
Refactoring UML Models
Using OpenArchitectureWare to measure UML model quality and perform pattern

matching on UML models with OCL queries ∗

Twan van Enckevort

Xebia BV

twan@roto.org

Abstract
In object oriented software development, the Unified Mod-
eling Language (UML) [20] has become the de-facto mod-
eling standard. UML plays an important role for software
factories, in which a high quality abstract UML model is the
primary source of input used to generate a working system.
While there are many tools that enable assisted refactoring
of source code, there are few tools that enable assisted refac-
toring of UML models.

In order to determine UML model quality for UML mod-
els used in code generation projects, a selection of quality
metrics has been made. While there are a large number of
metrics available to determine code quality, there are only a
limited number of metrics applicable to UML models. Most
model quality metrics have been derived from code quality
metrics [16]. Syntactic and semantic model check rules have
been implemented, that allow detection of undesirable model
properties. The syntactic model checkers have been derived
directly from the UML specification. The semantic model
checkers have been derived from a range of anti-pattern de-
scriptions.

We have delivered a prototype that detects undesirable
model features in order to test the model improvement capa-
bilities. The prototype contains selected model quality met-
rics, syntactic and semantic model check rules. Both met-
rics and rules have been formulated in the Object Constraint
Language (OCL) [21], which operates on UML models. The
system is built using Open Source tools, allowing easy ex-
tensions of the prototype. The effects of suggested repair

∗ The prototype is available via URL
www.roto.org/public/Pub/prototype.zip

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-768-4/09/10. . . $10.00

actions on the model are measurable through the selected
model quality metrics and by subjective comparison. The
prototype was able to improve model quality for four indus-
try models both by metrics and subjective comparison.

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques—object-oriented de-
sign methods, computer-aided software engineering (CASE)

General Terms Design, Experimentation

Keywords Metrics, model quality, OCL, semantic rules,
syntactic rules, UML

1. Introduction
In software development an analysis of requirements leads
to a model that describes the system being developed. The
Unified Modeling Language currently is the de-facto lan-
guage used for modeling object oriented software systems
[10]. Software Factory driven projects, that follow a Model
Driven Architecture (MDA) [19] approach, use the model as
the primary source from which the system is generated. This
leads to the situation where the quality of the input model
directly influences code quality in terms of maintainability
and risks of introduction of defects. Software engineering
economics dictate that bug prevention is cheaper than bug
detection [2]. Modifying a UML model before any code is
generated is cheaper than modifying both the model and the
generated source code. While there are a multitude of meth-
ods and tools available that allow assessing code quality and
enable assisted refactoring of code in order to improve its
quality, there are few methods and tools to assess and im-
prove UML model quality [4].

The UML class diagram is most frequently used in object
oriented software development. It is the best researched di-
agram in terms of UML model quality metrics [13]. This
project adopts well defined quality metrics for the UML
class diagram and defines syntactic and semantic rules that
can be applied to a UML class model in order to verify the
model. A prototype software system was built that can mea-
sure the quality of a given UML class model based on se-
lected quality metrics and helps improve the model by im-

635



plementing syntactic and semantic model check rules. Eval-
uation was done against the selected quality metrics and by
subjective comparison. The rules set evaluated proved to be
successful in improving the UML models.

2. Background
2.1 Software factory

A software factory can be compared with a car factory. In a
car factory the prototype is carefully crafted and once final-
ized it is mass produced on a production line, leaving free-
dom for individual modifications [11]. Software factories try
to achieve the same in software development. Domain spe-
cific knowledge is used to create a blueprint for building sim-
ilar applications all working within the same domain. The
UML input model describes the system to be built and is in-
put to the code generation process. For such model to code
transformations high quality UML models are required. The
UML class diagram is the most frequently used UML dia-
gram in the generation of software using software factories.
Therefore this report focuses on these most important mod-
els.

2.2 UML model quality metrics

UML models are used to describe a system and focus on
certain aspects of that system. For example a model can fo-
cus on the services provided or on the user interaction. Thus
abstraction is typical for UML models, which implies mod-
els are less complete and less precise in describing a sys-
tem when compared to source code [16]. High quality mod-
els can help in preventing undesirable different interpreta-
tions of the model. In order to be able to make statements on
model quality, which are needed to review the effects of the
refactoring effort, suitable metrics should be selected.

The ISO25000:2005 quality model identifies a number
of primary uses for software artifacts: Operation, Transi-
tion and Maintenance. Operation deals with all aspects of
the software being in operation. Transition deals with is-
sues related to moving a system from one environment such
as development into another such as production. For both
operation and transition uses, the UML model is not used.
During the maintenance phase, the UML model is consulted
to gather information for the system and updated to reflect
changes being made to the system. Since the UML model
itself is a design artifact, which is being used in the develop-
ment phase of a software development project, another high
level use emerges: Development [16]. Thus there are two pri-
mary uses of interest when selecting metrics to define quality
for UML models: Development and Maintenance.

Lange and Chaudron identified a number of different uses
for UML models in software development [16]. This paper
will focus on UML model quality to support a selected set of
purposes: code generation, testing, communication and com-
prehension. For each modeling purpose Lange and Chau-
dron define, they listed a number of characteristics for which

metrics can be implemented. The selected UML model met-
rics focus on these characteristics, thus allowing quantifica-
tion of UML model quality. The selected UML model met-
rics are listed below:

• The CK metrics suite consists of six different metrics: the
weighted methods per class (WMC), the depth of inheri-
tance (DIT), the number of children (NOC), response for
a class (RFC), coupling between objects (CBO) and lack
of cohesion in methods (LCOM).[6]

The WMC metric quantifies the complexity of a class
and is defined as the sum of the complexities for each
method in a class. In the calculation of this metric, the
complexity of each method in a class is considered
unity, reducing this metric to a count of the number
of methods of a class. A higher number for the WMC
metric makes a class more fault prone thus defects are
more likely to occur. [23]

The DIT metric is defined as the maximum length
from a class to the root of the inheritance tree. In Java
multiple inheritance is not allowed, thus the calculated
DIT is by default the maximum value of the DIT. The
opinions on the interpretation of the DIT value differ
with regard to fault proneness, speed of development
and quality. What is clear is that low values for the
DIT are an indication that the re-usability was sac-
rificed for understand-ability [12]. More research is
needed though, to explore the true effect of the DIT
metric on model quality.

