Using Graphics to Support the Teaching of Fundamental
Object-Oriented Principles in CS1

Carl Alphonce
Dept. Comp. Sci. & Eng.
University at Buffalo, SUNY
Buffalo, NY 14260-2000

alphonce @cse.buffalo.edu

ABSTRACT

Teaching object-oriented programming in CS1 is hard. Keep-
ing the attention of CS1 students is perhaps even harder.
In our experience the former can be done successfully with
very satisfying results by focusing on the fundamental prin-
ciples of object-orientation, such as inheritance, polymor-
phism and encapsulation. The latter can be done by hav-
ing students create graphical event-driven programs. Care
must be taken, however, since teaching graphics can eas-
ily distract students and certainly takes time away from
the fundamentals being taught. We use Java as a vehicle
for OO instruction, but rather than expose CS1 students
to the intricacies of Swing we employ an elegant and small
graphics package called NGP. NGP allows students to create
event-driven graphical programs using only inheritance and
method overriding. We describe how we use NGP to en-
hance rather than detract from our teaching of fundamental
OO principles.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

General Terms
Design

Keywords
Object-orientation, CS1, Java, NGP, graphics

1. CONTEXT OF EXPERIENCE

1.1 The course

We have been teaching object-orientation in CS1 using
Java for many years. The course has evolved a great deal

Copyright is held by the author/owner.
OOPSLA’03, October 26-30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

Phil Ventura
Dept. Comp. Sci. & Eng.
University at Buffalo, SUNY
Buffalo, NY 14260-2000

pventura @ cse.buffalo.edu

since its early Java-based offerings. The course now empha-
sizes design in an objects-first approach.

Objects are introduced to students in the very first day
of classes, and object-oriented fundamentals such as inher-
itance, polymorphism and encapsulation are introduced to
the students within the first few weeks.

By the end of the course students are able to write rea-
sonably sophisticated event-driven graphical programs. The
final project typically requires students to implement a well-
known computer game such as Tetris or Nibbles.

1.2 The students

The course enrolls 200 to 300 students per semester, spread
over three to four lecture sections and twelve to sixteen lab
sections. Although our CS1 course has no formal course
prerequisites, approximately half of the students have prior
programming experience, though only rarely is this experi-
ence truly object-oriented.

Our students, like the majority of today’s students, are
well acquainted with the use of computers and therefore
with graphical event-driven programs. Writing text-based
programs rarely captures their attention. In fact, it typi-
cally does just the opposite.

2. DESCRIPTION OF EXPERIENCE

2.1 Piquing and keeping students’ interest

Teaching object-oriented programming in CS1 is hard.
Keeping the attention of CS1 students is perhaps even harder.
Making course materials and course projects appealing to
students is a prerequisite to learning. In early August of
this year a thread (Simplifying Java for CS1) discussing the
use of text I/O arose on the SIGCSE list. We feel com-
pelled to quote a highly relevant comment by Ian Utting in
this thread:

In the olden days, when I learnt programming,
printing out a triangle made of asterisks (on the
ASR-33 console) was a significant achievement.
Today’s students, bought up on cinema-quality
shoot-em-ups, are much less impressed.

One of the authors has a similar recollection. Printing
a Celsius-to-Fahrenheit conversion table was a significant
achievement. User input was often not considered at all.
Today’s students have grown up in an environment in which
computers are a part of everyday life. Text-based programs



are not only unimpressive to these students, they are for-
eign to them. Students use graphical event-driven systems
such as web browsers, word processors, automated banking
machines, self-service checkouts and even pay-at-the-pump
systems at gas stations every day.

2.2 Our philosophy

Like many other educators, we have found that using
graphics in a CS1 course can capture and hold the inter-
est of our students. A significant challenge for educators is
to make course materials interesting to their students with-
out giving up course content and without getting bogged
down in irrelevant details of a graphics package.

