
AGERE! (Actors and aGEnts REloaded)
SPLASH 2011 Workshop on Programming Systems, Languages and Applications based on

Actors, Agents, and Decentralized Control

Gul Agha
University of Illinois at

Urbana-Champaign, USA
agha@cs.uiuc.edu

Rafael H. Bordini
Institute of Informatics, Federal

University of Rio Grande do Sul, Brazil
R.Bordini@inf.ufrgs.br

Alessandro Ricci
University of Bologna, Italy

a.ricci@unibo.it

Abstract
The fundamental turn of software into concurrency and distribu-
tion is not only a matter of performance, but also of appropriate
design and abstraction. This calls for programming paradigms that
would allow developers to think, design, develop, execute, debug,
and profile programs exhibiting different degrees of concurrency,
reactiveness, autonomy, decentralization of control, and distribu-
tion in ways that are more natural than that supported the cur-
rent paradigms. This workshop aims at exploring programming ap-
proaches explicitly providing a level of abstraction that promotes a
decentralized mindset in solving problems and programming sys-
tems exhibiting such features. To this end, the abstractions of actors
and agents (and systems of actors / systems of agents) are taken as a
natural reference: the objective of the workshop is then to foster the
research in all aspects of actor-oriented programming and agent-
oriented programming and other decentralized approaches as evo-
lution of mainstream paradigms (such as OOP), including the the-
ory and the practice of design and programming, bringing together
researchers working on the models, languages, and technologies,
as well as practitioners developing real-world systems and applica-
tions.

Categories and Subject Descriptors D.1 [Programming Tech-
niques]; D.2 [Programming Languages]; D.3 [Software Engi-
neering]; I.2.5 [Artificial Intelligence]: Programming Languages
and Software; I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence

Keywords agent-oriented programming, actor-oriented program-
ming

1. Main Theme and Goals
The fundamental turn of software into concurrency, interactivity,
distribution is not only a matter of performance, but also design
and abstraction [19]. “The free lunch is over” calls for the devising
of new programming paradigms — whether they are evolutions of
existing ones or not — that would allow programmers to naturally
think, design, develop, execute, debug and profile programs ex-
hibiting different degrees of concurrency, reactiveness, autonomy,
decentralization of control, distribution. Almost any application to-

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

day includes the need of programming software components that
actively — pro-actively and re-actively — do concurrently some
jobs, react to various kind of events, communicate with each other
by means of some interaction model. How to properly program
such entities and systems of entities, what kinds of programming
abstractions can help in systematically structuring complex reac-
tive and proactive behavior, what kinds of programming abstrac-
tions can be effective in organizing applications as ensembles of
relatively autonomous entities working together, and many other
related issues are important open research questions.

The focus of this workshop is to investigate the definition of
suitable levels of abstraction, programming languages, and plat-
forms to support and promote a decentralized mindset [15] in solv-
ing problems, designing systems, programming applications, in-
cluding the teaching of computer programming. That is, the ques-
tion is how to think about problems and programs taking decentral-
ization of control and interaction as the most essential features. To
this end, we start from agents (and multi-agent systems) and ac-
tors, which can be recognized as two main broad families of con-
cepts, abstractions and programming tools described in literature
that explicitly promote such a decentralized thinking — even if as-
suming different facets depending on the context in which they are
discussed, being it concurrent programming or distributed artificial
intelligence. Accordingly, in this workshop we aim at promoting
the discussion about agent-oriented and actor-oriented program-
ming languages (models, theories, applications, systems), so as to
explore agents and actors as a general-purpose computing paradigm
explicitly supporting a decentralized mindset in solving problems
and computer programming. Although we start from these two well
known approaches, the workshop aims to promote discussion of
any other approaches that also propose to contribute to the essen-
tial aspects of autonomous behavior and decentralized control. Any
stage of software development is interesting for the workshop, in-
cluding requirements, modeling, prototyping, design, implementa-
tion, testing, and any other means of producing running software
based on actors and agents as first-class abstractions.