The NOC metric counts the immediate number of
sub-classes for a class. The observations for the
DIT metric equally apply to the NOC metric. Coad
and Yourdon defined a set of object oriented de-
sign principles: coupling, cohesion, clarity of design,
generalization-specialization depth and simplicity of
objects and classes. The use of these Object Oriented
design principles leads to a better object oriented de-
sign [3]. This is reflected in the values of the DIT and
NOC metrics [12].

The CBO metric calculates the number of classes a
class is related to. This metric is difficult to calculate
as it requires code, but it can be estimated by calculat-
ing the sum of all class dependencies. It is a measure
of class coupling for which the same observation ap-
plies as for the NOC metric [18].

The RFC metric is defined as the number of methods a
class can call. This metric cannot be calculated as part
of this dissertation project, as it requires behavioral
diagrams.

The LCOM metric cannot be calculated as it requires
the intersection of instance variables accessed by a
method, which is not available in a class diagram.

636



• The Fan-in and Fan-out metric was proposed by Henry &
Kafura and is a measure of reliance [15]. This metric is
very similar to the NDepIn and NDepOut metric [12]. For
a specific class both metrics are indicators for the time
required to understand and modify the class.

Fan-in describes how often a class is used in terms of
incoming uses, thus being a measure for the amount
of classes that rely on this class.

Fan-out describes the number of outgoing uses for a
class, thus being a measure how much this class relies
on other classes.

2.3 UML model quality improvement

For source code there are a number of tools that allow as-
sisted refactoring. In general these tools provide metrics
and use syntactic and semantic model checks at the source
code level. Improvement of a UML model can be done at
the level of syntactic improvements, semantic improvements
and pragmatic improvements, similar to the model quality
levels defined by Lindland [17]. Syntactic improvements de-
tect violations of the model against its language specifica-
tion and suggest improvements. For a UML model violations
against the UML specification need to be detected. Seman-
tic improvements detect violations of the model against its
domain and suggest improvements. Since UML models are
generally used for modeling Object Oriented systems, the
semantic improvements deal with detecting bad practices in
Object Oriented design. Pragmatic improvements deal with
correspondence of the model with the target audience’ s in-
terpretation and is much more difficult to automate. UML
modeling tools in general sometimes provide metrics, par-
tially enforce UML syntax and generally ignore semantics.
The UML refactoring tool prototype will implement metrics,
syntactic and semantic rules to help improve the UML class
model. Using the selected UML class model metrics, it is
possible to calculate the initial model quality and track the
quality as the model is being re-factored.

Pragmatic model quality is assessed using the Coad and
Yourdon design principles [3]. These principles have been
verified and lead to a better object oriented design if adhered
to. The principles are cited below:

• ”Coupling: First, interaction coupling between classes
should be kept low, something which can be achieved by
reducing the complexity of message connection and de-
creasing the number of messages that can be sent and re-
ceived by an individual object. Second, inheritance cou-
pling between classes should be high, achievable by en-
suring that each specialization class is indeed a genuine
specialization of its generalization class.” [3]

• ”Cohesion: First, a service in a class should carry out one,
and only one, function. Second, the attributes and ser-
vices should be highly cohesive, i.e., no unused attributes
and services and they should all be descriptive of the re-

sponsibility of the class. Third, a specialization should
actually portray a sensible specialization. It should not
be some arbitrary choice which is out of place within the
hierarchy creating a less cohesive class due to unrelated
inherited features.” [3]

• ”Clarity of design: First, use of a consistent vocabulary
is important. The names in the model should closely
correspond to the names of the concepts being modeled.
Second, the responsibilities of a class should be clearly
defined and adhered to. Furthermore, the responsibilities
of any class should be limited in scope.” [3]

• ”Generalization-Specialization depth: It is important not
to create specialization classes which are conceptually
not a real specialization, e.g., created for the sake of
reuse. Rather an inheritance hierarchy should capture
a conceptual taxonomy used to model the problem at
hand. Keeping objects and classes simple: First, avoid
excessive numbers of attributes in a class. An average of
one or two attributes for each service in a class is usually
all that is required. Second, fuzzy class definitions should
be avoided. A class should map to a type of entity in
the problem description. All definitions should be clear,
concise, and comprehensive.” [3]

3. Requirements specification
In order to satisfy the immediate goals of the project, the
UML model refactoring tool requires the following primary
abilities:

• Calculate metrics for a model, allowing model quality to
be established;

• Present the calculated metrics, allowing model quality to
be reported;

• Allow querying a model for certain model features, al-
lowing bad model constructs to be found and suggest im-
provements.

In addition to the primary abilities the tool needs to pro-
vide basic model operations. This comprises loading a UML
model, editing a UML model, saving a modified model and
presenting a graphical representation of the loaded model.
The UML model refactoring tool prototype should be able
to work with models written in the UML 2 specification. In
order to be able to repair the model, graphical UML model
manipulation should be possible.

4. Tool selection
The UML model refactoring tool prototype will focus on the
ease of creation of a set of selected UML metrics and the
ease of creation of a set of model check rules. Therefore a
programming language such as Java is less suitable, as it
lacks support for querying UML models. A logical choice is
OCL, which is an OMG language that allows querying UML
models. In the typical sequence of events, a UML model is

637



loaded from the file system for processing. The calculated
metrics are reported in the form of a metrics report. Any
model check rules triggered will be reported in a message
console. In the course of the writing up of requirements it
became apparent that a generation tool would be suitable
for implementing the set requirements. Typical MDA tools
offer the supporting functionality that is needed for this
project. The model is queried in order to generate code for
model parts. This functionality can be used to calculate the
selected metrics and to search for certain model features.
The code generator is used to generate source code by means
of a template. A template can also be written to generate
a document presenting the calculated metrics. A number
of open source MDA tools were investigated: AndroMDA,
Eclipse using the Model Development Tools and Eclipse
using OpenArchitectureWare.

