
Ensuring Semantic Integrity of Reusable Objects

(PANEL)

Webb Stacy, Center-Line Software, Inc. (moderator)

Richard Helm, IBM Thomas J. Watson Research Center

Gail E. Kaiser, Columbia University

Bertrand Meyer, Interactive Sof?ware Engineering

The object oriented paradigm provides new
opportunities for development via reuse. However,
those opportunities are accompanied by new
challenges. In particular, consumers of reusable
components want to ensure that they have maintained
the semantic integrity of the reused components.
Several special approaches have been proposed to
describe and enforce semantic integrity constraints in
reusable components, for example class invariants
[11, contracts [2], and inspection gauges (31; others
have discussed more conventional means such as
simple assertions and unit and module testing (451.

This panel will address issues surrounding quality
control of reusable components. Specifically,
panelists will address these issues:

What are the challenges to semantic integrity
maintenance presented by the object oriented
paradigm?

How can semantics be verified in the
presence of dynamic binding of methods to
messages, especially if a method supplied by
the reuser is bound to a message invoked
from a reusable component?

Does encapsulation conflict with white-box
testing? Is white-box testing appropriate for

the consumer of reusable components?

Does the granularity of the component make
a difference? For instance, is less semantic
verification required when an entire
framework is reused than when a single class
or method is reused?

How can the consequences of semantic
violations be expressed? Should reusers be
allowed to violate them if the consequences
aren’t important to their application?

What are the economics of semantic integrity
maintenance of object oriented components
in the face of reuse? How can the costs be
kept low enough that reuse is still attractive?

To what extent can the creator of the reusable
components ensure their quality in all reuses? To
what extent must this be the responsibility of the
reuser?

What means are available for expressing
semantic integrity constraints? What constraints
can’t be expressed?

To what extent should (and can) the enforcement
of semantic integrity be provided by the language
itsell?...the development environment?...unit and
module testing?...integration testing?

OOPSLA’92

298

The panelists represent a range of viewpoints.
Bertrand Meyer has pioneered investigations of
assertions that describe class invariants and method
pre- and post-conditions, and proposes correct
software construction as a succession of documented
supplier-consumer contract decisions [6]. Richard
Helm also sees a role for contracts in software
construction, but views them more as constraints on
interclass behavioral compositions; he finds
composition, especially in conjunction with contract
specification mechanisms, a safer and more mature
software construction technique than subclassing.
Gail Kaiser addresses common misconceptions about
adequate testing under inheritance and composition,
finding that, in general, more testing is required than
might be apparent at first glance.

These views are not mutually exclusive. Each is an
important perspective on the picture of semantic
integrity under reuse. Together, they serve to bring
the picture into sharper focus.

Gail Kaiser

It is commonly assumed that properly constructed
reusable classes can be tested in isolation and/or
within the context of the original system, and then
reused without retesting in a wide variety of systems.
Although this belief is intuitively appealing, it turns
out to be false for certain widely accepted testing
criteria, such as statement coverage and branch
coverage, that fulfill the axioms of “adequate testing”
developed in the testing community [7,8].

Contrary to one’s intuition, reusable classes --
particularly code inherited from superclasses --
should be retested in most cases of reuse [4]. New
errors can be introduced by interactions with the new
context. Further, old bugs that were never detected
during previous testing or use of the class may come
to light only during reuse.

Much of the confusion is due to the fact that reusers
often treat adequate testing as “proving” that the code
is correct, when in fact it does no such thing; adequate

testing only provides a level of confidence that the
code has been sufficiently exercised. While this
confidence may be well-placed within the original
context, it should no longer apply when a class is
reused.

Richard Helm

Semantic Integrity of Reusable Objects: Re-use
and Abuse of Software Components

Software components only operate under certain
assumptions: parameter values, calling conventions
etc. Reusers of software must not violate these
assumptions if the semantic integrity of components
is to be maintained. Object-oriented technology raises
new issues concerning semantic integrity of reusable
components (both objects and classes). An object’s
mutable state means its operating assumptions can
change over time. “White-box” reuse via class
inheritance, and “black-box” reuse (see [9]) via object
composition each present different assumptions to the
reuser. How can we ensure these assumptions will not
be violated when reusing a component?