There are, of course, many ways in which one can do this.
Alice (www.alice.org) is an excellent example of an environ-
ment in which students can explore programming concepts
in a graphically rich environment. The intent of this paper
is not to survey existing environments or promote a partic-
ular one (though we do discuss the graphics library we have
found useful). Instead our goal is to highlight how the use of
graphics in the classroom can serve the dual purpose of keep-
ing the attention and interest of students while simultane-
ously supporting instruction of fundamental object-oriented
concepts.

In our environment we use Java as a vehicle for OO in-
struction, but rather than expose CS1 students to the in-
tricacies of Swing we employ an elegant and small graphics
package called NGP (“Nice Graphics Package”), developed
at Brown University by Andries van Dam.

2.3 We’re not teaching the library

A concern often expressed, one echoed in the SIGCSE
mail list discussion mentioned above, is that non-standard
libraries are a waste of time since students will not use them
outside the scope of the one course. Our response to this is
that we are not teaching students the library, we are teaching
students object-orientation using the library as a supportive
mechanism to accomplish this. We are no more interested
in teaching students AWT /Swing in the first course than we
are in teaching them NGP. Trying to use raw AWT/Swing
in the first course is more complex than using NGP be-
cause of the large amount of background understanding of
object-oriented concepts required to use it. Students cannot
write graphical event-driven programs using AWT/Swing
until much later in the course, when they already under-
stand the object-oriented concepts.

An obvious way around this is to provide students with
classes which hide the complexity of AWT/Swing. This is
what NGP does for us. It allows us to focus on using graph-
ical event-driven programs to deepen our students’ under-
standing of object-oriented concepts.

2.4 NGP in brief

NGP provides basic yet very functional graphical contain-
ers and components. Here we give a thumbnail sketch of
NGP. For those who are interested Brown University has a
more comprehensive NGP tutorial on the web:

www.cs.brown.edu/courses/cs015/2002/Docs/tutorial

Basic containers include (among a handful of others) Row
and Column. These are essentially JPanels with layout man-
agers already installed. A Row arranges items placed within
it in a row, while a Column arranges its contained items in a

157

column. The parent (containing) container of any NGP con-
tainer or component is given as an argument in its construc-
tor. The superclass constructor adds the item to the parent
container automatically. NGPs pallet of containers is not as
varied or as flexible as that found using raw AWT/Swing,
but a surprising amount of very reasonable layout can be
accomplished using inly Rows and Columns.

NGP.Component classes, such as PushButton, provide event-
driven reactivity by in effect making instances be their own
event handlers. For example, a PushButton object provides
a release() method which a subclass can override to de-
fine a behavior. The actionPerformed method of (an inner
class event handler of) the superclass calls the superclass’
release() method, which is defined with an empty body.
This complexity is hidden from the students by design. To
specify what should happen when a button is clicked a stu-
dent needs only to subclass the PushButton class and over-
ride the release() method.

The same approach is taken with NGP.Graphics classes
(shapes and images) which can be placed in a special con-
tainer called a DrawingPanel. Objects instantiated from
NGP.Graphics classes such as FilledRectangle and Filled
Ellipse, are represented by shapes and are reactive. In the
simplest case a student needs only to subclass the Filled
Rectangle (or similar) class and override the react () method
to specify what should happen when the mouse is clicked
over the shape.

Using such containers and components students are able
to create graphical event-driven applications without need-
ing to know about things such as layout managers or event
listeners. Students are able to build “cool” programs while
learning about inheritance, the importance of being able to
specify a method in a superclass but define it in a subclass,
polymorphism and polymorphic dispatch, the role of inter-
faces, and so on.

2.5 Teaching fundamental object-oriented prin-
ciples

A good starting point when teaching students about a
new concept is to ground it in something our students are
already familiar with. Luckily, concepts such as inheritance
and polymorphism are natural to students from everyday
life.

Inheritance is seen in typologies of many sorts. An ex-
ample surely many educators have used is that of animals,
mammals, reptiles, dogs, cats and other creatures arranged
into an inheritance hierarchy.