AndroMDA is a MDA tool that allows generation of com-
plete applications from a UML model. It has an elaborate set
of patterns that can be used for code generation. At the time
of the investigation it supported UML 1.4 rather than the
latest UML 2 standard. Its focus is on code generation and
therefore relied on integration with third party UML model-
ing tools, which requires continuous switching. At the time
of the investigation it did not offer Eclipse integration, mak-
ing the tool less extendable and making it difficult to use the
Eclipse modeler. Therefore this tool was dropped from the
list of candidates.

The Eclipse IDE with the Model Development Tools
plug-ins is a second alternative that was investigated. It sup-
ports UML2 and offers integrated UML modeling as well
as Eclipse integration. While it offers true OCL queries
compliant with the OCL specification, it is not the main-
stream solution nor does it offer code generation facilities
required for generating a metrics report. The Eclipse IDE
with OpenArchitectureWare like the Model Development
Tools offers UML2 support as well as integrated modeling
and Eclipse integration. Although the OCL implementation
deviates from the OCL specification, it is a full implementa-
tion with very similar syntax. It is the mainstream modeling
tool in Eclipse.

Taking the above in consideration a trial revealed that
the OpenArchitectureWare Eclipse plug-in was easier to
work with compared to the Model Development Tools
Eclipse plug-in, allowing more focus on writing OCL met-
rics and rules queries. Thus the prototype was developed
using Eclipse and the OpenArchitectureWare Eclipse plug-
in. OpenArchitectureWare contains all the required basic
functionality including the basic functionality that enables
metrics calculation, rules processing and report generation.

4.1 Component view

The different tools the prototype depends on are shown in
figure 1.

• Eclipse is an integrated development environment from
the Eclipse foundation, released under the Eclipse Pub-
lic License. [9] The IDE uses a plug-in mechanism to
offer integration with the various projects run under the
umbrella of the Eclipse Foundation. The prototype was
built using Eclipse platform 3.3 (Europe Edition) using
the plug-ins mentioned below.

Eclipse Modeling Framework (EMF): The EMF
plug-in allows modeling for XMI models and code
generation for those models. It also enables interop-
erability for other plug-ins. Open Architecture Ware
makes use of functionality offered by the EMF plug-
in

Unified Modeling Language version 2 (UML2):
UML2 is an open source implementation of the
UML2 meta model based on the EMF plug-in. The
prototype uses the UML2 plug-in to load sample
UML2 models into an EMF repository. This repos-
itory is used by Open Architecture Ware to query the
model

Graphical Modeling Framework (GMF): The Graph-
ical Modeling Framework enables GUI based model
manipulation. It is based on the EMF plug-in.

• Open Architecture Ware: Open Architecture Ware is
a framework for building Model Driven Architecture /
Model Driven Software Development tools and is part of
the Eclipse Generative Modeling Technologies project.
[22] It is built on the Eclipse IDE and supports UML2
models through EMF. Check, Xtend and Xpand are pack-
ages that are part of the Open Architecture Ware frame-
work that are used in the prototype to perform metrics
calculation, rule checking and report generation

The prototype makes use of a workflow manager, which
controls report generation and rules checking. The report
generator controls metrics calculation.

As a MDA tool, OpenArchitectureWare supports model
editing, model checking and code generation. These actions
are controlled through the Workflow Manager, which uses
the workflow engine by defining the actions to be executed
for a model. The Xtend package provides an editor offering
type checking and code completion for OCL constraints and
queries. OCL is an OMG standard that allows querying and
modifying UML models by means of OCL queries, that op-
erate on the UML meta model. EMF models can be checked
using the check package. It performs those checks by means
of OCL queries that operate on the loaded UML2 model us-
ing the UML2 meta model. In the prototype system, check
is used to calculate individual model check metrics and vali-
date model check rules that have been written in Xtend. This
is represented in the ModelChecker and MetricsCalculator
components. The Xpand package offers an editor for writ-
ing code generation templates. These templates are normally
used to generate software code for a loaded UML2 model.

638



Figure 1. UML Model Refactoring Prototype implementa-
tion diagram

The code generation facility can also be used to generate re-
ports by means of writing a report template. The ReportGen-
erator is a code generation template, where the generation
process will result in a report rather than software code.

The models to be used in this project generally were cre-
ated with the aid of a graphical UML modeler and occa-
sionally by reverse engineering Java code. MagicDraw is
a UML modeling tool, which supports reverse-engineering
a UML model from Java code as well as fully supporting
EMF XMI-import and export. It was used in this project to
reverse-engineer Java code into a UML2 model. Since these
models cannot be read natively by EMF, they have to be con-
verted into XMI, which is also supported by MagicDraw.

4.2 Code view

Both metrics and rules were implemented in the form of
OCL queries. OCL allows constraints and queries to be de-
fined specifically for UML models. Constraints typically
are pre-conditions, post-conditions, invariants and guards
for a UML model, thus adding information to a model.
This makes a model more precise. An example of such
a constraint is the limitation of a range for an attribute,
such as ’TrainNumber’ which should have a value be-
tween 1 and 99999. Queries can be used to retrieve infor-
mation from the model. An OCL query is executed in a
context that defines where the statement is valid. An exam-
ple of such a context is eAllContents. The dot operator
can be used to access properties of the object. For exam-
ple eAllContents.typeSelect(class), which selects
all classes in a model. Operators similar to Java (such as
+, -, *, /, <, >, and, or) are present. The -> op-
erator can be used to access collections such as size(),

isEmpty(), notEmpty() and select(expr). These result
in a (set of) value(s), such as object.allFeatures.size();,
which returns the number of features for object. OCL also
supports conditional expressions through keywords such as
if, then, else, not and or. These language features are
sufficient to implement the selected set of metrics as well as
semantic and syntactic model check rules in the form of a
set of OCL queries.