Unfortunately, the current situation is that the burden
is largely placed on the reuser to do the right thing and
not abuse the component. This is partly as it should
be. The reuser has some responsibility in the matter.
However, we often find that the burden is too large.
There is high intellectual overhead for the user in
order to truly understand and be sure that they are
violating any assumptions.

For example when subclassing, reusers may be
required to

implement methods deferred to subclass by
parent,

ensure overridden methods do not violate parent
classes’ assumptions about that method,

respect protocol supported by parent classes, and

299

initiate notifying actions when subclass state
changes.

In reusing and composing objects, they may be
required to

create objects with correct parameters, compose it
correctly and

only with compatible objects, respect allowable
sequence of

operations that may be called on the object,
provide appropriate

responses to calls initiated by the object.

To lighten the user’s burden, what choices exist?
Although programming language features provide
prescriptive support, for example C++‘s pure virtual
functions and to a lesser extent Eiffel’s assertions
(which only detect violation of integrity, rather than
ensure integrity), currently the reuser mostly has to
rely on descriptions of operating assumptions. On the
whole, we remain pessimistic for prescriptive and
automated support for semantic integrity --
descriptive approaches will continue to dominate.
Consequently, the problem of ensuring semantic
integrity comes down to one of careful design that
minimizes the opportunities for semantic violations to
occur, coupled with adequate descriptions of these
designs.

Given this to be the case, what should authors of
components be designing, describing, and to a lesser
extent prescribing to reusers? A clue lies in the
structure of the more mature object-oriented
frameworks such as Interviews, Unidraw, or ET++.
A key quality of these systems is their reliance on
object-composition (black-box reuse) as a mechanism
for reuse and obtaining new functionality. This
contrasts with less mature systems in which new
functionality is obtained by creating new subclasses
(white-box reuse), and contrasts even further
with pre-mature system where new functionality is
obtained by the addition of a new class (no reuse).

This experience suggests that the key to reusable
software is found in flexible and abstract composable
objects supported by a rich set of composition
mechanisms. Helper objects that are responsible for
checking composing objects correctly are also
important. Systems based on object composition also
reflect our desire to minimize the chances for
violations. Because reuse via composition uses high
level domain objects and abstractions, and composes
these via standard interfaces, there are fewer chances
for violations of integrity. In contrast, reuse through
designing sub-classes via inheritance uses relatively
low-level programming language abstractions,
exposes class internals, and is prone to programming
errors.

How then can we describe and prescribe object-
compositions. As we described in [2], one technique
is to use contracts. Contracts describe cooperating
objects in terms of their individual obligations,
patterns of communication between objects, inter
object invariants, pre-conditions or pre-nuptuals
required to enter the contract, and how the contract is
to be instantiated with “live” objects. Contracts
also included the notions of conformance declarations
which describe how class and any subclasses do their
part to fulfill the obligations required via the contract.
However, contracts provide only a high-level
description of an object composition. One approach to
move away from the purely descriptive is to push
contracts specifications closer to the programming
language. This approach has been explored recently
in [lo] to specify reusable components, and by some
of our recent experiments that assume the existence of
contract constructs which provide means to explicitly
instantiate contracts. Other means to describe object
compositions include protocol and interface
definition languages that include the notion of typing
and subtyping. These can be checked at component
composition time. Classes can also be instrumented to
check that the protocol is obeyed, although this can
have serious performance problems.

Finally, we remark that inheritance cannot be totally
ignored as it provides a way to quickly populate the

300

system with components. But, as we mentioned
previously, inheritance requires programming in low
level abstractions and exposes the danger of
introducing code that violates integrity. Coding is
thus to be avoided. Fortunately, there exist class
design techniques that reduce the amount of coding.
For example, template methods combined with
simple pure virtual functions allow rapid and simple
customization of families of related classes.

Bertrand Meyer

Achieving semantic integrity through “Design by
Contract”

One of the limitations of usual approaches to reuse,
including many of the techniques available in object-
oriented environments, is that they force potential
“reuse& (software developers wishing to take
advantage of existing library components) to choose
between two equally unsatisfactory types of
component documentation:

1 - The component’s source code.

2 - Some documentation written separately from
the component itself.

Solution 1 is inappropriate for large-scale reuse
because it overwhelms reusers with low-level
information, and fails to protect them against the
effects of eventual internal changes. Solution 2
assumes supplementary effort on the part of the
components’ developers and, worse yet, cannot
guarantee that the documentation will remain up-to-
date when the components evolve (which almost
inevitably occurs).