Polymorphism and polymorphic dispatch is also fairly easy
to explain in everyday terms. The first author frequently
tells his class,’

Assume that all pets have tails. Suppose I know
that John has a pet and that Mary also has a pet.
Unbeknownst to me John has a cat and Mary has
a dog. I only know that each one has a pet. If
I pull John’s pet’s tail it growls at me. If I pull
Mary’s pet’s tail it hisses at me and scratches me.
The same message results in different behaviors.

Students understand this.

Understanding these concepts and applying them in a pro-
gramming environment is a bit trickier. Graphical reinforce-
ment of the concepts is therefore quite helpful, especially if it

'No pets were harmed in the making of this example.



helps students tie the abstract programming notion to their
grounded real-world understanding of the concept. The goal
of this paper is to demonstrate one way in which this can
be done using graphical event-driven programs to support
the teaching of these concepts. A key component of the ap-
proach is to use a graphical package which provides such
pedagogical support. We have found the NGP library to be
effective in this regard, though other libraries or home-grown
approaches could work just as well.

2.6 Creating objects

On the first day of class we present and discuss the notion
of an object, noting that objects have properties and behav-
iors, and show how objects can be created. The students’
first programming exercise requires them to create instances
of pre-defined classes. These classes are graphical in nature
and thus provide visual feedback.

At this stage of the course we provide students with two
files as a starting point for their laboratory work. These
two files are an html file for running an applet as well as a
skeleton for an Applet which they are instructed to fill in:

package Examplel;

public class Applet extends EdSymp.Applet {
public Applet () {
}

}

The superclass EdSymp.Applet is a subclass of the NGP-
provided Applet class and adds a static DrawingPanel for
displaying NGP.Graphics objects.

Since the DrawingPanel is static we can easily define spe-
cializations of NGP.Graphics objects to display automati-
cally on that (single) DrawingPanel. For example, we can

define an EdSymp . Circle class, a subclass of the NGP.Graphics.
FilledEllipse class, which displays a red circle on the Applet’s

DrawingPanel at a random location as follows:

package EdSymp;
public class Circle
extends NGP.Graphics.FilledEllipse
{
public Circle() {
super (EdSymp.Applet._drawingPanel) ;
setDimension(new java.awt.Dimension(20,20));
setCenterLocation(EdSymp.Applet._drawingPanel.
randomPoint ());
setColor(java.awt.Color.RED) ;
}
}

Students do not see this code, however. In order to create
an instance of the EdSymp.Circle class they need only add
the code to instantiate this class in the skeleton we provide:

package Examplel;
public class Applet extends EdSymp.Applet {
public Applet () {
new EdSymp.Circle();
}
}

Figure 1 shows the result of running this applet.
Of course, creating a single object is not as interesting as
creating multiple objects:

package Example2;
public class Applet extends EdSymp.Applet {
public Applet () {

158

Applet started.

Figure 1: Applet with one EdSymp.Circle object rep-
resented

new EdSymp.Circle();
new EdSymp.Circle();
new EdSymp.Circle();

}

Doing this results in a display such as that shown in fig-
ure 2. Because each EdSymp.Circle object displays at a
randomly generated position on the Applet’s DrawingPanel
the students receive visual reinforcement that the three dif-
ferent class instantiations they put into their source code
really does result in three distinct objects, each with a dif-
ferent value for the object’s location property.

None of this is new or revolutionary. The point to note
is how little code the students need to be exposed to in
order to make this happen. To this point we have only
considered object creation. To demonstrate inheritance we
have students create a subclass of an existing class, per-
haps an NGP component such as PushButton or one we
provided to them like EdSymp.Circle. To define a class of
circles similar to EdSymp.Circle but whose instances are
java.awt.Color.WHITE a student may write:?

package Example3;
public class MyCircle extends EdSymp.Circle {
public MyCircle () {
super () ;
this.setColor(java.awt.Color.WHITE);

}

and modify their Applet to create a few instances of each
kind of circle:

package Example3;
public class Applet extends EdSymp.Applet {

2The examples in the paper are representative of examples
we discuss in lecture. They are, however, selected and mod-
ified to assist in the paper presentation and figure printing.
We also discuss more active, behavior-based examples whose
screenshots do not reproduce well on a static, printed page.