The sample metric below calculates the number of meth-
ods (wmc) for a class, where the weight of each operation is
unity. This metric is part of the CK metrics suite and is an
example of a count based metric.

int wmc(Class c) :

c.ownedOperation.size;

The sample syntactic model check below checks if the
class’ name is unique within its scope.

context Class ERROR "Duplicate class " + name :

namespace.ownedMember.typeSelect(Class).select

(c|c.name == name).size == 1;

The model check operates on all classes and checks if
within the namespace the name of each class only occurs
once.

Semantic model checks in general have been based on
adherence to the object oriented design principles defined
by Coad and Yourdon [3]. This requires searching the model
for certain undesired model fragments: pattern matching.
If a fragment is found, the model check rule is triggered.
OCL is a single expression language, which supports first
order predicate logic using an object oriented syntax on
a UML model. It is possible to chain OCL expressions.
If a model fragment that needs to be found in a model
is written in the form of a decision tree, it is possible to
implement such a decision tree in the form of an OCL query.
This enables pattern matching on model fragments, which
is needed to implement semantic model check rules. An
example query shown below finds duplicate operations in
two lists of operations by making recursive calls to itself:

List[Operation] findOverriddenMethods

(List[Operation] child, List[Operation] parent,

List[Operation] matches) :

let targetOperation = child.first():

targetOperation == null ? (matches)

: (parent.select(o|o.name == targetOperation.name)

.isEmpty ? (findOverriddenMethods(child.

withoutFirst(), parent, matches)): (parent.select

(o|o.name == targetOperation.name).exists

(o|o.ownedParameter.reject(l|l.direction.toString()

.toLowerCase()=="return").name ==

targetOperation.ownedParameter.reject

(l|l.direction.toString().toLowerCase()=="return")

.name && o.ownedParameter.reject(ll.direction.

toString().toLowerCase()=="return").type.

toString() == targetOperation.ownedParameter.

reject (ll.direction.toString().

toLowerCase()=="return").type.toString())

?(matches.add(targetOperation)

->findOverriddenMethods

639



(child.withoutFirst(), parent, matches))

: (findOverriddenMethods

(child.withoutFirst(), parent, matches))));

The findOverriddenMethods method returns a list of
matches to the caller, where the list is empty if no matches
were found in the model. It uses a list called matches, which
initially is empty, to maintain state while recursively search-
ing for matches by comparing each element in the child list
to all elements in the target list until the child list has been
completely searched.

While the OCL specification contains a rich function set,
these are insufficient. Therefore extensions were added to
the project, that extend the base functionality offered in the
OCL. For example the OCL specification enables traversing
an inheritance relationship to find the generalizations for a
class. But the OCL specification does not enable traversing
an inheritance relationship to find all children for a class.
Since this is a frequently used function, it was added as an
extension, so it can be called from other OCL queries easily.
Thus extensions add frequently used additional functionality
required in metrics calculation and rules detection, which
can be called more easily. Enabling the search for children
of a class is enabled by the following extension:

cached Set[Class] children(Class c) :

c.eRootContainer.eAllContents.typeSelect

(Class).select(c1| c1.parents().contains(c));

Here the root container for a class is searched to find all
classes that have the target class as its parent, thus returning
a collection containing all children for the target class.

5. Implementation
5.1 Metrics

In section 2 the selected metrics have been listed. The code
generator creates a formatted report, making use of a report
template. From within the template calls to the individual
metrics are made while traversing the input UML model.
The report shown in figure 2 shows the generated output for
a test model.

5.2 Syntactic rules

Table 1 lists the implemented syntactic rules. The element
column indicates the model element to which a rule applies:
(P)ackage, (C)lass, (O)peration, (A)ssocation/Generalization,
(I)nterface, (D)atatype and (E)numeration. The reference
column reflects the (M)andatory or (R)ecommended prac-
tice from the UML specification or rules drawn from my own
experience with code generators (O). A number of syntactic
rules have been derived from own experience and therefore
are discussed more extensively:

• There are several rules that check if a model element is
a programming language identifier. In code generation
projects, the name of model elements is used in code gen-
eration. In case a model element is a reserved keyword in

Figure 2. UML Model Refactoring Prototype sample report

a specific programming language, using such a reserved
keyword as the name of a model element may lead to
compilation errors in the generated code. While a code
generator may provide name mangling functionality, this
cannot be relied upon and thus it is best to not use any
reserved keywords when naming model elements.

• There are a number of rules, that check if model elements
are named. For most model elements, with the exception
of operations, associations and generalizations, the name
is used in code generation. Having an empty name may
lead to compilation errors in the generated code. While
a code generator may assign a random name, this cannot
be relied upon and thus it is best to always name model
elements.

• Rule P5 states a package name should be all lowercase.
This rule is specific to Java code generation projects,
where it is a convention. While not checked as part of
this rule set, the Java language also recommends using
top level domain names in package names to avoid name
clashes.

• Rules A1.5 and O3.5 ensure attributes and parameters are
always typed. For typed languages, such as C++ and Java,
not providing a type will lead to compilation errors in the
generated code.

• Rule AG4 states that associations that are not naviga-
ble in any direction have no practical use and should
be avoided. In my work on code generators I have seen
that there is first of all no technical reason to have
non-navigable associations. A non-navigable association
links two classes together, where the individual classes
are not to have any knowledge of the other class. Thus
instances of classes that take part in such a relationship

640



cannot be reliably maintained without violating this prin-
ciple. In addition I have not seen a sound business case
for non-navigable associations, hence this warning.

5.3 Semantic rules

Table 2 lists the semantic rules that have been implemented
in the UML model refactoring prototype.

From these rules, rules P2, P18, P19 and P20 require
more effort to be calculated than the others and thus these
are discussed separately.