Overall, the workshop aims at fostering the development of the
research in agent and actor oriented programming in the same vein
that OOPSLA did for OOP at the beginning of the 80’s. We hope
to promote the investigation of all the features that would make
agent-oriented or actor-oriented programming languages effective
tools for developing software systems, as an evolution of the OO
paradigm. Including aspects that concern both the theory and the
practice of design and programming using such paradigms, so as to
bring together researchers working on the models, languages, and
technologies, and practitioners using such technologies to develop
real-world systems and applications.

This overall perspective — which is oriented to impact on main-
stream programming paradigms and software development — is

325



what distinguishes this event from related venues about agents and
actors, organized in different contexts. Nevertheless, the event aims
at being a good forum for collecting, discussing, and confronting
related research that typically appears in different communities in
the context of (distributed) artificial intelligence, distributed com-
puting, computer programming and software engineering. Exam-
ples include: research on agent oriented programming and multi-
agent programming [5, 6], either rooted in distributed artificial in-
telligence [7, 9, 12, 18] or computer programming contexts [14, 16,
17, 20]; research on actor-oriented programming [1, 11], including
well-known programming languages/systems providing directly or
indirectly support for actor oriented programming: examples are
Erlang [4], Scala [10], Axum [21]; research on concurrent object-
oriented programming [2, 3, 8], and on the extension of OO pro-
gramming languages towards actor or agent-like levels of abstrac-
tion; research on new programming paradigms and reinvention of
programming [13].

References
[1] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986.
[2] G. Agha. Concurrent object-oriented programming. Commun. ACM,

33:125–141, September 1990.
[3] G. Agha, P. Wegner, and A. Yonezawa, editors. Research directions

in concurrent object-oriented programming. MIT Press, Cambridge,
MA, USA, 1993.

[4] J. Armstrong. Erlang. Commun. ACM, 53(9):68–75, 2010.
[5] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.

Multi-Agent Programming Languages, Platforms and Applications -
Vol. 1. Springer, 2005.

[6] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors.
Multi-Agent Programming Languages, Platforms and Applications -
Vol. 2. Springer, 2009.

[7] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, Ltd, 2007.

[8] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution
in object-oriented programming. ACM Comput. Surv., 30(3):291–329,
1998.

[9] M. Dastani. 2apl: a practical agent programming language. Au-
tonomous Agents and Multi-Agent Systems, 16(3):214–248, 2008.

[10] P. Haller and M. Odersky. Scala actors: Unifying thread-based and
event-based programming. Theoretical Computer Science, 2008.

[11] C. Hewitt. Viewing control structures as patterns of passing messages.
Artif. Intell., 8(3):323–364, 1977.

[12] K. V. Hindriks. Programming rational agents in GOAL. In Bordini
et al. [6], pages 3–37.

[13] A. Kay. Programming and programming languages, 2010. VPRI
Research Note RN-2010-001.

[14] J. J. Odell. Objects and agents compared. Journal of Object Technol-
ogy, 1(1):41–53, 2002.

[15] M. Resnick. Turtles, Termites and Traffic Jams. Explorations in Mas-
sively Parallel Microworlds. MIT Press, 1994.

[16] A. Ricci and A. Santi. Agent-oriented computing: Agents as a
paradigm for computer programming and software development. In
Proc. of the 3rd Int. Conf. on Future Computational Technologies and
Applications – Future Computing 2011, Rome, Italy, 2011. IARIA.

[17] A. Ricci, M. Viroli, and G. Piancastelli. simpA: An agent-oriented
approach for programming concurrent applications on top of java.
Science of Computer Programming, 76(1):37 – 62, 2011.

[18] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51–92, 1993.

[19] H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue: Tomorrow’s Computing Today, 3(7):54–62, Sept. 2005.

[20] M. D. Travers. Programming with Agents: New metaphors for thinking
about computation. Massachusetts Institute of Technology, 1996. PhD
Thesis.

[21] Axum project, 2011. http://msdn.microsoft.com/en-us/
devlabs/dd795202.

326