Applet started.

Figure 2: Applet with many EdSymp.Circle objects
represented

public Applet () {
new EdSymp.Circle();
new EdSymp.Circle();
new EdSymp.Circle();
new Example3.MyCircle();
new Example3.MyCircle();
new Example3.MyCircle();

}

to produce what is shown in figure 3. Students receive visual
reinforcement of what they have written in code, with very
little overhead.

2.7 Polymorphism

An example we often use to introduce polymorphism is a
state button. A state button is a PushButton which can be
in different states. A very simple example is a button whose
text alternates between “On” and “Off” when clicked. A
class diagram for this is shown in figure 4. Of course, once
the state pattern is set up it is straightforward to incorporate
more complex behaviors into the states if so desired.

This example is interesting because, though small, it touches

on all of the following concepts:
e object creation
e inheritance
e overriding
e polymorphic dispatch

and allows us to talk about the state pattern. Because NGP
hides the mechanics of event handling students need only
write the following code to create such a button class.

package Example4;
public class StateButton

extends NGP.Components.PushButton
{

private ButtonState _state;

159

Applet started.

Figure 3: Applet showing representations of objects
of two different classes

public StateButton() {
super (EdSymp.Applet2._column, "");
_state = new 0ffState();
_state.activate(this);

}

public void release() {
_state = _state.next();
_state.activate(this);

}

Note that the code which defines the behavior of the button
when clicked is simply:

public void release()

{
_state = _state.next();
_state.activate(this);

}

Rather than get bogged down with the details of AWT /Swing
event handlers students can focus on the relevant concepts
being reinforced.

Condensed somewhat in format to conserve space, the rest
of the code required for this example is shown below:

public interface ButtonState {

public ButtonState next();

public void activate(StateButton b);
}

public class OffState implements ButtonState {
public ButtonState next() {
return new OnState();
}
public void activate(StateButton b) {
b.setText ("Off");
}
}
public class OnState implements ButtonState {
public ButtonState next() {
return new O0ffState();



}
public void activate(StateButton b) {
b.setText("On");
}
}

To demonstrate the power of polymorphism in program-
ming we borrow a project developed by Stephen Wong named
BallWorld. Although a web search of “BallWorld” pulls
up many different projects with this name and with simi-
lar visual appearance, his is the only one we’ve found which
stresses good object-oriented design, through the use of de-
sign patterns and polymorphic dispatch. His original de-
scription can be found at

www.exciton.cs.rice.edu/cs150/labs/labl/
www.exciton.cs.rice.edu/cs150/1labs/lab2/section2.htm
www.exciton.cs.rice.edu/cs150/labs/1lab3/section2.htm

BallWorld has proven to be a very rich environment in
which to explore the power of polymorphism and a variety
of design patterns. BallWorld is a simulation of a set of
bouncing balls within a virtual world. BallWorld becomes
especially interesting when one starts to vary the behaviors
of the balls, combine them, and permit them to change dy-
namically in response to event-driven user input.

In order to do this students must be able to,

e handle event-driven user input,

e encapsulate behaviors as objects,
e set up polymorphic dispatch, and
e employ relevant design patterns.

Moreover, the student must be able to show the results of
this in a graphical manner. The basic design which we want
students to aim for is shown in figure 5.

Event-driven user input is handled using the simple mech-
anism mentioned above involving subclassing an existing
class with the event-driven mechanism built in and over-
riding the magic method. There is nothing special students
need to do to get the graphical display since the Ball class we
provide does the relevant work for them. Simplifying, our
Ball class is essentially an NGP.Graphics.FilledEllipse
which knows how to move. The whole simulation is driven
by an NGP.Timer, which again follows the general event-
handling paradigm laid out earlier: the timer has a dedi-
cated event handler which calls a “magical method” in the
Timer class. To make a special-purpose Timer class requires
only that the NGP. Timer class be subclassed and the magical
method overridden.