Rule P2 calculates whether a class is part of a cyclic de-
pendency. In order to determine cyclic dependencies, the
model is traversed starting from the start class, walking
through all navigable associations, until the path that can
be walked over navigable associations ends or the start class
is encountered again. The navigableAssociations (class c)
function returns a set of associations which can be navigated
away from the source class. Recursive calls to the traverse
function are used, to traverse these associations and visit the
target class with the help of the targetClass function. Self
references are valid samples of circular dependencies hence
care is taken not to invalidate models having self references.

Rule P18 searches for cyclic dependencies in packages. It
employs a similar search mechanism as used for rule P2, but
instead of making use of the navigableAssociations function,
it makes use of a packageDependencyCount function, which
returns the number of dependencies between a source and
a target package. The package dependency count is defined
as the number of UML dependencies between packages, the
number of class attributes and class operation parameters in
Package P’ that have a type set to a class that is contained
in package P, the number of associations, aggregations and
compositions from a class in package P to a class in pack-
age P’, the number of UML dependencies and usage links
between classes in package P and classes in package P’, the
number of classes in package P that are a child of a class
contained in package P’ and the number of classes in pack-
age P that implement an interface contained in package P’
[24].

Rule P19 verifies if a package P depends on a less stable
package P’. The package stability is calculated as the ratio
of the afferent coupling divided by the sum of the afferent
coupling and the efferent coupling [24]. Afferent coupling is
calculated as the total number of dependencies from all other
packages in a model to a package P. The efferent coupling is
defined as the total number of dependencies from package P
to all other packages in the model using the packageDepen-
dencyCount function used in rule P18. Rule P20 checks if a
package P depends on a less abstract package P. The pack-
age abstractness is calculated as the ratio of abstract classes
and interfaces in the package to the total number of inter-
faces and classes in the package [24]. Dependant packages
are found using the package dependency count function used
for rule P18.

During testing performance problems were encountered,
where large models would take more than 1 hour in order
to be processed on a machine with a 1.3 GHz centrino
processor and 1.5 Gb of memory. Repeating the test on a 2.6
GHz intel core duo processor and 4 Gb of memory reduced
this processing time to 30 minutes. Since a large number
of queries is actually performed more than once, caching
was enabled for those queries that do not modify the state.
This alleviated the performance problem encountered during
testing.

6. Evaluation and results
The aim of this project is to improve UML models based on
syntactic and semantic model check rules. For the evaluation
of this project, a number of models were subjected to met-
rics calculation and rules validation using a prototype. Based
on the rules triggered, the models were improved and again
subjected to metrics calculation. Thus UML model valida-
tion rules were evaluated by comparing the metrics results
before and after model improvement. Additionally the refac-
tored models were evaluated by subjective comparison of
the models before and after refactoring by a UML expert.
For subjective comparison of the models before and after
refactoring, the models were assessed keeping the Coad and
Yourdon design principles listed in section 2.3 in mind.

6.1 Evaluation of model 1: a social security benefits
application

The UML class model was reverse-engineered from a Java
application that supports social security benefits calculation
for a governmental organization. The reverse-engineered
model was used for metrics calculation and rules evalua-
tion. Since the model was reverse-engineered, it contained a
large number of classes from the default Java library, which
were erased from the metrics report. The model was updated
using the hints provided by the triggered rules. Relevant re-
sults are summarized in table 3.

The before and after results from table 3 show that the
WMC metric for classes NormatieveAangifte and Inkom-
stenperiode have been significantly reduced due to refac-
toring, making these classes more maintainable. As a re-
sult of this refactoring CBO, fan-in and fan-out increased
by 1, making it marginally more difficult to understand
the class due to one additional association. For the classes
InkomstenVerhoudingInitieelEvent, InkomstenVerhouding,
TijdvakCorrectie and InkomstenVerhoudingCorrectieEvent,
time required to understand the classes decreased. This is op-
posite for parent class AbstractSafeOrUpdateInkomstenVer-
houdingEvent The same applies to classes TijdvakAangifte
and NatuurlijkPersoon which improve against AbstractTijd-
vakEvent. The inheritance structure was not changed as part
of the refactoring, as indicated by the DIT metric showing no
changes. The maximum value of the DIT metric in the model
is 2 and generally being 0 for most classes. While it is pos-

641



Table 1. Implemented syntactic rules
Rule Element Reference Description
P1 P M A package should at least contain one or more classes

P2.1 P M The name of a class should be unique in the class’ namespace
P2.2 P M The name of an interface should be unique the interface’s namespace
P2.3 P M The name of an association, if named, should be unique in the association’s namespace
P3 P,C,O,A,I,D,E R An element should have a name

P4.1 P,C,O,A,I,D O The name of an element should not be a Java keyword
P4.2 P,C,O,A,I,D O The name of an element should not be a C++ keyword
P5 P O The name of a package should be all lowercase
C1 C M A class should not have duplicate attributes
C2 C M A class should not have duplicate operations

C4.1 C, I R The name of an element should start with a capital
C5 C M A class marked as leaf should not have any children
C6 C M Cyclic inheritance is not allowed

O1.3 O R If the name of the operation does not match the class’ name (thus not being a constructor), its
name should not start with a capital

O2 O R An operation should have at most one return parameter
O3.1 O M The parameter name for an operation should be unique
O3.2 O M All operation’s parameters should be named
O3.5 O O All parameters of an operation should be typed. Untyped parameters leads to compilation

errors for code generation projects
A1.2 A R Each attribute should start with a lowercase character
A1.5 A O Each attribute should be typed. Untyped attributes leads to compilation errors for code

generation projects
AG1 A M For a binary association there should be no more than one composite or shared aggregation

end
AG2 A M All association ends must be connected

AG3.1 A M All generalizations must have a parent
AG3.2 A M All generalizations must have a child
AG3.3 A M The parent and child for a generalization should have a matching meta type
AG4 A O Associations that are not navigable in any direction have no practical use and should be

avoided
I1.5 I M An interface should only contain public operations
I1.6 I M An interface should only have public attributes
E1.1 E M An enumeration should at least have one literal

sible that there are no more inheritance relationships in the
model, it may also be the case that the model and originating
code is structured for readability rather than maintainability.
Based on the metrics, the model was improved slightly.

