the further code,
it will be given back as return value. In the case that there
are more than one return value the user can choose a return
value and the other parameters are passed as reference.

782

3. Refactoring Approach

Our refactoring implementation uses the AST of CDT and
augments it with comment information. A Refactoring is
then restructuring this almost concrete syntax tree from
which the resulting code is generated. The Eclipse Refac-
toring infrastructure provides the remaining user interaction,
like preview.

This simplified overview doesn’t explain the C++-specific
challenges we needed to conquer.

The idea for the virtual preprocessing handling was taken
from the PhD Thesis* from Alejandro Garrido which we im-
plemented partially. Other C++ specifics besides the prepro-
cessor were tackled individually.

Code generation from the AST is provided through a
specified writing visitor. Comment information is added to
the AST through dynamic proxies. New AST proxy nodes
hold comments for a particular existing AST node.

The existing CDT code can still traverse and use the aug-
mented AST without any difference. If further processing,
such as the AST writing visitor, requires comment handling,
visitor behavior can be adjusted to deal with them.

4. Results

The first diploma thesis provided a plug-in called cerp’. The
outcome of the following term project and diploma thesis
was an extended CDT with refactoring capabilities. Unfor-
tunately the hole “Refactoring CDT”% had to be downloaded
to use these features. After some contributions to the CDT
the base for an independet plug-in was founded. The two
projects had been merged together and the result is a refac-
toring plug-in which provides all the refactoring listened
above.

5. Future

We plan to commit our work into the next major CDT re-
lease, so that you don’t have to download our plug-in seper-
ately anymore.

Along the way we will also add more refactorings to
expand the refactoring support further.

6. Contact

If you have wishes or recomendations please contact us at:
ifs@hsr.ch or contact the head of the institute directly
peter.sommerlad@hsr.ch.

4Program refactoring in the presence of preprocessor directives, Alejandro
Garrido, 2005

Shttp://ifs.hsr.ch/cerp
®http://wiki.hsr.ch/cdt/