A better solution is to generate documentation from
the class text itself. This approach can only work if the
class text includes information that is both semantic
as with technique 1 above, and high-level, as with
technique 2.

To be high-level, the information must only describe
interface properties, excluding any implementation

properties. To be semantic, the information must not
limit itself to the signatures (number and types of
operation arguments): it must express the usage
properties of each operation.

Eiffel’s assertions fulfil this role. The semantic
information for a routine is the combination of a
precondition (input condition, imposed on clients,
i.e., callers) and a postcondition (output condition,
imposed the supplier, i.e., the routine itself). In
addition, classes may be equipped with invariants.

The underlying theory is “Design by Contract” [1.6,
11,121. In fact I believe this is the main theoretical
basis of the object-oriented method as a whole. Using
Design by Contract, developers can ensure the
reliability of software systems not through numerous
and often redundant checks, but by specifying the
precise conditions that govern communication
between the various components of these systems.
The contracts proper are expressed by preconditions
and postconditions; the invariants are additional
semantic constraints, providing crucial information to
understand the semantics of classes. Invariants are
accumulated in the inheritance process, giving its full
semantic value to the view of inheritance as being
(among other things) the “is-a” relation.

These ideas pervade the whole realm of object-
oriented ideas. Two of their applications, as
implemented in Eiffel, are particularly important:

- The Design by Contract principle yields a theory
of inheritance, and a rule as to what kind of
routine redeclaration is permissible. In the
context of polymorphism and dynamic binding,
redeclaration is subcontracting; for a
subcontractor to be “honest”‘, it must keep the
precondition or weaken it, and it must keep the
postcondition or strengthen it. These important
rules are directly enforced by the language.

- Another consequence is a disciplined exception
mechanism, based on the idea that an exception
(abnormal case) is the result of some party’s
inability to fulfil its obligation in a contract.

301

Then only two responses are possible:
resumption (try again, usually with a new
strategy) and failure (carrying the exception
over to the client).The Eiffel exception
mechanism is the direct application of this
analysis.

Assertions also serve as a powerful debugging tool,
especially in connection with the use of libraries of
reusable components if (as with the Eiffel libraries)
the components are heavily equipped with
preconditions, postconditions and invariants. They
provide an excellent documentation mechanism: the
“short form” of Eiffel classes, used as the key
documentation format and generated automatically
by tools of the environment, provides the semantic yet
high-level form announced at the beginning of this
note. Even more importantly, assertions serve as a
constant methodological guide for the production of
correct and robust object-oriented software, making
“Design by Contract”’ a powerful analysis, design and
implementation principle.

References

[1] Meyer, B., Object Oriented Software
Construction. New York: Prentice-Hall, 1988.

[2] Helm R., I. Holland, & D. Gangopadhyay.
Contracts: Specifying behavioral compositions in
object-oriented systems. OOPSLA 1990.

[3] Cox, B. Planning the software industrial
revolution. IEEE Softvvure, 7(6): 25-33,
November, 1990.

[4] Perry, D. & G. Kaiser. Adequate testing and
object-oriented programming, Journal of Object-
Oriented Programming, 2(5): 13-19, Jan/Feb
1990.

[5] Smith, M.D., & D.J. Robson. A framework for
testing object-oriented programs. Journal of
Object-Oriented Programming, 5(3), June, 1992.

B. Meyer (Eds.) Advances in Object-Oriented
Software Engineering. New York: Prentice-Hall,
1992.

[7] Weyuker. E.J. Axiomatizing software test data
adequacy. IEEE Transactions on Software
Engineering SE-12(12):1128-l 138 (December
1986).

183 Weyuker, E. J. The evaluation of program-based
software test data adequacy criteria.
Communications of the ACM 31(6):668-675
(June 1988).

[9] Johnson, R.E., & B.Foote. Designing reusable
classes. Journal of Object-Oriented
Programming, Z(2). June/July. 1988.

[lo] Holland, I. Specifying reusable components
using contracts. ECOOP 1992.

[111 Meyer, B. Eiffef: The Language. New York:
Prentice-Hall, 1991.

[121 Meyer, B. Applying design by contract. IEEE
Computer, October, 1992 (to appear).

[6] Meyer, B. Design by contract. In D. Mandrioli &

302