Looking at the model subjectively, the following obser-
vations can be made: Some classes contained an excessive
number of attributes- and methods, which partially was al-
leviated by refactoring the individual classes. Unfamiliarity
with the model made it difficult to further refine the model
by creating genuine inheritance relationships. Hence the in-
heritance coupling is lower than might have been achievable
in this model. The cohesion and clarity of design in the
model was high, as each service based on the naming per-
formed one function only, there were no unused attributes,
attribute naming was clear for those fluent in the busi-

ness domain and inheritance relationships seemed genuine.
The generalization-specialization was sufficient, with each
generalization-specialization seeming genuine. The naming
of services’ and class’ attributes was clean and hence not
changed. There were classes with excessive number of at-
tributes. These were adjusted as far as possible. The classes
mapped seemed to map to entities in the business domain
as far as it was possible to judge using the business domain
knowledge. Summarizing, the model from a subjective point
of view was improved in terms of class size.

6.2 Evaluation of model 2: Albatross Airlines Fleet
Management model

The UML model describes the fleet management module of
an airline. The model was updated according to the triggered
rules. Relevant results have been summarized in table 4

642



Table 2. Implemented semantic rules
Rule Reference Description
P1 [5] A God class is a class that has more than 60 operations and/or attributes. Such a class has too many

responsibilities and is hard to create, test and maintain and thus should be refactored
P2 [1] Classes should not be part of a cyclic dependency cycle. This leads to code that is difficult to understand

and maintain
P3 [7] Classes that have no instance variables nor any associations that are navigable away from itself, this class

could be replaced by a singleton. The use of a singleton is advised for classes that for which only one
instance should exist, thus the class is responsible for its own creation and providing a global access point

P4 [14] If an abstract class only contains abstract public operations and final static public fields, it could be replaced
by an interface

P5 [14] A child class should not hide an attribute of a parent class
P6 [24] An abstract class must have at least one concrete child class, unless the class is part of a framework, where

the user of the framework is expected to extend this abstract class
P7 [14] A concrete method should not be overridden by an abstract method
P8 Experience Class has more than one parent, which is allowed in C++, but is not allowed in Java. Note the UML

specification allows multiple inheritance
P9 [24] An abstract class has a parent class that is not abstract

P10.1 [24] An abstract class should have abstract methods
P10.2 [14] An abstract class should not have public constructors
P11 [24] A non constant attribute is public. This violates the information hiding OO principle, as uncontrolled read /

write access to the class’ attribute is given
P12 [24] An operation is abstract while the owning class is not abstract
P13 [24] An operation has five or more parameters, which could destabilize the operation’s signature
P14 [24] A class contains get/has/is methods, that probably should be marked as query

P15.1/2 [14] Two or more direct sub-classes of a class or interface define an attribute having the same signature, which
is not defined on the parent and could be refactored to lift this attribute to the parent

P16.1/2 [14] Two or more direct sub-classes of a class or interface define an operation having the same signature, which
is not defined on the parent and could be refactored to lift this operation to the parent

P17 [14] Inherited static methods should not be overridden in the child class
P18 [24] There should not be cyclic dependencies on the package level
P19 [24] A package depends on a less stable package. This is a maintenance risk and refactoring is recommended
P20 [24] A package depends on a less abstract package. Refactoring is recommended to make the less abstract

package more abstract

Table 3. Summarized findings for the Social Security Benefits Application model
Class name WMCbefore

WMCafter

NOCbefore
NOCafter

DITbefore
DITafter

CBObefore
CBOafter

Fan-inbefore
Fan-inafter

Fan-outbefore
Fan-outafter

NormatieveAangifte 100 / 42
Inkomstenperiode 74 / 52
Inkomstenverhouding Initieelevent 3 / 2 1 / 0 2 / 0
InkomstenVerhouding 37 / 35
TijdvakCorrectie 2 / 1
InkomstenVerhouding CorrectieEvent 2 / 1 2 / 1 3 / 2
AbstractSafeOrUpdate InkomstenVer-
houdingEvent

8 / 9 5 / 9

TijdvakAangifte 2 / 1
NatuurlijkPersoon 21/20
AbstractTijdvakEvent 3 / 4

The before and after results show that with one exception
the WMC metric was not changed for any of the classes.

The WMC change was attributed to the removal of an oc-
currence of multiple inheritance. There were no excessive

643



Table 4. Summarized findings for the Social Security Benefits Application model
Class name WMCbefore

WMCafter

NOCbefore
NOCafter

DITbefore
DITafter

CBObefore
CBOafter

Fan-inbefore
Fan-inafter

Fan-outbefore
Fan-outafter

SeatsUI 5 / 4
CompleteOverhaulUI 3 / 2
LightOverhaulUI 3 / 2
MaintenanceUI 2 / 1
SeatReconfigurationUI 3 / 2
EmergencyUI 3 / 2
SeatConfigurationUI 4 / 3
Maintenance 16 / 14 16 / 15 8 / 7
Aircraft 16 / 11
SeatConfiguration 5 / 3 6 / 7 12 / 13

amount of attributes and services in any of the classes. The
NOC metric did not change for any of the classes. The DIT
metric did change, indicating that in a number of occasions
generalizations were removed, leading to a more understand-
able model. This was the case for classes SeatsUI, Comple-
teOverhaulUI, LightOverhaulUI, MaintenanceUI, SeatRe-
configurationUI, EmergencyUI and SeatConfigurationUI. In
25 percent of the classes, values for CBO, fan-in and/or fan-
out were reduced, leading to a more understandable model.
This was most significant in classes Maintenance and Air-
craft. An exception was the SeatConfiguration class, where
values for CBO and fan-in were slightly higher. Based on the
metrics, the model was improved slightly.