Students need to create a subclass (a BehaviorBall) which
adds to the basic Ball class a Behavior as a property. The
Behavior can be a Null behavior, in which case the Behavior
Ball behaves like an ordinary Ball. The behavior can also
be composite, in which case all Behaviors of the composite
must act on the BehaviorBall.

A pull-down menu of available behaviors allows the user
to select an arbitrary number of individual behaviors. The
composite of the selected behaviors is the “current behav-
ior”. Whenever a BehaviorBall is created its initial behav-
ior is the “current behavior”.

The BehaviorBalls need to be reactive too. When clicked
they must change their behavior dynamically to whatever is
now the currently selected composite behavior in the menu.

160

The reactivity of the balls is achieved in the now familiar
way of simply overriding the appropriate method from the
superclass.

3. CONCLUSION

Visual feedback is important to students - they see poly-
morphism working: no matter what specific behavior is asso-
ciated with a BehaviorBall it acts appropriately: the timer
calls an update method on the BehaviorBall, which dis-
patches to the BehaviorBall’s Behavior, which in turn acts
on the BehaviorBall.

Students can see composite behaviors at work. They see
event dispatch (dynamic changing of behavior), and they
know why things are happening - because they wrote the
code! That is to say: they don’t know the details of the
event handling, but they do know how the change in be-
havior occurs in response to a particular event. The code
they wrote accomplishes the action of the behaviors on the
BehaviorBalls, or the dynamic changing of Behavior act-
ing on a BehaviorBall. Students are able to focus on the
interesting object-oriented concepts rather than on the par-
ticulars of the graphics library or the event-handling mecha-
nism. These things will be important in the second semester
course. By the time students take that course they under-
stand enough about object-orientation and design patterns
to unwrap NGP and see the workings “under the hood”.

What is the point? The point is that through the use of
appropriate exercises graphics can be used to accomplish two
goals: (i) keep students interested (once they see how the
pieces fit together students are excited about BallWorld),
and (ii) reinforce the fundamental principles taught by mak-
ing the relationship between the graphical components and
the underlying program components and relationships as
transparent as possible.

4. WHAT OTHER OO EDUCATORS CAN
LEARN

Our goal in this paper has been to highlight how the use of
graphics in the classroom can serve the dual purpose of keep-
ing the attention and interest of students while simultane-
ously supporting instruction of fundamental object-oriented
concepts.

There is no doubt that today’s students feel at home work-
ing with and writing graphical event-driven applications. As
educators we should leverage this as much as possible in our
teaching. Although significant hurdles can exist in using
the raw graphics libraries of languages not mainly designed
for teaching, these can be overcome. In the specific case of
Java we feel the raw AWT/Swing classes require too much
pre-existing knowledge of object-orientation and design pat-
terns to be helpful as a tool in teaching object-orientation
and design patterns to beginning students. We have found
the NGP library useful because it wraps raw AWT/Swing
classes in a sensible way to make available to students a very
usable graphical library at an appropriate level of abstrac-
tion. With this we are able to get students started very
early on in CS1 writing graphical event-driven programs
while learning about fundamental object-oriented concepts
and good software design through design patterns.



MGP.Components. PushButton

hublic void release()

1

Exampled StateButton

ublic StateButtong)
public void released

= interface ==

Exarmpled ButtonState

ublic ButtonState nexti
public void activate(StateBution b)

Exarnpled OffState

nublic ButtonState next()
nublic void activate(StateButton b)

Exarmpled.OnState

Figure 4: The StateButton UML class diagram

Ball

BehaviorBall

nublic ButtonState nesxt()
hublic void activate!StateButton b)

22 interace ==

Behavior

Mull CalorChange

Breathing

Random Cormposite

Figure 5: The BallWorld UML class diagram

161