Looking at the model subjectively, cohesion was less
high than the previous model: while each service seemed
to carry out one single function within the abstraction level
the business is presented in the model, the model in a real life
situation could have been a bit more fine grained considering
the size of the operation represented by the model. Although
naming was clear, it was not ready for code generation,
which is why the model (class names, service names and
attribute names) was heavily renamed. It would have been
beneficial if name checking rules would have been more
extensive towards code generation. The deletion of attributes
and moving of attributes to more suitable classes contributed
to keeping classes simple and improving the clarity of the
design as well as cohesion. In the model, an occurrence
of multiple inheritance was removed as it was unnecessary,
thus improving the coupling and cohesion of the model.
Summarizing subjectively the model has improved.

6.3 Evaluation of model 3: Protein Identification
Application model

The UML model describes a protein recognition program.
The model was updated according to the triggered rules. The
summarized results are shown in table 5.

The metrics show that the WMC metric did not change.
The reason for this is the fact that the model did not con-
tain any operations, effectively making this model a data

model. The NOC metric changed for the AnnotableData
class, due to the removal of an occurrence of multiple inher-
itance. Based on the metrics this makes the model slightly
less object oriented. The DIT metric did not change, indi-
cating the structure of the model did not change. For seven
classes, values for CBO, fan-in and/or fan-out were reduced,
leading to a more understandable model. On the other hand
in three cases values for CBO, fan-in and fan-out increased,
making these classes more difficult to understand. This was
most significant in the CombinedPeakLists class, which was
affected due to the removal of a circular dependency in the
model, explaining the sacrifice in understandability. Based
on the metrics, the model was improved slightly.

Looking at the model subjectively, cohesion was not very
high, as there were no operations defined in the model. For
code generation purposes, the model should be more fine
grained, reflected in the absence of operations. Naming of
the model was clear, which was confirmed by a low num-
ber of naming rules being triggered by the model. Coupling
could be better. The model has a large number of specializa-
tions, which seem genuine for the problem domain. In the
model, an occurrence of multiple inheritance was removed,
thus improving the coupling and cohesion of the model. The
CombinedPeakLists class became less understandable, due
to the removal of circular dependencies in the model. The
clarity of the design could be improved by adding more de-
tail to the model in the form of operations. Summarizing sub-
jectively the model has improved.

6.4 Evaluation of model 4: Delivery model

The UML model describes a delivery model. The model was
updated according to the triggered rules. The summarized
results are shown in table 6. While the model triggered a
large number of rules, a lot of rules were actually triggered
by other diagrams than the class diagram. Thus appendix O
only lists those rules triggered that are applicable to the class
model. Based on the metrics, the model did not improve
as is seen by increasing values of fan-in and fan-out for a

644



Table 5. Summarized findings for the Social Security Benefits Application model
Class name WMCbefore

WMCafter

NOCbefore
NOCafter

DITbefore
DITafter

CBObefore
CBOafter

Fan-inbefore
Fan-inafter

Fan-outbefore
Fan-outafter

PeptideHypothesis 4 / 3
PeakList 6 / 5 6 / 5 11 / 9
IdentificationHypothesis 5 / 6
ResultRef 2 / 1 2 / 1 3 / 2
PeakListFile 10 / 8
ResultsRef 2 / 1
UserModification 6 / 7
CombinedPeakLists 3 / 5 3 / 5 4 / 9
AnnotableData 5 / 4 5 / 4 0 / 1

number of classes. Thus based on metrics, the model did not
improve.

Table 6. Summarized findings for the Social Security Ben-
efits Application model
Class name Fan-inbefore

Fan-inafter

Fan-outbefore
Fan-outafter

InsertDeliveryNote 3 / 4
DeliveryItems 3 / 5
DeliveryNote 5 / 3 4 / 6
Customer 4 / 3 2 / 4
Product 1 / 2

Subjectively, the cohesion of the model has improved.
While attributes and method parameters were named prop-
erly, most were not typed, making the model unclear. Based
on the rules triggered, all attributes and parameters were
typed. The typing of method parameters explains the in-
creased values for both fan-in and fan-out. A cyclic depen-
dency between two classes was removed, leading to slightly
better coupling. Thus subjectively this model did improve.

6.5 Rules evaluation

For the syntactic rules implemented, most were of limited
value for the test models. This was expected since the mod-
els were created in MagicDraw; Either by modeling or by
reverse engineering from code. MagicDraw enforces cross
diagram consistency and forbids UML constructs that are
forbidden according to the UML specification from being
created. This is not the case for all modeling tools on the
market and hence these syntactic rules could be valuable for
models created by these modeling tools. For code generation
projects, the naming rules are of particular value and could
in fact be extended for specific languages as well as coverage
of more detailed language specific conventions.

For the semantic rules implemented, rules P3, P7, P11,
P12 and P17 were not triggered. In practice rules P1, P2,
P13, P18, P19 and P20 provided valuable hints during refac-
toring. For rule P2 and P18 to be used effectively, it would
have been beneficial to print the cyclic dependency rather

than printing each class / package separately. Rules P19 and
P20 could be improved to print values for stability and ab-
stractness. While naming and typing subjectively improved
the model, this was not reflected in metrics values. Thus it
is important to assess a model not purely on metrics alone.
Based on the test results, larger models may benefit more
from metrics calculation and rules validation than smaller
models.

While the selected rules were able to improve all class
models, they also resulted in a large amount of unwanted
rules being triggered for these models. The reason for those
unwanted rules was the presence of other diagrams in the
UML model. These diagrams were also parsed in rules vali-
dation. Some extensions could be fine tuned to ensure inter-
faces of the UML class are rejected. This would for instance
have prevented all class’ interface types from being included
in metrics calculation and rules validation.

From a development perspective, writing metrics and
rules in a technology that is very much related to the UML 2
meta model, makes it easier to focus on the problem at hand.
Once a significant set of OCL extensions was written, creat-
ing new metrics and rules became significantly easier due to
the possibility of re-use. Performance problems were alle-
viated using the cached statement for all read-only queries,
thus abstracting the performance problem from the tech-
nology very effectively. Some extensions could be further
improved for performance, for instance by short circuiting
searches as soon as a positive match is encountered.

7. Conclusions and further work
Refactoring a model by means of rules has proven an effec-
tive method of refactoring a UML class model as described
in section 6. The concept of using OCL queries to write up
both metrics and rules has proven an efficient method of
implementing both metrics and rules. The before and after
refactoring metrics generated, needed to be manually com-
pared. For the model developer it would be better to provide
a visual comparison of metrics before and after refactoring.
This would require additional research to find desirable val-
ues for the selected quality metrics. The number of metrics

645



could also be extended to include those convenient for refac-
toring (package stability, class abstractness) as well as and
those operating on the other UML diagram types [12].

Since this project was limited to the UML class model, it
was not possible to detect anti patterns for the full set of
UML design patterns. Including metrics and rules for all
UML diagrams would have enable detection of most anti
patterns [4]. While stereotypes exist for UML design pat-
terns, these are not standardized nor part of the UML spec-
ification. It would be beneficial if there was formal support
in UML for design patterns, as this would make the alterna-
tive (name based) searches more reliable [8]. This could be
used to selectively search the model for anti-patterns based
on initial searches for patterns.

The tooling was effective in enabling writing metrics and
rules once the rule developer is familiar with the UML 2
meta-model. The rules developed could be re-written for
inclusion in the Eclipse Model Development Toolkit. This
Eclipse plugin is used by most Eclipse modeling plugins and
hence it would enable not only OpenArchitectureWare users
but all Eclipse plugins connecting to the Model Develop-
ment Toolkit to make use of them out of the box in model-
ing projects. It would be beneficial if, for those rules where
this is possible, to enable automated model repair actions.
The rules could in future be extended to include other dia-
grams, effectively enabling both searches for general design
patterns and cross-checking different diagrams for consis-
tency.

Acknowledgments
This project was performed in partial fulfillment of the re-
quirements for the degree of Master of Science at the Uni-
versity of Liverpool. I thank all individuals who were and /
or are involved in providing the open source libraries that I
used in this project. I thank Peter Vermeulen from Capgem-
ini for sponsoring this project.

References
[1] S. Ambler. The elements of UML style. Cambridge University

Press, New York, NY, 2003.

[2] B. Boehm. Software Engineering Economics. Prentice Hall,
Upper Saddle River, NJ, 1981.

[3] L. Briand, C. Bunse, and J. Daly. A controlled experiment for
evaluating quality guidelines on the maintainability of object-
oriented designs. Software Engineering IEEE, 27(6):513–530,
June 2001.

[4] L. Briand, Y. Labiche, and A. Sauve. Guiding the application
of design patterns based on uml models. In 22nd IEEE In-
ternational Conference on Software Maintenance, pages 234–
243. IEEE Computer Society, September 2006.

[5] W. Brown, R. Malverau, H. McCormick III, and T. Mow-
bray. Anti-patterns - refactoring software, architectures and
projects in crisis. Wiley Computer Publishing, New York, NY,
1998.

[6] S. Chidamber and C. Kemerer. A metrics suite for object
oriented design. IEEE transactions on software engineering,
20(6):476–493, June 1994.

[7] Cunningham and Cunningham. Portland pattern repository.
http://c2.com/ppr/, 2005.

[8] M. Elaasar, L. Briand, and Y. Labiche. A metamodeling
approach to pattern specification and detection. In Model
Driven Engineering Languages and Systems, pages 484–498.
Springer, Berlin / Heidelberg, September 2006.

[ 9] E . Foundat i on. Eclipse IDE .
http://www.eclipse.org/downloads/, 2008.

[10] L. Fuentes-Fernandez and L. Vallecillo-Moreno. An introduc-
tion to uml profiles. Upgrade, 5(2):6–13, April 2004.

[11] V. Fuller and D. Upton. Wipro Technologies: The Factory
Model. Harvard Business Online, Boston, MA, 2005.

[12] M. Genero, M. Piattini, and C. Calero. A survey of metrics for
uml class diagram. Journal of Object Technology, 4(9):55–92,
November 2005.

[13] M. Genero, M. Piattini-Velthuis, J. Cruz-Lemus, and
L. Reynoso. Metrics for uml models. Upgrade, 5(2):43–48,
April 2004.

[14] Gronback. Model validation: Applying audits and metrics to
uml models. In BorCon 2004. Borland Corporation, 2004.

[15] S. Henry and D. Kafura. Software structure metrics based on
information flow. IEEE transactions on software engineering,
27(5):510–518, September 1981.

[16] C. F. Lange and M. R. Chaudron. Managing model quality in
uml-based software development. In Proceedings of the 13th
IEEE International Workshop on Software Technology and
Engineering Practice (STEP 05), pages 7–16. IEEE Computer
Society, September 2005.

[17] O. Lindland, G. Sindre, and A. Sølvberg. Understanding
quality in conceptual modeling. Software IEEE, 11(2):42–49,
March 1994.

[18] J. McQuillan and J. Power. On the application of software
metrics to uml models. In Models in Software Engineering,
Workshops and Symposia at MODELS 2007 Nashville, TN,
USA, September 30 - October 5, 2007, Reports and Revised
Selected Papers, pages 217–226. IEEE Computer Society,
October 2007.

[19] Object Management Group. Technical guide to model driven
architecture: The mda guide v1.0.1, omg/03-06-01 version.
June 2001.

[20] Object Management Group. Unified modeling language,
formal/2005-07-05 version. July 2005.

[21] Object Management Group. Object constraint language spec-
ification, formal/2006-05-01 version. May 2006.

[22] OpenArchitectureWare. Platform for model-driven software
development. http://www.openarchitectureware.org/, 2008.

[23] R. Subramanyam and M. Krishan. Empirical analysis of ck
metrics for object-oriented design complexity: Implications
for software defects. IEEE transactions on software engineer-
ing, 29(4):197–310, April 2003.

[24] J. Wüst. SDMetrics: The software design metrics tool for
UML. http://www.sdmetrics.com/, 2005.

646



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


